1
|
Salafranca J, Ko JK, Mukherjee AK, Fritzsche M, van Grinsven E, Udalova IA. Neutrophil nucleus: shaping the past and the future. J Leukoc Biol 2023; 114:585-594. [PMID: 37480361 PMCID: PMC10673716 DOI: 10.1093/jleuko/qiad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023] Open
Abstract
Neutrophils are innate immune cells that are key to protecting the host against infection and maintaining body homeostasis. However, if dysregulated, they can contribute to disease, such as in cancer or chronic autoinflammatory disorders. Recent studies have highlighted the heterogeneity in the neutrophil compartment and identified the presence of immature neutrophils and their precursors in these pathologies. Therefore, understanding neutrophil maturity and the mechanisms through which they contribute to disease is critical. Neutrophils were first characterized morphologically by Ehrlich in 1879 using microscopy, and since then, different technologies have been used to assess neutrophil maturity. The advances in the imaging field, including state-of-the-art microscopy and machine learning algorithms for image analysis, reinforce the use of neutrophil nuclear morphology as a fundamental marker of maturity, applicable for objective classification in clinical diagnostics. New emerging approaches, such as the capture of changes in chromatin topology, will provide mechanistic links between the nuclear shape, chromatin organization, and transcriptional regulation during neutrophil maturation.
Collapse
Affiliation(s)
- Julia Salafranca
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jacky Ka Ko
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Ananda K Mukherjee
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Marco Fritzsche
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Erinke van Grinsven
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Irina A Udalova
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
2
|
Wang H, Li B, Zuo L, Wang B, Yan Y, Tian K, Zhou R, Wang C, Chen X, Jiang Y, Zheng H, Qin F, Zhang B, Yu Y, Liu CP, Xu Y, Gao J, Qi Z, Deng W, Ji X. The transcriptional coactivator RUVBL2 regulates Pol II clustering with diverse transcription factors. Nat Commun 2022; 13:5703. [PMID: 36171202 PMCID: PMC9519968 DOI: 10.1038/s41467-022-33433-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
RNA polymerase II (Pol II) apparatuses are compartmentalized into transcriptional clusters. Whether protein factors control these clusters remains unknown. In this study, we find that the ATPase-associated with diverse cellular activities (AAA + ) ATPase RUVBL2 co-occupies promoters with Pol II and various transcription factors. RUVBL2 interacts with unphosphorylated Pol II in chromatin to promote RPB1 carboxy-terminal domain (CTD) clustering and transcription initiation. Rapid depletion of RUVBL2 leads to a decrease in the number of Pol II clusters and inhibits nascent RNA synthesis, and tethering RUVBL2 to an active promoter enhances Pol II clustering at the promoter. We also identify target genes that are directly linked to the RUVBL2-Pol II axis. Many of these genes are hallmarks of cancers and encode proteins with diverse cellular functions. Our results demonstrate an emerging activity for RUVBL2 in regulating Pol II cluster formation in the nucleus.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, 610500, China
| | - Boyuan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Linyu Zuo
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Bo Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences (CLS), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yan Yan
- Institute for TCM-X; MOE Key Laboratory of Bioinformatics; Bioinformatics Division, BNRist (Beijing National Research Center for Information Science and Technology); Department of Automation, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Kai Tian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Rong Zhou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chenlu Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yongpeng Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Haonan Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Fangfei Qin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Bin Zhang
- Departments of Pathology and Laboratory Medicine, and Pediatrics, University of Rochester Medical Center, 601 Elmwood Ave, Box 608, Rochester, NY, 14642, USA
| | - Yang Yu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao-Pei Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Juntao Gao
- Institute for TCM-X; MOE Key Laboratory of Bioinformatics; Bioinformatics Division, BNRist (Beijing National Research Center for Information Science and Technology); Department of Automation, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Zhi Qi
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wulan Deng
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences (CLS), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Scholz BA, Sumida N, de Lima CDM, Chachoua I, Martino M, Tzelepis I, Nikoshkov A, Zhao H, Mehmood R, Sifakis EG, Bhartiya D, Göndör A, Ohlsson R. WNT signaling and AHCTF1 promote oncogenic MYC expression through super-enhancer-mediated gene gating. Nat Genet 2019; 51:1723-1731. [DOI: 10.1038/s41588-019-0535-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/23/2019] [Indexed: 01/10/2023]
|
4
|
Karnay A, Karisetty BC, Beaver M, Elefant F. Hippocampal stimulation promotes intracellular Tip60 dynamics with concomitant genome reorganization and synaptic gene activation. Mol Cell Neurosci 2019; 101:103412. [PMID: 31682915 DOI: 10.1016/j.mcn.2019.103412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/07/2019] [Accepted: 09/17/2019] [Indexed: 11/17/2022] Open
Abstract
Genomic reorganizations mediating the engagement of target genes to transcription factories (TFs), characterized as specialized nuclear subcompartments enriched in hyperphosphorylated RNA polymerase II (RNAPII) and transcriptional regulators, act as an important layer of control in coordinating efficient gene transcription. However, their presence in hippocampal neurons and potential role in activity-dependent coregulation of genes within the brain remains unclear. Here, we investigate whether the well-characterized role for the histone acetyltransferase (HAT) Tip60 in mediating epigenetic control of inducible neuroplasticity genes involves TF associated chromatin reorganization in the hippocampus. We show that Tip60 shuttles into the nucleus following extracellular stimulation of rat hippocampal neurons with concomitant enhancement of Tip60 binding and activation of specific synaptic plasticity genes. Multicolor three-dimensional (3D) DNA fluorescent in situ hybridization (DNA-FISH) reveals that hippocampal stimulation mobilizes these same synaptic plasticity genes and Tip60 to RNAPII-rich TFs. Our data support a model by which external hippocampal stimulation promotes intracellular Tip60 HAT dynamics with concomitant TF associated genome reorganization to initiate Tip60mediated synaptic gene activation.
Collapse
Affiliation(s)
- Ashley Karnay
- Department of Biology, Drexel University, Philadelphia, PA, USA; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Mariah Beaver
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
SATB family chromatin organizers as master regulators of tumor progression. Oncogene 2018; 38:1989-2004. [PMID: 30413763 DOI: 10.1038/s41388-018-0541-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
SATB (Special AT-rich binding protein) family proteins have emerged as key regulators that integrate higher-order chromatin organization with the regulation of gene expression. Studies over the past decade have elucidated the specific roles of SATB1 and SATB2, two closely related members of this family, in cancer progression. SATB family chromatin organizers play diverse and important roles in regulating the dynamic equilibrium of apoptosis, cell invasion, metastasis, proliferation, angiogenesis, and immune modulation. This review highlights cellular and molecular events governed by SATB1 influencing the structural organization of chromatin and interacting with several co-activators and co-repressors of transcription towards tumor progression. SATB1 expression across tumor cell types generates cellular and molecular heterogeneity culminating in tumor relapse and metastasis. SATB1 exhibits dynamic expression within intratumoral cell types regulated by the tumor microenvironment, which culminates towards tumor progression. Recent studies suggested that cell-specific expression of SATB1 across tumor recruited dendritic cells (DC), cytotoxic T lymphocytes (CTL), T regulatory cells (Tregs) and tumor epithelial cells along with tumor microenvironment act as primary determinants of tumor progression and tumor inflammation. In contrast, SATB2 is differentially expressed in an array of cancer types and is involved in tumorigenesis. Survival analysis for patients across an array of cancer types correlated with expression of SATB family chromatin organizers suggested tissue-specific expression of SATB1 and SATB2 contributing to disease prognosis. In this context, it is pertinent to understand molecular players, cellular pathways, genetic and epigenetic mechanisms governed by cell types within tumors regulated by SATB proteins. We propose that patient survival analysis based on the expression profile of SATB chromatin organizers would facilitate their unequivocal establishment as prognostic markers and therapeutic targets for cancer therapy.
Collapse
|
6
|
Zaidi SK, Fritz AJ, Tracy KM, Gordon JA, Tye CE, Boyd J, Van Wijnen AJ, Nickerson JA, Imbalzano AN, Lian JB, Stein JL, Stein GS. Nuclear organization mediates cancer-compromised genetic and epigenetic control. Adv Biol Regul 2018; 69:1-10. [PMID: 29759441 PMCID: PMC6102062 DOI: 10.1016/j.jbior.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/13/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
Nuclear organization is functionally linked to genetic and epigenetic regulation of gene expression for biological control and is modified in cancer. Nuclear organization supports cell growth and phenotypic properties of normal and cancer cells by facilitating physiologically responsive interactions of chromosomes, genes and regulatory complexes at dynamic three-dimensional microenvironments. We will review nuclear structure/function relationships that include: 1. Epigenetic bookmarking of genes by phenotypic transcription factors to control fidelity and plasticity of gene expression as cells enter and exit mitosis; 2. Contributions of chromatin remodeling to breast cancer nuclear morphology, metabolism and effectiveness of chemotherapy; 3. Relationships between fidelity of nuclear organization and metastasis of breast cancer to bone; 4. Dynamic modifications of higher-order inter- and intra-chromosomal interactions in breast cancer cells; 5. Coordinate control of cell growth and phenotype by tissue-specific transcription factors; 6. Oncofetal epigenetic control by bivalent histone modifications that are functionally related to sustaining the stem cell phenotype; and 7. Noncoding RNA-mediated regulation in the onset and progression of breast cancer. The discovery of components to nuclear organization that are functionally related to cancer and compromise gene expression have the potential for translation to innovative cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Kirsten M Tracy
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Jonathan A Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Joseph Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Andre J Van Wijnen
- Departments of Orthopedic Surgery, Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Jeffrey A Nickerson
- Department of Pediatrics, UMass Medical School, Worcester, MA, United States
| | - Antony N Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, United States
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
7
|
Yang H, Jaeger M, Walker A, Wei D, Leiker K, Weitao T. Break Breast Cancer Addiction by CRISPR/Cas9 Genome Editing. J Cancer 2018; 9:219-231. [PMID: 29344267 PMCID: PMC5771328 DOI: 10.7150/jca.22554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the leading diagnosed cancer for women globally. Evolution of breast cancer in tumorigenesis, metastasis and treatment resistance appears to be driven by the aberrant gene expression and protein degradation encoded by the cancer genomes. The uncontrolled cancer growth relies on these cellular events, thus constituting the cancerous programs and rendering the addiction towards them. These programs are likely the potential anticancer biomarkers for Personalized Medicine of breast cancer. This review intends to delineate the impact of the CRSPR/Cas-mediated genome editing in identification and validation of these anticancer biomarkers. It reviews the progress in three aspects of CRISPR/Cas9-mediated editing of the breast cancer genomes: Somatic genome editing, transcription and protein degradation addictions.
Collapse
Affiliation(s)
- Haitao Yang
- Laboratory for Cancer Genome Editing, Zhuhai Lifecode Medical Technologies. Inc. Department of Prenatal Diagnosis, Huizhou 2nd Hospital for Children and Women, #101 University Road, Tangjiawan, Zhuhai, 518900, Guangdong, China
| | - MariaLynn Jaeger
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| | - Averi Walker
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| | - Daniel Wei
- University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
| | - Katie Leiker
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| | - Tao Weitao
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| |
Collapse
|
8
|
Neuron-specific alternative splicing of transcriptional machineries: Implications for neurodevelopmental disorders. Mol Cell Neurosci 2017; 87:35-45. [PMID: 29254826 DOI: 10.1016/j.mcn.2017.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
The brain has long been known to display the most complex pattern of alternative splicing, thereby producing diverse protein isoforms compared to other tissues. Recent evidence indicates that many alternative exons are neuron-specific, evolutionarily conserved, and found in regulators of transcription including DNA-binding protein and histone modifying enzymes. This raises a possibility that neurons adopt unique mechanisms of transcription. Given that transcriptional machineries are frequently mutated in neurodevelopmental disorders with cognitive dysfunction, it is important to understand how neuron-specific alternative splicing contributes to proper transcriptional regulation in the brain. In this review, we summarize current knowledge regarding how neuron-specific splicing events alter the function of transcriptional regulators and shape unique gene expression patterns in the brain and the implications of neuronal splicing to the pathophysiology of neurodevelopmental disorders.
Collapse
|
9
|
Temporal regulation of chromatin during myoblast differentiation. Semin Cell Dev Biol 2017; 72:77-86. [PMID: 29079444 DOI: 10.1016/j.semcdb.2017.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/06/2017] [Accepted: 10/22/2017] [Indexed: 11/23/2022]
Abstract
The commitment to and execution of differentiation programmes involves a significant change in gene expression in the precursor cell to facilitate development of the mature cell type. In addition to being regulated by lineage-determining and auxiliary transcription factors that drive these changes, the structural status of the chromatin has a considerable impact on the transcriptional competence of differentiation-specific genes, which is clearly demonstrated by the large number of cofactors and the extraordinary complex mechanisms by which these genes become activated. The terminal differentiation of myoblasts to myotubes and mature skeletal muscle is an excellent system to illustrate these points. The MyoD family of closely related, lineage-determining transcription factors directs, largely through targeting to chromatin, a cascade of cooperating transcription factors and enzymes that incorporate or remove variant histones, post-translationally modify histones, and alter nucleosome structure and positioning via energy released by ATP hydrolysis. The coordinated action of these transcription factors and enzymes prevents expression of differentiation-specific genes in myoblasts and facilitates the transition of these genes from transcriptionally repressed to activated during the differentiation process. Regulation is achieved in both a temporal as well as spatial manner, as at least some of these factors and enzymes affect local chromatin structure at myogenic gene regulatory sequences as well as higher-order genome organization. Here we discuss the transition of genes that promote myoblast differentiation from the silenced to the activated state with an emphasis on the changes that occur to individual histones and the chromatin structure present at these loci.
Collapse
|
10
|
Fujita T, Yuno M, Suzuki Y, Sugano S, Fujii H. Identification of physical interactions between genomic regions by enChIP-Seq. Genes Cells 2017; 22:506-520. [PMID: 28474362 DOI: 10.1111/gtc.12492] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/22/2017] [Indexed: 01/23/2023]
Abstract
Physical interactions between genomic regions play critical roles in the regulation of genome functions, including gene expression. Here, we show the feasibility of using engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) in combination with next-generation sequencing (NGS) (enChIP-Seq) to detect such interactions. In enChIP-Seq, the target genomic region is captured by an engineered DNA-binding complex, such as a clustered regularly interspaced short palindromic repeats (CRISPR) system consisting of a catalytically inactive form of Cas9 and a single guide RNA. Subsequently, the genomic regions that physically interact with the target genomic region in the captured complex are sequenced by NGS. Using enChIP-Seq, we found that the 5'HS5 locus, which is involved in the regulation of globin genes expression at the β-globin locus, interacts with multiple genomic regions upon erythroid differentiation in the human erythroleukemia cell line K562. Genes near the genomic regions inducibly associated with the 5'HS5 locus were transcriptionally up-regulated in the differentiated state, suggesting the existence of a coordinated transcription mechanism mediated by physical interactions between these loci. Thus, enChIP-Seq might be a potentially useful tool for detecting physical interactions between genomic regions in a nonbiased manner, which would facilitate elucidation of the molecular mechanisms underlying regulation of genome functions.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Miyuki Yuno
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hodaka Fujii
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
How does chromatin package DNA within nucleus and regulate gene expression? Int J Biol Macromol 2017; 101:862-881. [PMID: 28366861 DOI: 10.1016/j.ijbiomac.2017.03.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 01/26/2023]
Abstract
The human body is made up of 60 trillion cells, each cell containing 2 millions of genomic DNA in its nucleus. How is this genomic deoxyribonucleic acid [DNA] organised into nuclei? Around 1880, W. Flemming discovered a nuclear substance that was clearly visible on staining under primitive light microscopes and named it 'chromatin'; this is now thought to be the basic unit of genomic DNA organization. Since long before DNA was known to carry genetic information, chromatin has fascinated biologists. DNA has a negatively charged phosphate backbone that produces electrostatic repulsion between adjacent DNA regions, making it difficult for DNA to fold upon itself. In this article, we will try to shed light on how does chromatin package DNA within nucleus and regulate gene expression?
Collapse
|
12
|
Azofeifa JG, Dowell RD. A generative model for the behavior of RNA polymerase. Bioinformatics 2016; 33:227-234. [PMID: 27663494 PMCID: PMC5942361 DOI: 10.1093/bioinformatics/btw599] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/31/2016] [Accepted: 09/12/2016] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION Transcription by RNA polymerase is a highly dynamic process involving multiple distinct points of regulation. Nascent transcription assays are a relatively new set of high throughput techniques that measure the location of actively engaged RNA polymerase genome wide. Hence, nascent transcription is a rich source of information on the regulation of RNA polymerase activity. To fully dissect this data requires the development of stochastic models that can both deconvolve the stages of polymerase activity and identify significant changes in activity between experiments. RESULTS We present a generative, probabilistic model of RNA polymerase that fully describes loading, initiation, elongation and termination. We fit this model genome wide and profile the enzymatic activity of RNA polymerase across various loci and following experimental perturbation. We observe striking correlation of predicted loading events and regulatory chromatin marks. We provide principled statistics that compute probabilities reminiscent of traveler's and divergent ratios. We finish with a systematic comparison of RNA Polymerase activity at promoter versus non-promoter associated loci. AVAILABILITY AND IMPLEMENTATION Transcription Fit (Tfit) is a freely available, open source software package written in C/C ++ that requires GNU compilers 4.7.3 or greater. Tfit is available from GitHub (https://github.com/azofeifa/Tfit). CONTACT robin.dowell@colorado.eduSupplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Joseph G Azofeifa
- Department of Computer Science, University of Colorado, Boulder, CO, USA
| | - Robin D Dowell
- Department of Computer Science, University of Colorado, Boulder, CO, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.,BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
13
|
Subramanian H, Viswanathan P, Cherkezyan L, Iyengar R, Rozhok S, Verleye M, Derbas J, Czarnecki J, Roy HK, Backman V. Procedures for risk-stratification of lung cancer using buccal nanocytology. BIOMEDICAL OPTICS EXPRESS 2016; 7:3795-3810. [PMID: 27699138 PMCID: PMC5030050 DOI: 10.1364/boe.7.003795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/13/2016] [Accepted: 08/20/2016] [Indexed: 05/04/2023]
Abstract
Lung cancer is the leading cause of cancer deaths in the U.S. with survival dramatically depending on stage at diagnosis. We had earlier reported that nanocytology of buccal cells can accurately risk-stratify smokers for the presence of early and late-stage lung cancer. To translate the technique into clinical practice, standardization of operating procedures is necessary to consistently yield precise and repeatable results. Here, we develop and validate simple, robust, and easily implementable procedures for specimen collection, processing, etc. in addition to a commercially-viable instrument prototype. Results of this work enable translation of the technology from academic lab to physicians' office.
Collapse
Affiliation(s)
- H. Subramanian
- Northwestern University, Biomedical Engineering Department, Evanston, Illinois 60208, USA
- NanoCytomics LLC, Evanston, Illinois 60201, USA
| | - P. Viswanathan
- Northwestern University, Biomedical Engineering Department, Evanston, Illinois 60208, USA
| | - L. Cherkezyan
- Northwestern University, Biomedical Engineering Department, Evanston, Illinois 60208, USA
| | - R. Iyengar
- NanoCytomics LLC, Evanston, Illinois 60201, USA
| | - S. Rozhok
- NanoCytomics LLC, Evanston, Illinois 60201, USA
| | - M. Verleye
- NanoCytomics LLC, Evanston, Illinois 60201, USA
| | - J. Derbas
- NanoCytomics LLC, Evanston, Illinois 60201, USA
| | - J. Czarnecki
- Northwestern University, Biomedical Engineering Department, Evanston, Illinois 60208, USA
| | - H. K. Roy
- Boston University Medical Center, Boston, Massachusetts, 02118, USA
| | - V. Backman
- Northwestern University, Biomedical Engineering Department, Evanston, Illinois 60208, USA
| |
Collapse
|
14
|
Skvortsova YV, Kondratieva SA, Zinovyeva MV, Nikolaev LG, Azhikina TL, Gainetdinov IV. Intragenic Locus in Human PIWIL2 Gene Shares Promoter and Enhancer Functions. PLoS One 2016; 11:e0156454. [PMID: 27248499 PMCID: PMC4889060 DOI: 10.1371/journal.pone.0156454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/13/2016] [Indexed: 01/18/2023] Open
Abstract
Recently, more evidence supporting common nature of promoters and enhancers has been accumulated. In this work, we present data on chromatin modifications and non-polyadenylated transcription characteristic for enhancers as well as results of in vitro luciferase reporter assays suggesting that PIWIL2 alternative promoter in exon 7 also functions as an enhancer for gene PHYHIP located 60Kb upstream. This finding of an intragenic enhancer serving as a promoter for a shorter protein isoform implies broader impact on understanding enhancer-promoter networks in regulation of gene expression.
Collapse
Affiliation(s)
- Yulia V Skvortsova
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sofia A Kondratieva
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Marina V Zinovyeva
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Lev G Nikolaev
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatyana L Azhikina
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ildar V Gainetdinov
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
Chen X, Wei M, Zheng MM, Zhao J, Hao H, Chang L, Xi P, Sun Y. Study of RNA Polymerase II Clustering inside Live-Cell Nuclei Using Bayesian Nanoscopy. ACS NANO 2016; 10:2447-2454. [PMID: 26855123 DOI: 10.1021/acsnano.5b07257] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanoscale spatiotemporal clustering of RNA polymerase II (Pol II) plays an important role in transcription regulation. However, dynamics of individual Pol II clusters in live-cell nuclei has not been measured directly, prohibiting in-depth understanding of their working mechanisms. In this work, we studied the dynamics of Pol II clustering using Bayesian nanoscopy in live mammalian cell nuclei. With 50 nm spatial resolution and 4 s temporal resolution, Bayesian nanoscopy allows direct observation of the assembly and disassembly dynamics of individual Pol II clusters. The results not only provide quantifications of Pol II clusters but also shed light on the understanding of cluster formation and regulation. Our study suggests that transcription factories form on-demand and recruit Pol II molecules in their pre-elongation phase. The assembly and disassembly of individual Pol II clusters take place asynchronously. Overall, the methods developed herein are also applicable to studying a wide realm of real-time nanometer-scale nuclear processes in live cells.
Collapse
Affiliation(s)
- Xuanze Chen
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
- Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Mian Wei
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| | - M Mocarlo Zheng
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
- School of Physics, Peking University , Beijing 100871, China
| | - Jiaxi Zhao
- Department of Physics, Tsinghua University , Beijing 100084, China
| | - Huiwen Hao
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| | - Lei Chang
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
16
|
Abstract
Gene expression control is a fundamental determinant of cellular life with transcription being the most important step. The spatial nuclear arrangement of the transcription process driven by RNA polymerases II and III is nonrandomly organized in foci, which is believed to add another regulatory layer on gene expression control. RNA polymerase I transcription takes place within a specialized organelle, the nucleolus. Transcription of ribosomal RNA directly responds to metabolic requirements, which in turn is reflected in the architecture of nucleoli. It differs from that of the other polymerases with respect to the gene template organization, transcription rate, and epigenetic expression control, whereas other features are shared like the formation of DNA loops bringing genes and components of the transcription machinery in close proximity. In recent years, significant advances have been made in the understanding of the structural prerequisites of nuclear transcription, of the arrangement in the nuclear volume, and of the dynamics of these entities. Here, we compare ribosomal RNA and mRNA transcription side by side and review the current understanding focusing on structural aspects of transcription foci, of their constituents, and of the dynamical behavior of these components with respect to foci formation, disassembly, and cell cycle.
Collapse
Affiliation(s)
- Klara Weipoltshammer
- Department for Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Christian Schöfer
- Department for Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| |
Collapse
|
17
|
Cai M, Gao F, Zhang P, An W, Shi J, Wang K, Lu W. Analysis of a transgenic Oct4 enhancer reveals high fidelity long-range chromosomal interactions. Sci Rep 2015; 5:14558. [PMID: 26435056 PMCID: PMC4592970 DOI: 10.1038/srep14558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/27/2015] [Indexed: 12/14/2022] Open
Abstract
Genome structure or nuclear organization has fascinated researchers investigating genome function. Recently, much effort has gone into defining relationships between specific genome structures and gene expression in pluripotent cells. We previously analyzed chromosomal interactions of the endogenous Oct4 distal enhancer in pluripotent cells. Here, we derive ES and iPS cells from a transgenic Oct4 distal enhancer reporter mouse. Using sonication-based Circularized Chromosome Conformation Capture (4C) coupled with next generation sequencing, we determined and compared the genome-wide interactome of the endogenous and transgenic Oct4 distal enhancers. Integrative genomic analysis indicated that the transgenic enhancer binds to a similar set of loci and shares similar key enrichment profiles with its endogenous counterpart. Both the endogenous and transgenic Oct4 enhancer interacting loci were enriched in the open nucleus compartment, which is associated with active histone marks (H3K4me1, H3K27ac, H3K4me3 and H3K9ac), active cis-regulatory sequences (DNA hypersensitivity sites (DHS)), 5-hydroxymethylcytosine (5-hmc), and early DNA replication domains. In addition, binding of some pluripotency-related transcription factors was consistently enriched in our 4C sites, and genes in those sites were generally more highly expressed. Overall, our work reveals critical features that may function in gene expression regulation in mouse pluripotent cells.
Collapse
Affiliation(s)
- Mingyang Cai
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA.,Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA.,Division of Biostatistics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Fan Gao
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA.,Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Peilin Zhang
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Woojin An
- Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jiandang Shi
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kai Wang
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA.,Division of Biostatistics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Wange Lu
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
18
|
Hsu PY, Hsu HK, Hsiao TH, Ye Z, Wang E, Profit AL, Jatoi I, Chen Y, Kirma NB, Jin VX, Sharp ZD, Huang THM. Spatiotemporal control of estrogen-responsive transcription in ERα-positive breast cancer cells. Oncogene 2015; 35:2379-89. [PMID: 26300005 PMCID: PMC4865474 DOI: 10.1038/onc.2015.298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/20/2015] [Accepted: 07/05/2015] [Indexed: 12/29/2022]
Abstract
Recruitment of transcription machinery to target promoters for aberrant gene expression has been well studied, but underlying control directed by distant-acting enhancers remains unclear in cancer development. Our previous study demonstrated that distant estrogen response elements (DEREs) located on chromosome 20q13 are frequently amplified and translocated to other chromosomes in ERα-positive breast cancer cells. In this study, we used three-dimensional interphase fluorescence in situ hybridization to decipher spatiotemporal gathering of multiple DEREs in the nucleus. Upon estrogen stimulation, scattered 20q13 DEREs were mobilized to form regulatory depots for synchronized gene expression of target loci. A chromosome conformation capture assay coupled with chromatin immunoprecipitation further uncovered that ERα-bound regulatory depots are tethered to heterochromatin protein 1 (HP1) for coordinated chromatin movement and histone modifications of target loci, resulting in transcription repression. Neutralizing HP1 function dysregulated the formation of DERE-involved regulatory depots and transcription inactivation of candidate tumor-suppressor genes. Deletion of amplified DEREs using the CRISPR/Cas9 genomic-editing system profoundly altered transcriptional profiles of proliferation-associated signaling networks, resulting in reduction of cancer cell growth. These findings reveal a formerly uncharacterized feature wherein multiple copies of the amplicon congregate as transcriptional units in the nucleus for synchronous regulation of function-related loci in tumorigenesis. Disruption of their assembly can be a new strategy for treating breast cancers and other malignancies.
Collapse
Affiliation(s)
- P-Y Hsu
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - H-K Hsu
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - T-H Hsiao
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Z Ye
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - E Wang
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - A L Profit
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - I Jatoi
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Surgery, The University of Texas Health Science Center at San Antonio, San Antonio TX, USA
| | - Y Chen
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - N B Kirma
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - V X Jin
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Z D Sharp
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - T H-M Huang
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
19
|
Gavrilov AA, Razin SV. Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol 2015. [DOI: 10.1134/s0026893315010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Abstract
Enhancer elements regulate the tissue- and developmental-stage-specific expression of genes. Recent estimates suggest that there are more than 50,000 enhancers in mammalian cells. At least a subset of enhancers has been shown to recruit RNA polymerase II transcription complexes and to generate enhancer transcripts. Here, we provide an overview of enhancer function and discuss how transcription of enhancers or enhancer-generated transcripts could contribute to the regulation of gene expression during development and differentiation.
Collapse
|
22
|
Inhibition of breast cancer metastasis suppressor 1 promotes a mesenchymal phenotype in lung epithelial cells that express oncogenic K-RasV12 and loss of p53. PLoS One 2014; 9:e95869. [PMID: 24763730 PMCID: PMC3999110 DOI: 10.1371/journal.pone.0095869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/01/2014] [Indexed: 12/22/2022] Open
Abstract
Expression of the breast cancer metastasis suppressor 1 (BRMS1) protein is dramatically reduced in non-small cell lung cancer (NSCLC) cells and in primary human tumors. Although BRMS1 is a known suppressor of metastasis, the mechanisms through which BRMS1 functions to regulate cell migration and invasion in response to specific NSCLC driver mutations are poorly understood. To experimentally address this, we utilized immortalized human bronchial epithelial cells in which p53 was knocked down in the presence of oncogenic K-RasV12 (HBEC3-p53KD-K-RasV12). These genetic alterations are commonly found in NSCLC and are associated with a poor prognosis. To determine the importance of BRMS1 for cytoskeletal function, cell migration and invasion in our model system we stably knocked down BRMS1. Here, we report that loss of BRMS1 in HBEC3-p53KD-K-RasV12 cells results in a dramatic increase in cell migration and invasion compared to controls that expressed BRMS1. Moreover, the loss of BRMS1 resulted in additional morphological changes including F-actin re-distribution, paxillin accumulation at the leading edge of the lamellapodium, and cellular shape changes resembling mesenchymal phenotypes. Importantly, re-expression of BRMS1 restores, in part, cell migration and invasion; however it does not fully reestablish the epithelial phenotype. These finding suggests that loss of BRMS1 results in a permanent, largely irreversible, mesenchymal phenotype associated with increased cell migration and invasion. Collectively, in NSCLC cells without p53 and expression of oncogenic K-Ras our study identifies BRMS1 as a key regulator required to maintain a cellular morphology and cytoskeletal architecture consistent with an epithelial phenotype.
Collapse
|
23
|
Inoue T, Kohro T, Tanaka T, Kanki Y, Li G, Poh HM, Mimura I, Kobayashi M, Taguchi A, Maejima T, Suehiro JI, Sugiyama A, Kaneki K, Aruga H, Dong S, Stevens JF, Yamamoto S, Tsutsumi S, Fujita T, Ruan X, Aburatani H, Nangaku M, Ruan Y, Kodama T, Wada Y. Cross-enhancement of ANGPTL4 transcription by HIF1 alpha and PPAR beta/delta is the result of the conformational proximity of two response elements. Genome Biol 2014; 15:R63. [PMID: 24721177 PMCID: PMC4053749 DOI: 10.1186/gb-2014-15-4-r63] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
Background Synergistic transcriptional activation by different stimuli has been reported along with a diverse array of mechanisms, but the full scope of these mechanisms has yet to be elucidated. Results We present a detailed investigation of hypoxia-inducible factor (HIF) 1 dependent gene expression in endothelial cells which suggests the importance of crosstalk between the peroxisome proliferator-activated receptor (PPAR) β/δ and HIF signaling axes. A migration assay shows a synergistic interaction between these two stimuli, and we identify angiopoietin-like 4 (ANGPTL4) as a common target gene by using a combination of microarray and ChIP-seq analysis. We profile changes of histone marks at enhancers under hypoxia, PPARβ/δ agonist and dual stimulations and these suggest that the spatial proximity of two response elements is the principal cause of the synergistic transcription induction. A newly developed quantitative chromosome conformation capture assay shows the quantitative change of the frequency of proximity of the two response elements. Conclusions To the best of our knowledge, this is the first report that two different transcription factors cooperate in transcriptional regulation in a synergistic fashion through conformational change of their common target genes.
Collapse
|
24
|
Williams RL, Starmer J, Mugford JW, Calabrese JM, Mieczkowski P, Yee D, Magnuson T. fourSig: a method for determining chromosomal interactions in 4C-Seq data. Nucleic Acids Res 2014; 42:e68. [PMID: 24561615 PMCID: PMC4005674 DOI: 10.1093/nar/gku156] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The ability to correlate chromosome conformation and gene expression gives a great deal of information regarding the strategies used by a cell to properly regulate gene activity. 4C-Seq is a relatively new and increasingly popular technology where the set of genomic interactions generated by a single point in the genome can be determined. 4C-Seq experiments generate large, complicated data sets and it is imperative that signal is properly distinguished from noise. Currently, there are a limited number of methods for analyzing 4C-Seq data. Here, we present a new method, fourSig, which in addition to being precise and simple to use also includes a new feature that prioritizes detected interactions. Our results demonstrate the efficacy of fourSig with previously published and novel 4C-Seq data sets and show that our significance prioritization correlates with the ability to reproducibly detect interactions among replicates.
Collapse
Affiliation(s)
- Rex L Williams
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA, Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
A genetic program theory of aging using an RNA population model. Ageing Res Rev 2014; 13:46-54. [PMID: 24263168 DOI: 10.1016/j.arr.2013.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/08/2013] [Indexed: 12/11/2022]
Abstract
Aging is a common characteristic of multicellular eukaryotes. Copious hypotheses have been proposed to explain the mechanisms of aging, but no single theory is generally acceptable. In this article, we refine the RNA population gene activating model (Lv et al., 2003) based on existing reports as well as on our own latest findings. We propose the RNA population model as a genetic theory of aging. The new model can also be applied to differentiation and tumorigenesis and could explain the biological significance of non-coding DNA, RNA, and repetitive sequence DNA. We provide evidence from the literature as well as from our own findings for the roles of repetitive sequences in gene activation. In addition, we predict several phenomena related to aging and differentiation based on this model.
Collapse
|
26
|
Affiliation(s)
- Jiannan Guo
- Biochemistry Department, University of Iowa , Iowa City, Iowa 52242, United States
| | | |
Collapse
|
27
|
Merelli I, Liò P, Milanesi L. NuChart: an R package to study gene spatial neighbourhoods with multi-omics annotations. PLoS One 2013; 8:e75146. [PMID: 24069388 PMCID: PMC3777921 DOI: 10.1371/journal.pone.0075146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/11/2013] [Indexed: 11/23/2022] Open
Abstract
Long-range chromosomal associations between genomic regions, and their repositioning in the 3D space of the nucleus, are now considered to be key contributors to the regulation of gene expression and important links have been highlighted with other genomic features involved in DNA rearrangements. Recent Chromosome Conformation Capture (3C) measurements performed with high throughput sequencing (Hi-C) and molecular dynamics studies show that there is a large correlation between colocalization and coregulation of genes, but these important researches are hampered by the lack of biologists-friendly analysis and visualisation software. Here, we describe NuChart, an R package that allows the user to annotate and statistically analyse a list of input genes with information relying on Hi-C data, integrating knowledge about genomic features that are involved in the chromosome spatial organization. NuChart works directly with sequenced reads to identify the related Hi-C fragments, with the aim of creating gene-centric neighbourhood graphs on which multi-omics features can be mapped. Predictions about CTCF binding sites, isochores and cryptic Recombination Signal Sequences are provided directly with the package for mapping, although other annotation data in bed format can be used (such as methylation profiles and histone patterns). Gene expression data can be automatically retrieved and processed from the Gene Expression Omnibus and ArrayExpress repositories to highlight the expression profile of genes in the identified neighbourhood. Moreover, statistical inferences about the graph structure and correlations between its topology and multi-omics features can be performed using Exponential-family Random Graph Models. The Hi-C fragment visualisation provided by NuChart allows the comparisons of cells in different conditions, thus providing the possibility of novel biomarkers identification. NuChart is compliant with the Bioconductor standard and it is freely available at ftp://fileserver.itb.cnr.it/nuchart.
Collapse
Affiliation(s)
- Ivan Merelli
- Institute for Biomedical Technologies, National Research Council, Segrate (Milan), Italy
- * E-mail:
| | - Pietro Liò
- Computer Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Luciano Milanesi
- Institute for Biomedical Technologies, National Research Council, Segrate (Milan), Italy
| |
Collapse
|
28
|
Papantonis A, Cook PR. Transcription factories: genome organization and gene regulation. Chem Rev 2013; 113:8683-705. [PMID: 23597155 DOI: 10.1021/cr300513p] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Argyris Papantonis
- Sir William Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
29
|
|
30
|
Abstract
The genome is dynamically organized in the nuclear space in a manner that reflects and influences nuclear functions. Developmental processes that govern the formation and maintenance of epigenetic memories are also tightly linked to adaptive changes in the physical and functional landscape of the nuclear architecture. Biological and biophysical principles governing the three-dimensional folding of chromatin are therefore central to our understanding of epigenetic regulation during adaptive responses and in complex diseases, such as cancer. Accumulating evidence points to the direction that global alterations in nuclear architecture and chromatin folding conspire with unstable epigenetic states of the primary chromatin fiber to drive the phenotypic plasticity of cancer cells.
Collapse
Affiliation(s)
- Anita Göndör
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, KI Solna Campus, Box 280, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
31
|
Palstra RJ, Grosveld F. Transcription factor binding at enhancers: shaping a genomic regulatory landscape in flux. Front Genet 2012; 3:195. [PMID: 23060900 PMCID: PMC3460357 DOI: 10.3389/fgene.2012.00195] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/12/2012] [Indexed: 12/26/2022] Open
Abstract
The mammalian genome is packed tightly in the nucleus of the cell. This packing is primarily facilitated by histone proteins and results in an ordered organization of the genome in chromosome territories that can be roughly divided in heterochromatic and euchromatic domains. On top of this organization several distinct gene regulatory elements on the same chromosome or other chromosomes are thought to dynamically communicate via chromatin looping. Advances in genome-wide technologies have revealed the existence of a plethora of these regulatory elements in various eukaryotic genomes. These regulatory elements are defined by particular in vitro assays as promoters, enhancers, insulators, and boundary elements. However, recent studies indicate that the in vivo distinction between these elements is often less strict. Regulatory elements are bound by a mixture of common and lineage-specific transcription factors which mediate the long-range interactions between these elements. Inappropriate modulation of the binding of these transcription factors can alter the interactions between regulatory elements, which in turn leads to aberrant gene expression with disease as an ultimate consequence. Here we discuss the bi-modal behavior of regulatory elements that act in cis (with a focus on enhancers), how their activity is modulated by transcription factor binding and the effect this has on gene regulation.
Collapse
Affiliation(s)
- Robert-Jan Palstra
- Department of Cell Biology, Erasmus MC University Medical Center Rotterdam, Netherlands
| | | |
Collapse
|
32
|
Hassler MR, Egger G. Epigenomics of cancer - emerging new concepts. Biochimie 2012; 94:2219-30. [PMID: 22609632 PMCID: PMC3480634 DOI: 10.1016/j.biochi.2012.05.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/09/2012] [Indexed: 02/06/2023]
Abstract
The complexity of the mammalian genome is regulated by heritable epigenetic mechanisms, which provide the basis for differentiation, development and cellular homeostasis. These mechanisms act on the level of chromatin, by modifying DNA, histone proteins and nucleosome density/composition. During the last decade it became clear that cancer is defined by a variety of epigenetic changes, which occur in early stages of disease and parallel genetic mutations. With the advent of new technologies we are just starting to unravel the cancer epigenome and latest mechanistic findings provide the first clue as to how altered epigenetic patterns might occur in different cancers. Here we review latest findings on chromatin related mechanisms and hypothesize how their impairment might contribute to the altered epigenome of cancer cells.
Collapse
Affiliation(s)
- Melanie R. Hassler
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
- Department of Internal Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
- Corresponding author. Tel.: +43 1 40400 6389; fax: +43 1 40400 5179.
| |
Collapse
|