1
|
Rina A, Maffeo D, Minnai F, Esposito M, Palmieri M, Serio VB, Rosati D, Mari F, Frullanti E, Colombo F. The Genetic Analysis and Clinical Therapy in Lung Cancer: Current Advances and Future Directions. Cancers (Basel) 2024; 16:2882. [PMID: 39199653 PMCID: PMC11352260 DOI: 10.3390/cancers16162882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer, including both non-small cell lung cancer and small cell lung cancer, remains the leading cause of cancer-related mortality worldwide, representing 18% of the total cancer deaths in 2020. Many patients are identified already at an advanced stage with metastatic disease and have a worsening prognosis. Recent advances in the genetic understanding of lung cancer have opened new avenues for personalized treatments and targeted therapies. This review examines the latest discoveries in the genetics of lung cancer, discusses key biomarkers, and analyzes current clinical therapies based on this genetic information. It will conclude with a discussion of future prospects and potential research directions.
Collapse
Affiliation(s)
- Angela Rina
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
| | - Debora Maffeo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Minnai
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Martina Esposito
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Maria Palmieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Viola Bianca Serio
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Diletta Rosati
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Mari
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Colombo
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| |
Collapse
|
2
|
Wang Y, Wang Z, Sun Y, Zhu M, Jiang Y, Bai H, Yang B, Kuang H. Isovaleryl Sucrose Esters from Atractylodes japonica and Their Cytotoxic Activity. Molecules 2024; 29:3069. [PMID: 38999021 PMCID: PMC11243297 DOI: 10.3390/molecules29133069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Cancer represents one of the most significant health challenges currently facing humanity, and plant-derived antitumour drugs represent a prominent class of anticancer medications in clinical practice. Isovaleryl sucrose esters, which are natural constituents, have been identified as having potential antitumour effects. However, the mechanism of action remains unclear. In this study, 12 isovaleryl sucrose ester components, including five new (1-5) and seven known compounds (6-12), were isolated from the roots of Atractylodes japonica. The structures of the compounds were elucidated using 1D and 2D-NMR spectroscopy, complemented by HR-ESI-MS mass spectrometry. The cytotoxic activities of all the compounds against human colon cancer cells (HCT-116) and human lung adenocarcinoma cells (A549) were also evaluated using the CCK8 assay. The results demonstrated that compounds 2, 4, and 6 were moderately inhibitory to HCT-116 cells, with IC50 values of 7.49 ± 0.48, 9.03 ± 0.21, and 13.49 ± 1.45 μM, respectively. Compounds 1 and 6 were moderately inhibitory to A549, with IC50 values of 8.36 ± 0.77 and 7.10 ± 0.52 μM, respectively. Molecular docking revealed that compounds 1-9 exhibited a stronger affinity for FGFR3 and BRAF, with binding energies below -7 kcal/mol. Compound 2 exhibited the lowest binding energy of -10.63 kcal/mol to FGFR3. We screened the compounds with lower binding energies, and the protein-ligand complexes already obtained after molecular docking were subjected to exhaustive molecular dynamics simulation experiments, which simulated the dynamic behaviour of the molecules in close proximity to the actual biological environment, thus providing a deeper understanding of their functions and interaction mechanisms. The present study provides a reference for the development and use of iso-valeryl sucrose esters in the antitumour field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (Y.W.); (Z.W.); (Y.S.); (M.Z.); (Y.J.); (H.B.); (B.Y.)
| |
Collapse
|
3
|
Tian X, Liu Z. Single nucleotide variants in lung cancer. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:88-94. [PMID: 39169933 PMCID: PMC11332866 DOI: 10.1016/j.pccm.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/23/2024]
Abstract
Germline genetic variants, including single-nucleotide variants (SNVs) and copy number variants (CNVs), account for interpatient heterogeneity. In the past several decades, genome-wide association studies (GWAS) have identified multiple lung cancer-associated SNVs in Caucasian and Chinese populations. These variants either reside within coding regions and change the structure and function of cancer-related proteins or reside within non-coding regions and alter the expression level of cancer-related proteins. The variants can be used not only for cancer risk assessment and prevention but also for the development of new therapies. In this review, we discuss the lung cancer-associated SNVs identified to date, their contributions to lung tumorigenesis and prognosis, and their potential use in predicting prognosis and implementing therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoling Tian
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhe Liu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
4
|
Javid H, Oryani MA, Rezagholinejad N, Esparham A, Tajaldini M, Karimi‐Shahri M. RGD peptide in cancer targeting: Benefits, challenges, solutions, and possible integrin-RGD interactions. Cancer Med 2024; 13:e6800. [PMID: 38349028 PMCID: PMC10832341 DOI: 10.1002/cam4.6800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 02/15/2024] Open
Abstract
RGD peptide can be found in cell adhesion and signaling proteins, such as fibronectin, vitronectin, and fibrinogen. RGD peptides' principal function is to facilitate cell adhesion by interacting with integrin receptors on the cell surface. They have been intensively researched for use in biotechnology and medicine, including incorporation into biomaterials, conjugation to medicinal molecules or nanoparticles, and labeling with imaging agents. RGD peptides can be utilized to specifically target cancer cells and the tumor vasculature by engaging with these integrins, improving drug delivery efficiency and minimizing adverse effects on healthy tissues. RGD-functionalized drug carriers are a viable option for cancer therapy as this focused approach has demonstrated promise in the future. Writing a review on the RGD peptide can significantly influence how drugs are developed in the future by improving our understanding of the peptide, finding knowledge gaps, fostering innovation, and making drug design easier.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory SciencesVarastegan Institute for Medical SciencesMashhadIran
- Department of Clinical Biochemistry, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Ali Esparham
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahboubeh Tajaldini
- Ischemic Disorder Research CenterGolestan University of Medical SciencesGorganIran
| | - Mehdi Karimi‐Shahri
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Pathology, School of MedicineGonabad University of Medical SciencesGonabadIran
| |
Collapse
|
5
|
Diao X, Guo C, Li S. Identification of a novel anoikis-related gene signature to predict prognosis and tumor microenvironment in lung adenocarcinoma. Thorac Cancer 2022; 14:320-330. [PMID: 36507553 PMCID: PMC9870742 DOI: 10.1111/1759-7714.14766] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most prevalent histotype of non-small cell lung cancer. Anoikis, an alternative form of programmed cell death, plays a pivotal role in cancer invasion and metastasis, preventing the detached cancer cells from readhering to other substrates for abnormal proliferation. The aim of this study was to conduct a comprehensive analyses of the prognostic implications of anoikis-related genes (ARGs) in LUAD. METHODS ARGs were selected from The Cancer Genome Atlas (TCGA) database and Genecards dataset using differential expression analysis. The signature incorporating ARGs was identified using univariate Cox regression analysis and LASSO regression analysis. Furthermore, a nomogram containing the signature and clinical information was developed through univariate and multivariate Cox regression analysis. Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curves were applied to evaluate the predictive validity of these risk models. Finally, functional analysis of the selected ARGs in signature and analysis of immune landscape were also conducted. RESULTS A 16-gene signature was integrated to stratify LUAD patients into different survival risk groups. The prognostic risk score generated from the signature and TNM stage were identified as independent prognostic factors and utilized to develop a nomogram. Both the signature and the nomogram showed satisfactory prediction performance in predicting overall survival (OS) of LUAD patients. The ARGs were enriched in several biological functions and signaling pathways. Finally, differences of immune landscape were investigated among the high- and low-risk groups stratified by the signature. CONCLUSIONS This study revealed potential relationships between ARGs and prognosis of LUAD. The prognostic predictors identified in present study could be utilized as potential biomarkers for clinical applications.
Collapse
Affiliation(s)
- Xiayao Diao
- Department of Thoracic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chao Guo
- Department of Thoracic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shanqing Li
- Department of Thoracic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
6
|
Guan X, Bao G, Liang J, Yao Y, Xiang Y, Zhong X. Evolution of small cell lung cancer tumor mutation: from molecular mechanisms to novel viewpoints. Semin Cancer Biol 2022; 86:346-355. [PMID: 35367118 DOI: 10.1016/j.semcancer.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023]
Abstract
Small cell lung cancer (SCLC) is a clinically common malignant tumor originating from the lung neuroendocrine stem cells, which has a poor prognosis and accounts for approximately 15% of all lung cancer cases. However, research on its treatment has been slow, and the 5-year survival rate of patients with SCLC has been < 5% for many years. In recent years, the development and popularization of gene sequencing technology have facilitated the understanding of the gene mutation landscape and tumor evolution of SCLC, thereby leading to a more accurate prediction of the prognosis of SCLC and the development of individualized treatment. In this review, we aimed to discuss the mutation evolution of SCLC from the perspective of a tumor evolution theory and described the sequence of mutation evolution in the occurrence and development of SCLC. In addition, we summarized the existing whole-exome sequencing (WES) data of SCLC cases at our center along with relevant publications on sequencing. Thereafter, we discuss the role of different mutated pathways in the occurrence of SCLC to predict its prognosis more accurately and summarized individualized treatment strategies.
Collapse
Affiliation(s)
- Xiaojiao Guan
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Guangyao Bao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jie Liang
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yao Yao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yifan Xiang
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xinwen Zhong
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Pan YQ, Xiao Y, Long T, Liu C, Gao WH, Sun YY, Liu C, Shi YJ, Li S, Shao AZ. Prognostic value of lncRNAs related to fatty acid metabolism in lung adenocarcinoma and their correlation with tumor microenvironment based on bioinformatics analysis. Front Oncol 2022; 12:1022097. [DOI: 10.3389/fonc.2022.1022097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAs a key regulator of metabolic pathways, long non-coding RNA (lncRNA) has received much attention for its relationship with reprogrammed fatty acid metabolism (FAM). This study aimed to investigate the role of the FAM-related lncRNAs in the prognostic management of patients with lung adenocarcinoma (LUAD) using bioinformatics analysis techniques.MethodsWe obtained LUAD-related transcriptomic data and clinical information from The Cancer Genome Atlas (TCGA) database. The lncRNA risk models associated with FMA were constructed by single-sample gene set enrichment analysis (ssGSEA), weighted gene co-expression network (WGCNA), differential expression analysis, overlap analysis, and Cox regression analysis. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curves were utilized to assess the predictive validity of the risk model. Gene set variation analysis (GSVA) revealed molecular mechanisms associated with the risk model. ssGSEA and microenvironment cell populations-counter (MCP-counter) demonstrated the immune landscape of LUAD patients. The relationships between lncRNAs, miRNAs, and mRNAs were predicted by using LncBase v.2 and miRTarBase. The lncRNA-miRNA-mRNA regulatory network was visualized with Cytoscape v3.4.0. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed using DAVID v6.8. Quantitative real-time fluorescence PCR (qRT-PCR) was performed to verify the expression levels of the prognostic lncRNAs.ResultsWe identified 249 differentially expressed FMA-related lncRNAs in TCGA-LUAD, six of which were used to construct a risk model with appreciable predictive power. GSVA results suggested that the risk model may be involved in regulating fatty acid synthesis/metabolism, gene repair, and immune/inflammatory responses in the LUAD process. Immune landscape analysis demonstrated a lower abundance of immune cells in the high-risk group of patients associated with poor prognosis. Moreover, we predicted 279 competing endogenous RNA (ceRNA) mechanisms for 6 prognostic lncRNAs with 39 miRNAs and 201 mRNAs. Functional enrichment analysis indicated that the ceRNA network may be involved in the process of LUAD by participating in genomic transcription, influencing the cell cycle, and regulating tissue and organogenesis. In vitro experiments showed that prognostic lncRNA CTA-384D8.35, lncRNA RP5-1059L7.1, and lncRNA Z83851.4 were significantly upregulated in LUAD primary tumor tissues, while lncRNA RP11-401P9.4, lncRNA CTA-384D8.35, and lncRNA RP11-259K15.2 were expressed at higher levels in paraneoplastic tissues.ConclusionIn summary, the prognostic factors identified in this study can be used as potential biomarkers for clinical applications. ceRNA network construction provides a new vision for the study of LUAD pathogenesis.
Collapse
|
8
|
Feng A, Li Y, Li G, Wang Y, Wen Q, Yang Z, Tian K, Lv H, Guo L, Zhang S, Liu X, Jiang D. Genomic Features of Organ-Specific Metastases in Lung Adenocarcinoma. Front Oncol 2022; 12:908759. [PMID: 35912232 PMCID: PMC9331737 DOI: 10.3389/fonc.2022.908759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundThe genomic features of cancer cells may confer the metastatic ability of lung adenocarcinoma (LUAD) to metastasize to specific organs. We aimed to identify the differences in genomic alterations between patients with primary LUAD with and without metastases and to elucidate the metastatic biology that may help developing biomarker-directed therapies for advanced or metastatic disease.MethodsA retrospective cohort of 497 patients with LUAD including 388 primary tumors (PR), 53 bone metastases (MT-bone), 30 liver metastases (MT-liver), and 26 brain metastases (MT-brain) was tested for genomic alterations by a next-generation sequencing assay.ResultsThe EGFR, TP53, TERT, LRP1B, CDKN2A, ERBB2, ALK, and KMT2C genes had a high frequency of mutations, and the mutations were shared by PR and metastases groups. TP53 and EGFR were the most common mutated genes. In comparison with PR, KRAS, STK11, ATM, NPM1, and ROS1 were significantly mutated in MT-brain, and TP53, MYC, RSPO2, CDKN2a, and CDKN2B were significantly mutated in MT-liver. The frequencies of TP53, CDKN2A, MTAP, PRKCI, and APC mutations were higher in MT-bone than that in PR. The ERBB, phosphoinositide-3-kinase/protein kinase B (PI3K-AKT), cell cycle, Fibroblast growth factor (FGF), and homologous recombination deficiency signaling pathways were affected in both PR and metastases, and there is higher frequency of mutations in metastases. Moreover, the co-mutations in patients with PR and metastasis were respectively analyzed. In addition, the programmed death ligand 1 (PD-L1) level was obviously related to tumor stage and tumor metastases, and the tumor mutational burden was correlated to clinicopathological features including age, gender, pathological stages, and tumor metastases. FGFR1, KAT6A, MYC, RAD21, TP53, and DAXX were also dramatically correlated to the tumor mutational burden.ConclusionMetastases are the most devastating stage of tumors and the main cause of cancer-related deaths. Our results provided a clinically relevant view of the tumor-intrinsic mutational landscape of patients with metastatic LUAD.
Collapse
Affiliation(s)
- Alei Feng
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Qidu Pharmaceutical Co. Ltd., Shandong Provincial Key Laboratory of Neuroprotective Drugs, Zibo, China
| | - Yanjun Li
- Department of Thoracic Surgery, The Second People’s Hospital of Dezhou, Dezhou, China
| | - Guangxu Li
- Department of Thoracic Surgery, The Second People’s Hospital of Dezhou, Dezhou, China
| | - Yu Wang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Wen
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhe Yang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Kaihua Tian
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongying Lv
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijie Guo
- Shanghai OrigiMed Co., Ltd, Shanghai, China
| | | | | | - Da Jiang
- Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Da Jiang,
| |
Collapse
|
9
|
Ma C, Ma RJ, Hu K, Zheng QM, Wang YP, Zhang N, Sun ZG. The molecular mechanism of METTL3 promoting the malignant progression of lung cancer. Cancer Cell Int 2022; 22:133. [PMID: 35331234 PMCID: PMC8944087 DOI: 10.1186/s12935-022-02539-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer remains one of the major causes of cancer-related death globally. Recent studies have shown that aberrant m6A levels caused by METTL3 are involved in the malignant progression of various tumors, including lung cancer. The m6A modification, the most abundant RNA chemical modification, regulates RNA stabilization, splicing, translation, decay, and nuclear export. The methyltransferase complex plays a key role in the occurrence and development of many tumors by installing m6A modification. In this complex, METTL3 is the first identified methyltransferase, which is also the major catalytic enzyme. Recent findings have revealed that METTL3 is remarkably associated with different aspects of lung cancer progression, influencing the prognosis of patients. In this review, we will focus on the underlying mechanism of METT3 in lung cancer and predict the future work and potential clinical application of targeting METTL3 for lung cancer therapy.
Collapse
Affiliation(s)
- Chao Ma
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, Shandong, China.,School of Clinical Medicine, Weifang Medical University, Weifang, 261053, Shangdong, China
| | - Rui-Jie Ma
- Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shangdong, China
| | - Kang Hu
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, Shandong, China.,School of Clinical Medicine, Weifang Medical University, Weifang, 261053, Shangdong, China
| | - Qi-Ming Zheng
- Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shangdong, China
| | - Ye-Peng Wang
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, Shandong, China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, Shandong, China.
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, Shandong, China.
| |
Collapse
|
10
|
Abstract
This overview of the molecular pathology of lung cancer includes a review of the most salient molecular alterations of the genome, transcriptome, and the epigenome. The insights provided by the growing use of next-generation sequencing (NGS) in lung cancer will be discussed, and interrelated concepts such as intertumor heterogeneity, intratumor heterogeneity, tumor mutational burden, and the advent of liquid biopsy will be explored. Moreover, this work describes how the evolving field of molecular pathology refines the understanding of different histologic phenotypes of non-small-cell lung cancer (NSCLC) and the underlying biology of small-cell lung cancer. This review will provide an appreciation for how ongoing scientific findings and technologic advances in molecular pathology are crucial for development of biomarkers, therapeutic agents, clinical trials, and ultimately improved patient care.
Collapse
Affiliation(s)
- James J Saller
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Theresa A Boyle
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
11
|
Zheng Y, You H, Duan J, Chen B, Wu C, Chen P, Wang M. Centromere protein N promotes lung adenocarcinoma progression by activating PI3K/AKT signaling pathway. Genes Genomics 2022; 44:1039-1049. [PMID: 35150399 DOI: 10.1007/s13258-021-01215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND As an important member of centromere family, centromere associated protein N (CENPN) was abnormally expressed in varied malignant tumors. OBJECTIVE This paper aimed to analyze the expression and related mechanism of CENPN in lung adenocarcinoma (LUAD). METHODS The expression of CENPN in LUAD was analyzed by Gene Expression Profiling Interactive Analysis (GEPIA) database. The mRNA expression, protein expression, cell viability, cell invasion, cell apoptosis, cell stem like characteristics were detected by RT-PCR, western blot, CCK8 assay, transwell assay, flow cytometry and spheroidization assay, respectively. Finally, the pathological changes of xenograft were estimated by H&E staining, and the expression of proteins was detected by immunohistochemistry. RESULTS GEPIA analysis showed that the CENPN expression in LUAD was significantly higher than that in normal lung tissue, which was negatively correlated with the prognosis. These results were consistent with our clinical data. Besides, CENPN was highly expressed in LUAD cell lines. In addition, the upregulation of CENPN amplified the cell viability, stemness and invasive ability in PC9 cells. However, the knockdown of CENPN inhibited the cell activity, stemness, invasive ability with increased cell apoptosis in A549. Furthermore, CENPN could positively regulate the phosphorylation of PI3K and AKT. The PI3K inhibitor, 740Y-P, could reverse the effect of CENPN silencing on the expression of Ki-67, cleaved caspase 3, OCT4, and snail 1. Finally, the downregulation of CENPN restrained the growth of xenograft and inactivated the PI3K/AKT pathway. CONCLUSION CENPN was abnormally overexpressed in LUAD, and promoted tumor progression of LUAD by affecting PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Hui You
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Jingzhu Duan
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Biyu Chen
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Chenlin Wu
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Peipei Chen
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Meifang Wang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China.
| |
Collapse
|
12
|
Ren J, Wang A, Liu J, Yuan Q. Identification and validation of a novel redox-related lncRNA prognostic signature in lung adenocarcinoma. Bioengineered 2021; 12:4331-4348. [PMID: 34338158 PMCID: PMC8806475 DOI: 10.1080/21655979.2021.1951522] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the main causes of cancer deaths globally. Redox is emerging as a crucial contributor to the pathophysiology of LUAD, which can be regulated by long non-coding RNAs (lncRNAs). The aim of our research is to identify a novel redox-related lncRNA prognostic signature (redox-LPS) for better prediction of LUAD prognosis. 535 LUAD samples from The Cancer Genome Atlas (TCGA) database and 226 LUAD samples from the Gene Expression Omnibus (GEO) database were included in our study. 67 redox genes and 313 redox-related lncRNAs were identified. After performing LASSO-Cox regression analysis, a redox-LPS consisting of four lncRNAs (i.e., CRNDE, CASC15, LINC01137, and CYP1B1-AS1) was developed and validated. Our redox-LPS was superior to another three established models in predicting survival probability of LUAD patients. Univariate and multivariate Cox regression analysis revealed that risk score and stage were independent prognostic indicators. A nomogram plot including risk score and stage was constructed to predict survival probability of LUAD patients; this was further verified by calibration curves. Functional enrichment analysis and gene set enrichment analysis, were performed to determine the differences in cellular processes and signaling pathways between the high – and low-risk subgroups. A variety of algorithms (such as single-sample gene set enrichment analysis and CIBERSOFT) were conducted to uncover the landscape of tumor immune microenvironment in the high- and low-risk subgroups. In conclusion, a novel independent redox-LPS was constructed and validated for LUAD patients, which might provide new insights for clinical decision-making and precision medicine.
Collapse
Affiliation(s)
- Jie Ren
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Aman Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qihang Yuan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
13
|
Zhao Z, He B, Cai Q, Zhang P, Peng X, Zhang Y, Xie H, Wang X. Combination of tumor mutation burden and immune infiltrates for the prognosis of lung adenocarcinoma. Int Immunopharmacol 2021; 98:107807. [PMID: 34175739 DOI: 10.1016/j.intimp.2021.107807] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Tumor mutation burden (TMB) levels are associated with immune infiltrates in the tumor microenvironment and can modulate the responses to immune checkpoint inhibitors (ICIs) in lung adenocarcinoma (LUAD) patients. This study aimed at exploring the potential role of a signature of genes associated with TMB and immune infiltrates and the relevant nomogram in the prognosis of LUAD. MATERIALS AND METHODS The TMB levels in LUAD patients in the Cancer Genome Atlas (TCGA) were analyzed. The differentially expressed genes (DEGs) between the higher- and lower-TMB subgroups were functionally analyzed. The immune-related DEGs and their relationship with immune infiltrates in the tumor environment between two subgroups were analyzed. Nine immune-related DEGs were used to generate a TMB-related immune signature. The sensitivity to immunotherapy in TCGA-LUAD patients was analyzed by immunophenotypic scores (IPS). Subsequently, a nomogram was generated using tumor-related parameters and the signature score. The signature or nomogram values in predicting overall survival (OS) were evaluated and validated in LUAD patients in the GSE30219 and GSE72094. RESULT There were 468 DEGs between the higher and lower-TMB subgroups of LUAD patients. The TMB levels were associated positively with the number of immune infiltrates in LUAD patients. Nine DEGs were related to immune infiltrates in the tumor environment. The higher signature scores (high-risk) were associated with poor prognosis of LUAD in the TCGA, which was validated in LUAD patients of the GSE30219 and GSE72094 datasets. Interestingly, the patients in the high-risk group had higher PD-L1 expression in their tumors and the risk scores in LUAD patients. The IPS of LUAD patients in the high-risk group were predicted to benefit from immunotherapy. Finally, the nomogram had high AUC values in predicting the OS of LUAD patients. CONCLUSION The TMB-related immune signature or nomogram is valuable for the prognosis of LUAD patients and evaluating their responses to ICIs. These relevant genes may participate into the pathogenesis, ICIs, and drug resistance of LUAD.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan, China
| | - Boxue He
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan, China
| | - Qidong Cai
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan, China
| | - Xiong Peng
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan, China
| | - Yuqian Zhang
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan, China
| | - Hui Xie
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan, China.
| |
Collapse
|
14
|
Circular RNA expression profile of lung squamous cell carcinoma: identification of potential biomarkers and therapeutic targets. Biosci Rep 2021; 40:222708. [PMID: 32309852 PMCID: PMC7189478 DOI: 10.1042/bsr20194512] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Emerging evidences indicated that exosomal circular RNAs (circRNAs) could serve as diagnostic biomarkers for cancers. However, the expression profiles and clinical significance of circRNAs in lung squamous cell carcinoma (LUSC) remain largely unknown. Herein, we analyzed circRNAs expression profile in six pairs of plasma exosome samples of LUSC patients using high-throughput sequencing. A total of 252 differentially expressed exosomal circRNAs were identified, including 133 up-regulated circRNAs and 119 down-regulated circRNAs. Subsequently, the circRNAs–miRNAs–mRNAs interaction network was built to investigate potential function of circRNAs. Three up-regulated circRNAs (hsa_circ_0014235, hsa_circ_0025580 and hsa_circ_0026403) were implied to participate in cancer-related pathways. QRT-PCR experiment confirmed the up-regulation of hsa_circ_0014235 and hsa_circ_0025580. Finally, clinical studies indicated that hsa_circ_0014235 and hsa_circ_0025580 could serve as novel diagnostic biomarkers for LUSC. Taken together, our study revealed exosomal circRNAs expression profile in LUSC for the first time and showed the important diagnostic potential for circRNAs in LUSC.
Collapse
|
15
|
Li L, Liu Z, Han R, Li L, Wang M, Huang D, He Y. Genetic Heterogeneity Between Paired Primary and Brain Metastases in Lung Adenocarcinoma. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2020; 14:1179554920947335. [PMID: 32922114 PMCID: PMC7450461 DOI: 10.1177/1179554920947335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
Abstract
Purpose: About one-third of nonsmall cell lung cancer (NSCLC) patients develop brain
metastases (BM). However, there is an unmet need for early diagnosis and
treatment of BM. The precise mechanism for BM is still unknown. However, the
genetic heterogeneity between primary tumor and paired BM indicates that
sampling from the primary tumor may not be able to fully represent the
mutational status in metastases. In this study, the genetic heterogeneity of
primary lung adenocarcinoma and paired BM was analyzed. Patients and methods: A total of 11 paired samples of primary tumors and BM from lung cancer
patients were included, in which 7 paired samples of patients were finally
analyzed. Samples were sequenced by whole-exome sequencing (WES) to
investigate the common and unique mutations in the primary tumors and BM,
and the similarities and differences in copy number variation (CNV). Results: The consistency of gene mutation between primary lung adenocarcinoma and
paired BM was 33% to 86%. FAM129C and ADAMTSs specifically mutated in BM,
along with NKX2-1 high amplification and SAMD2/4 copy number deletion. Conclusion: The consistency of gene mutation between primary lung adenocarcinoma and
corresponding BM is relatively high, while the individual differences were
significant. FAM129C and ADAMTSs mutations and high amplification of NKX2-1
may be related to BM of lung cancer. The loss of copy number of SAMD2/4 may
be a potential therapeutic target for BM from lung adenocarcinoma.
Collapse
Affiliation(s)
- Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Zhulin Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Lin Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Mengyao Wang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Depei Huang
- The Medical Department, 3D Medicines Inc., Shanghai, P.R. China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, P.R. China
| |
Collapse
|
16
|
Liu G, Gu A, E M. [Mechanism and Research Progress of Microbiome in the Development of Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:948-953. [PMID: 32819055 PMCID: PMC7679216 DOI: 10.3779/j.issn.1009-3419.2020.101.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
肺癌是我国最常见的、预后较差的恶性肿瘤之一,大多数患者确诊时即为晚期。有研究表明肺癌患者的微生态特征有别于健康人群,呼吸道的微生物可以通过多种机制影响肺癌的发生发展。近年来微生物组学与疾病相关性研究已成为继人类基因组计划又一研究热点,然而目前有关肺癌与呼吸道微生物组特征的研究相对较少,因此,需要更深入地探讨肺癌与微生物菌群间的潜在联系,通过研究呼吸道微生物在肺癌发生发展中的作用机制,以期在为肺癌的临床诊治、预后评估提供更明确的科学依据。本文对目前关于微生物菌群与肺癌相关研究进行综述,并为临床上诊断与治疗肺癌提供新的思路。
Collapse
Affiliation(s)
- Guohui Liu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Anxin Gu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Mingyan E
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| |
Collapse
|
17
|
Xiong Y, Feng Y, Qiao T, Han Y. Identifying prognostic biomarkers of non-small cell lung cancer by transcriptome analysis. Cancer Biomark 2020; 27:243-250. [PMID: 32083573 DOI: 10.3233/cbm-190222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Prognostic biomarkers are promising targets for cancer prevention and treatment. OBJECTIVE We try to filtrate survival-related genes for non-small cell lung cancer (NSCLC) via transcriptome analysis. METHODS Transcriptome data and clinical information of Lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), mainly subtypes of NSCLC, were obtained from The Cancer Genome Atlas (TCGA) program. Differentially expressed genes (DEGs) analyzed by DESeq2 package were regarded as candidate genes. For survival analysis, univariate and multivariate Cox regression were applied to select biomarkers for overall survival (OS) and progression-free survival (PFS), where univariate analysis was for preliminary filtration and multivariate analysis considering age, gender, TNM parameters and clinical stage was for ultimate determination. Gene ontology (GO) analysis and pathway enrichment were used for biological annotation. RESULTS We ultimately acquired a series of genes closely related to prognosis. For LUAD, we determined 314 OS-related genes and 275 PFS-related genes, while 54 OS-related genes and 78 PFS-related genes were chosen for LUSC. The final biological analysis indicated important function of proliferative signaling in LUAD but for LUSC, only cornification process had statistical meaning. CONCLUSIONS We strictly determined prognostic genes of NSCLC, which would contribute to its carcinogenesis investigation and therapeutic methods improvement.
Collapse
|
18
|
Yin Z, Yan X, Wang Q, Deng Z, Tang K, Cao Z, Qiu T. Detecting Prognosis Risk Biomarkers for Colon Cancer Through Multi-Omics-Based Prognostic Analysis and Target Regulation Simulation Modeling. Front Genet 2020; 11:524. [PMID: 32528533 PMCID: PMC7264416 DOI: 10.3389/fgene.2020.00524] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background Colon cancer is one of the most common health threats for humans since its high morbidity and mortality. Detecting potential prognosis risk biomarkers (PRBs) is essential for the improvement of therapeutic strategies and drug development. Currently, although an integrated prognostic analysis of multi-omics for colon cancer is insufficient, it has been reported to be valuable for improving PRBs’ detection in other cancer types. Aim This study aims to detect potential PRBs for colon adenocarcinoma (COAD) samples through the cancer genome atlas (TCGA) by integrating muti-omics. Materials and Methods The multi-omics-based prognostic analysis (MPA) model was first constructed to systemically analyze the prognosis of colon cancer based on four-omics data of gene expression, exon expression, DNA methylation and somatic mutations on COAD samples. Then, the essential features related to prognosis were functionally annotated through protein–protein interaction (PPI) network and cancer-related pathways. Moreover, the significance of those essential prognostic features were further confirmed by the target regulation simulation (TRS) model. Finally, an independent testing dataset, as well as the single cell-based expression dataset were utilized to validate the generality and repeatability of PRBs detected in this study. Results By integrating the result of MPA modeling, as well the PPI network, integrated pathway and TRS modeling, essential features with gene symbols such as EPB41, PSMA1, FGFR3, MRAS, LEP, C7orf46, LOC285000, LBP, ZNF35, SLC30A3, LECT2, RNF7, and DYNC1I1 were identified as PRBs which provide high potential as drug targets for COAD treatment. Validation on the independent testing dataset demonstrated that these PRBs could be applied to distinguish the prognosis of COAD patients. Moreover, the prognosis of patients with different clinical conditions could also be distinguished by the above PRBs. Conclusions The MPA and TRS models constructed in this paper, as well as the PPI network and integrated pathway analysis, could not only help detect PRBs as potential therapeutic targets for COAD patients but also make it a paradigm for the prognostic analysis of other cancers.
Collapse
Affiliation(s)
- Zuojing Yin
- Department of Gastroenterology, Shanghai Tenth People's Hospital, College of Life Science and Technology, Tongji University, Shanghai, China
| | - Xinmiao Yan
- Department of Gastroenterology, Shanghai Tenth People's Hospital, College of Life Science and Technology, Tongji University, Shanghai, China
| | - Qiming Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, College of Life Science and Technology, Tongji University, Shanghai, China
| | - Zeliang Deng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, College of Life Science and Technology, Tongji University, Shanghai, China
| | - Kailin Tang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, College of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhiwei Cao
- Department of Gastroenterology, Shanghai Tenth People's Hospital, College of Life Science and Technology, Tongji University, Shanghai, China
| | - Tianyi Qiu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Wu J, Hao Z, Ma C, Li P, Dang L, Sun S. Comparative proteogenomics profiling of non-small and small lung carcinoma cell lines using mass spectrometry. PeerJ 2020; 8:e8779. [PMID: 32351780 PMCID: PMC7183755 DOI: 10.7717/peerj.8779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/21/2020] [Indexed: 12/15/2022] Open
Abstract
Background Evidences indicated that non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) might originate from the same cell type, which however ended up to be two different subtypes of lung carcinoma, requiring different therapeutic regimens. We aimed to identify the differences between these two subtypes of lung cancer by using integrated proteome and genome approaches. Methods and Materials Two representative cell lines for each lung cancer subtype were comparatively analysed by quantitative proteomics, and their corresponding transcriptomics data were obtained from the Gene Expression Omnibus database. The integrated analyses of proteogenomic data were performed to determine key differentially expressed proteins that were positively correlated between proteomic and transcriptomic data. Result The proteomics analysis revealed 147 differentially expressed proteins between SCLC and NSCLC from a total of 3,970 identified proteins. Combined with available transcriptomics data, we further confirmed 14 differentially expressed proteins including six known and eight new lung cancer related proteins that were positively correlated with their transcriptomics data. These proteins are mainly involved in cell migration, proliferation, and invasion. Conclusion The proteogenomic data on both NSCLC and SCLC cell lines presented in this manuscript is complementary to existing genomic and proteomic data related to lung cancers and will be crucial for a systems biology-level understanding of the molecular mechanism of lung cancers. The raw mass spectrometry data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD015270.
Collapse
Affiliation(s)
- Jingyu Wu
- College of Life Science, Northwest University, Xi'an, China
| | - Zhifang Hao
- College of Life Science, Northwest University, Xi'an, China
| | - Chen Ma
- College of Life Science, Northwest University, Xi'an, China
| | - Pengfei Li
- College of Life Science, Northwest University, Xi'an, China
| | - Liuyi Dang
- College of Life Science, Northwest University, Xi'an, China
| | - Shisheng Sun
- College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
20
|
Yi M, Li T, Qin S, Yu S, Chu Q, Li A, Wu K. Identifying Tumorigenesis and Prognosis-Related Genes of Lung Adenocarcinoma: Based on Weighted Gene Coexpression Network Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4169691. [PMID: 32149105 PMCID: PMC7035528 DOI: 10.1155/2020/4169691] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/18/2020] [Indexed: 02/07/2023]
Abstract
Lung adenocarcinoma is the most frequently diagnosed subtype of nonsmall cell lung cancer. The molecular mechanisms of the initiation and progression of lung adenocarcinoma remain to be further determined. This study aimed to screen genes related to the progression of lung adenocarcinoma. By weighted gene coexpression network analysis (WGCNA), we constructed a free-scale gene coexpression network to evaluate the correlations between multiple gene sets and patients' clinical traits, then further identify predictive biomarkers. GSE11969 was obtained from the Gene Expression Omnibus (GEO) database which contained the gene expression data of 90 lung adenocarcinoma patients. Data of the Cancer Genome Atlas (TCGA) were employed as the validation cohort. After the average linkage hierarchical clustering, a total of 9 modules were generated. In the clinical significant module (R = 0.44, P < 0.0001), we identified 29 network hub genes. Subsequent verification in the TCGA database showed that 11 hub genes (ANLN, CDCA5, FLJ21924, LMNB1, MAD2L1, RACGAP1, RFC4, SNRPD1, TOP2A, TTK, and ZWINT) were significantly associated with poor survival data of lung adenocarcinomas. Besides, the results of receiver operating characteristic curves indicated that the mRNA levels of this group of genes exhibited high specificity and sensitivity to distinguish malignant lesions from nonmalignant tissues. Apart from mRNA levels, we found that the protein abundances of these 11 genes were remarkably upregulated in lung adenocarcinomas compared with normal tissues. In conclusion, by the WGCNA method, a panel of 11 genes were identified as predictive biomarkers for tumorigenesis and poor prognosis of lung adenocarcinomas.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianye Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anping Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
21
|
Hipólito A, Mendes C, Serpa J. The Metabolic Remodelling in Lung Cancer and Its Putative Consequence in Therapy Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:311-333. [PMID: 32130706 DOI: 10.1007/978-3-030-34025-4_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide in both men and women. Conventional chemotherapy has failed to provide long-term benefits for many patients and in the past decade, important advances were made to understand the underlying molecular/genetic mechanisms of lung cancer, allowing the unfolding of several other pathological entities. Considering these molecular subtypes, and the appearance of promising targeted therapies, an effective personalized control of the disease has emerged, nonetheless benefiting a small proportion of patients. Although immunotherapy has also appeared as a new hope, it is still not accessible to the majority of patients with lung cancer.The metabolism of energy and biomass is the basis of cellular survival. This is true for normal cells under physiological conditions and it is also true for pathophysiologically altered cells, such as cancer cells. Thus, knowledge of the metabolic remodelling that occurs in cancer cells in the sense of, on one hand, surviving in the microenvironment of the organ in which the tumour develops and, on the other hand, escaping from drugs conditioned microenvironment, is essential to understand the disease and to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Cindy Mendes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
22
|
Affiliation(s)
- Julia Kastner
- University of Maryland School of Medicine, Baltimore, MD
| | - Rydhwana Hossain
- University of Maryland School of Medicine, Cardiothoracic Imaging, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, MD
| | | |
Collapse
|
23
|
Shan Q, Fan Y, Guo J, Han X, Wang H, Wang Z. Relationship between tumor size and metastatic site in patients with stage IV non-small cell lung cancer: A large SEER-based study. PeerJ 2019; 7:e7822. [PMID: 31616594 PMCID: PMC6790223 DOI: 10.7717/peerj.7822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
Objective To analyze the relationship between tumor size and metastatic site in stage IV NSCLC patients. Methods A total of 40,196 stage IV NSCLC patients from 2010 to 2015 were screened by SEER database. Chi-square test was used to compare the characteristics of clinical variables. At the same time, multivariate Logistic regression analysis was used to evaluate the relationship between tumor size and organ metastasis. Results Regardless of tumor size, the proportion of bone metastasis and lung metastasis was higher and similar in patients with squamous cell carcinoma, while in patients with adenocarcinoma, bone metastasis accounted for the highest proportion. We found that whether the metastatic site was bone, brain, liver or lung, the proportion of patients with a tumor size of 3–7 cm was the highest. Multivariate regression analysis demonstrated that patients with a tumor size of 3–7 cm and a tumor size ≥7 cm were more likely to develop brain metastasis and lung metastasis compared with patients with a tumor size ≤3 cm (all P < 0.001), which meant the larger the tumor, the greater the risk of brain or lung metastasis. At the same time, the results indicated that patients with a tumor size of 3–7 cm had a tendency to develop liver metastasis (P = 0.004), while the statistical significance was not found for patients with a tumor size ≥7 cm (P = 0.524). The results also revealed that patients with a tumor size of 3–7cm had no significant difference to develop bone metastasis (P = 0.116), while the statistical significance was found for patients with a tumor size ≥7 cm (P < 0.001). Conclusions There was statistical significance between tumor size and metastatic site in patients with stage IV NSCLC. For brain or lung metastasis, the larger the tumor, the higher the risk of brain or lung metastasis. For liver metastasis, patients with a tumor size of 3–7 cm were more prone to develop liver metastasis. For bone metastasis, patients with a tumor size ≥7 cm were more likely to have bone metastasis.
Collapse
Affiliation(s)
- Qinge Shan
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yanling Fan
- Department of Haematology and Oncology, Jinxiang People's Hospital, Jinxiang Hospital Affiliated with Jining Medical University, Jining, Shandong, China
| | - Jun Guo
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiao Han
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhehai Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
24
|
Zhou N, Luo P, Wen Y, Meng H, Zhang J. Immune Cell Infiltration Is a Strong Prognostic Indicator in Surgical Resection of SCLC. J Thorac Oncol 2019; 14:e242-e243. [DOI: 10.1016/j.jtho.2019.06.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/31/2022]
|
25
|
Zhang X, Wang J, Jia Y, Liu T, Wang M, Lv W, Zhang R, Shi J, Liu L. CDK5 neutralizes the tumor suppressing effect of BIN1 via mediating phosphorylation of c-MYC at Ser-62 site in NSCLC. Cancer Cell Int 2019; 19:226. [PMID: 31496920 PMCID: PMC6720419 DOI: 10.1186/s12935-019-0952-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Bridging integrator 1 (BIN1) has showed outstanding tumor-suppressive potential via inhibiting c-MYC-mediated tumorigenesis. However, a frequent phosphorylation of c-MYC at Ser-62 site could block the BIN1/c-MYC interaction and limits the tumor-suppressive effect of BIN1. Cyclin-dependent kinase 5 (CDK5), a generally dysregulated protein in various carcinomas, can mediate c-MYC phosphorylation at Ser-62 site. However, whether the existence of CDK5 could block the BIN1/c-MYC interaction remains unclear. Materials and methods The expression of CDK5 and BIN1 in non-small cell lung cancer (NSCLC) cell lines were measured. CDK5 was knocked down and overexpressed in H460 and PC9 cells, respectively. CCK-8, wound healing and transwell were used to detect the proliferation, migration and invasion ability of NSCLC cells. Tumor-bearing nude mouse model was built with H460 cells. Dinaciclib was added to realize the effect of CDK5 inhibition in vivo. NSCLC and matched para-carcinoma specimens were collected from 153 patients who underwent radical operation. IHC was performed to determine the expression of CDK5 in the specimens. Kaplan–Meier analysis was used to analyze the correlation between the postoperative survival and CDK5 expression. Results CDK5 was highly expressed in H460 cells, and knockdown of CDK5 could restore the BIN1/c-MYC interaction. Meanwhile, low expression of CDK5 was observed in PC9 cells, and overexpression of CDK5 blocked the BIN1/c-MYC interaction. Consequently, the growth, migration, invasion and epithelial mesenchymal transition (EMT) ability of H460 and PC9 cells could be facilitated by CDK5. The addition of CDK5 inhibitor Dinaciclib significantly suppressed the tumorigenesis ability of NSCLC cells in tumor-bearing mouse model. Furthermore, high expression of CDK5, along with low expression of BIN1, could predict poor postoperative prognosis of NSCLC patients. The patients with high expression of CDK5 and low expression of BIN1 showed similar prognosis, indicating that CDK5 could neutralize the tumor suppressing effect of BIN1 in clinical situation. Conclusions CDK5 blocked the interaction of BIN1 and c-MYC via promoting phosphorylation of c-MYC at ser-62 site, ultimately facilitated the progression of NSCLC.
Collapse
Affiliation(s)
- Xiangyu Zhang
- 1Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Tianshan Street 169, Shijiazhuang, China
| | - Jiali Wang
- 1Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Tianshan Street 169, Shijiazhuang, China
| | - Yunlong Jia
- 1Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Tianshan Street 169, Shijiazhuang, China
| | - Tianxu Liu
- 1Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Tianshan Street 169, Shijiazhuang, China
| | - Mengjie Wang
- 1Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Tianshan Street 169, Shijiazhuang, China
| | - Wei Lv
- 1Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Tianshan Street 169, Shijiazhuang, China
| | - Rong Zhang
- 2Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Juan Shi
- 3State Key Laboratory of Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lihua Liu
- 1Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Tianshan Street 169, Shijiazhuang, China
| |
Collapse
|
26
|
Świtlik W, Karbownik MS, Suwalski M, Kozak J, Szemraj J. miR-30a-5p together with miR-210-3p as a promising biomarker for non-small cell lung cancer: A preliminary study. Cancer Biomark 2018; 21:479-488. [PMID: 29103030 DOI: 10.3233/cbm-170767] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although an immense effort has been made to develop novel diagnostic methods and treatment strategies for non-small cell lung cancer (NSCLC), the survival rate of this disease has remained virtually unchanged. Small non-coding RNAs called microRNAs (miRNAs) have appeared to be very promising biomarkers of cancer including NSCLC. OBJECTIVE We investigated the expression level of six miRNAs, and subsequently we evaluated their diagnostic ability and their clinical significance. METHODS We performed an analysis in 50 paired cancer and non-cancerous lung tissue samples collected from NSCLC patients. The RT-qPCR technique was used to investigate the expression profile. RESULTS Obtained results indicate that miR-30a-5p, miR-126-3p and miR-486-5p are downregulated, while miR-205-5p and miR-210-3p are upregulated in NSCLC tissue. Moreover, performed stepwise discriminant analysis determined the model including miR-30a-5p and miR-210-3p which tested on the test set (n= 30) revealed an AUC of 0.969 and provided 100% sensitivity and 80% specificity in discriminating NSCLC tissue from non-cancerous lung tissue. CONCLUSIONS The present preliminary study demonstrated that five tested miRNAs were deregulated in cancer tissue. Moreover, miR-30a-5p together with miR-210-3p with excellent sensitivity and acceptable specificity may distinguish cancer tissue form non-cancerous tissue and thus may become a potential diagnostic biomarker for NSCLC.
Collapse
Affiliation(s)
- Weronika Świtlik
- Department of Medical Biochemistry, Faculty of Health Sciences with the Division of Nursing and Midwifery, Medical University of Lodz, Lodz, Poland
| | | | - Michał Suwalski
- Regional Specialised Hospital of Tuberculosis, Lung Diseases and Rehabilitation in Tuszyn, Tuszyn, Poland
| | - Józef Kozak
- Department of Thoracic Surgery, Memorial Copernicus Hospital, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Faculty of Health Sciences with the Division of Nursing and Midwifery, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
27
|
Lung Cancer Radiogenomics: The Increasing Value of Imaging in Personalized Management of Lung Cancer Patients. J Thorac Imaging 2018; 33:17-25. [PMID: 29252899 DOI: 10.1097/rti.0000000000000312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Radiogenomics provide a large-scale data analytical framework that aims to understand the broad multiscale relationships between the complex information encoded in medical images (including computational, quantitative, and semantic image features) and their underlying clinical, therapeutic, and biological associations. As such it is a powerful and increasingly important tool for both clinicians and researchers involved in the imaging, evaluation, understanding, and management of lung cancers. Herein we provide an overview of the growing field of lung cancer radiogenomics and its applications.
Collapse
|
28
|
Wilson GD, Johnson MD, Ahmed S, Cardenas PY, Grills IS, Thibodeau BJ. Targeted DNA sequencing of non-small cell lung cancer identifies mutations associated with brain metastases. Oncotarget 2018; 9:25957-25970. [PMID: 29899834 PMCID: PMC5995256 DOI: 10.18632/oncotarget.25409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/24/2018] [Indexed: 12/27/2022] Open
Abstract
Introduction This study explores the hypothesis that dominant molecular oncogenes in non-small cell lung cancer (NSCLC) are associated with metastatic spread to the brain. Methods NSCLC patient groups with no evidence of metastasis, with metastatic disease to a non-CNS site, who developed brain metastasis after diagnosis, and patients with simultaneous diagnosis of NSCLC and metastatic brain lesions were studied using targeted sequencing. Results In patients with brain metastasis versus those without, only 2 variants (one each in BCL6 and NOTHC2) were identified that occurred in ≥ 4 NSCLC of patients with brain metastases but ≤ 1 of the NSCLC samples without brain metastases. At the gene level, 20 genes were found to have unique variants in more than 33% of the patients with brain metastases. When analyzed at the patient level, these 20 genes formed the basis of a predictive test to discriminate those with brain metastasis. Further analysis showed that PI3K/AKT signaling is altered in both the primary and metastases of NSCLC patients with brain lesions. Conclusion While no single variant was associated with brain metastasis, this study describes a potential gene panel for the identification of patients at risk and implicates PI3K/AKT signaling as a therapeutic target.
Collapse
Affiliation(s)
- George D Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, USA.,Beaumont BioBank, William Beaumont Hospital, Royal Oak, MI, USA
| | - Matthew D Johnson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, USA.,Department of Radiation Oncology, McLaren Health Care, Macomb, MI, USA
| | - Samreen Ahmed
- Beaumont BioBank, William Beaumont Hospital, Royal Oak, MI, USA
| | | | - Inga S Grills
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, USA
| | | |
Collapse
|
29
|
Luo W, Tian P, Wang Y, Xu H, Chen L, Tang C, Shu Y, Zhang S, Wang Z, Zhang J, Zhang L, Jiang L, Liu L, Che G, Guo C, Zhang H, Wang J, Li W. Characteristics of genomic alterations of lung adenocarcinoma in young never-smokers. Int J Cancer 2018; 143:1696-1705. [PMID: 29667179 PMCID: PMC6175072 DOI: 10.1002/ijc.31542] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/24/2018] [Accepted: 04/06/2018] [Indexed: 02/05/2023]
Abstract
Non‐small‐cell lung cancer (NSCLC) has been recognized as a highly heterogeneous disease with phenotypic and genotypic diversity in each subgroup. While never‐smoker patients with NSCLC have been well studied through next generation sequencing, we have yet to recognize the potentially unique molecular features of young never‐smoker patients with NSCLC. In this study, we conducted whole genome sequencing (WGS) to characterize the genomic alterations of 36 never‐smoker Chinese patients, who were diagnosed with lung adenocarcinoma (LUAD) at 45 years or younger. Besides the well‐known gene mutations (e.g., TP53 and EGFR), our study identified several potential lung cancer‐associated gene mutations that were rarely reported (e.g., HOXA4 and MST1). The lung cancer‐related copy number variations (e.g., EGFR and CDKN2A) were enriched in our cohort (41.7%, 15/36) and the lung cancer‐related structural variations (e.g., EML4‐ALK and KIF5B‐RET) were commonly observed (22.2%, 8/36). Notably, new fusion partners of ALK (SMG6‐ALK) and RET (JMJD1C‐RET) were found. Furthermore, we observed a high prevalence (63.9%, 23/36) of potentially targetable genomic alterations in our cohort. Finally, we identified germline mutations in BPIFB1 (rs6141383, p.V284M), CHD4 (rs74790047, p.D140E), PARP1 (rs3219145, p.K940R), NUDT1 (rs4866, p.V83M), RAD52 (rs4987207, p.S346*), and MFI2 (rs17129219, p.A559T) were significantly enriched in the young never‐smoker patients with LUAD when compared with the in‐house noncancer database (p < 0.05). Our study provides a detailed mutational portrait of LUAD occurring in young never‐smokers and gives insights into the molecular pathogenesis of this distinct subgroup of NSCLC. What's new? Young patients with non‐small‐cell lung cancer (NSCLC) represent a distinct disease entity: they are often female, never smoked and usually present with lung adenoma carcinomas. Here the authors performed whole‐genome sequencing in patients with early‐onset NSCLC who never smoked and find an overall lower mutation burden and fewer classic driver substitutions. However, oncogenic fusions were found more frequently, underscoring that a unique molecular make‐up defines this specific subgroup of cancer patients.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Panwen Tian
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Wang
- The Scientific and Technical Department, Novogene Bioinformatics Institute, Beijing, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Chen
- State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Tang
- State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Shu
- State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shouyue Zhang
- State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Zhang
- State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Lab of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lili Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chenglin Guo
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhang
- The Scientific and Technical Department, Novogene Bioinformatics Institute, Beijing, China
| | - Jiali Wang
- The Scientific and Technical Department, Novogene Bioinformatics Institute, Beijing, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Fei X, Zhang J, Zhao Y, Sun M, Zhao H, Li S. miR-96 promotes invasion and metastasis by targeting GPC3 in non-small cell lung cancer cells. Oncol Lett 2018; 15:9081-9086. [PMID: 29805640 PMCID: PMC5958666 DOI: 10.3892/ol.2018.8507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is a major cause of death worldwide, and non-small cell lung cancer (NSCLC) is the most common type of lung cancer. The aim of this study was to investigate whether miR-96 mediated the invasion and metastasis of NSCLC by targeting glypican-3 (GPC3). Reverse transcription-quantitative PCR (RT-qPCR) was employed to detect the level of miR-96 and GPC3 mRNA. We applied western blot analysis to measure the protein expression level of GPC3 gene. The luciferase reporter assay was employed to confirm that GPC3 was a target gene of miR-96. The Transwell assay was used to detect migration and invasion. The results revealed that miR-96 was upregulated in NSCLC tissues and lung cancer cells (A549 and H460) compared with corresponding paracancerous tissues and normal epidermic MRC-5 cells. Overexpression of miR-96 promoted invasion and migration in A549 cells. GPC3 was a direct target of miR-96 and regulated by miR-96. GPC3 could reverse partial fuction of miR-96 on proliferation. In conclusion, miR-96 was able to promote the migration and invasion of lung cancer cells by targeting GPC3 gene. The newly identified miR-96/GPC3 axis may provide a therapeutic method for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiubin Fei
- Department of Geriatrics, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Jingang Zhang
- Department of Bone Surgery, Jiamusi Central Hospital, Jiamusi, Heilongjiang 154003, P.R. China
| | - Yunwei Zhao
- Department of Respiratory Medicine, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Meijia Sun
- Department of Geriatrics, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Haifeng Zhao
- Department of Geriatrics, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Shuang Li
- Department of Respiratory Medicine, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| |
Collapse
|
31
|
Relationship of SNP rs2645429 in Farnesyl-Diphosphate Farnesyltransferase 1 Gene Promoter with Susceptibility to Lung Cancer. Int J Genomics 2018; 2018:4863757. [PMID: 29765975 PMCID: PMC5885393 DOI: 10.1155/2018/4863757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/05/2018] [Accepted: 02/14/2018] [Indexed: 12/15/2022] Open
Abstract
Background and Purpose The mevalonate pathway is one of the major metabolic pathways that use acetyl-CoA to produce sterols and isoprenoids. These compounds can be effective in the growth and development of tumors. One of the enzymes involved in the mevalonate pathway is FDFT1. Different variants of this gene are involved in the risk of suffering various diseases. The present study examined the relationship between FDFT1 rs2645429 polymorphism and the risk of nonsmall cell lung cancer (NSCLC) in a population from southern Iran. Method The genotypes of rs2645429 polymorphism of FDFT1 gene were examined in 95 samples: 34 patients with NSCLC and 61 healthy individuals by RFLP method. Results The results of this study indicated that C allele of this polymorphism was effectively associated with the risk of NSCLC in the Iranian population (p value = 0.023; OR = 2.71; 95% CI = 1.12–6.59) and CC genotype has significant relation with susceptibility to NSCLC (p value = 0.029; OR = 3.02; 95% CI = 1.09–8.39). This polymorphism is located in the promoter region FDFT1 gene, and CC genotype may increase the activity of this promoter. This study also found a significant relationship between C allele and metastatic status. C allele was more common in NSCLC patients. (p = 0.04). Conclusion C allele of FDFT1 rs2645429 polymorphism gene can be a risk factor for NSCLC, whereas T allele probably has a low protective role.
Collapse
|
32
|
Wang, DC, Wang, W, Zhu, B, Wang X. Lung Cancer Heterogeneity and New Strategies for Drug Therapy. Annu Rev Pharmacol Toxicol 2018; 58:531-546. [PMID: 28977762 DOI: 10.1146/annurev-pharmtox-010716-104523] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Diane C. Wang,
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai 200032, China
| | - William Wang,
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai 200032, China
| | - Bijun Zhu,
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai 200032, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai 200032, China
| |
Collapse
|
33
|
Wang C, Ma W, Wei R, Zhang X, Shen N, Shang L, E L, Wang Y, Gao L, Li X, Wang B, Zhang Y, Du A. Clinicopathological significance of CHFR methylation in non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget 2017; 8:109732-109739. [PMID: 29312643 PMCID: PMC5752556 DOI: 10.18632/oncotarget.21962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/25/2017] [Indexed: 11/25/2022] Open
Abstract
Checkpoint with Forkhead-associated and Ring finger domains (CHFR) is a G2/M checkpoint and tumor-suppressor gene. Recent publications showed the correlation of CHFR promoter methylation with clinicopathological significance of non-small cell lung cancer (NSCLC), however, the results remain inconsistent. The aim of this study is to investigate the Clinicopathological significance of CHFR promoter methylation in NSCLC with a meta-analysis. A total of nine studies were included in the meta-analysis that 816 patients were involved. Our data indicated that the frequency of CHFR promoter methylation was higher in NSCLC than in normal lung tissue, Odd Ratios (OR) was 9.92 with 95% corresponding confidence interval (CI) 2.17-45.23, p = 0.003. Further subgroup analysis revealed that CHFR promoter was more frequently methylated in squamous cell carcinoma (SCC) than in adenocarcinoma (ADC), OR was 4.46 with 95% CI 1.65-12.05, p = 0.003, suggesting the mechanism of SCC pathogenesis is different from ADC. Notably, CHFR promoter methylation was correlated with smoking behavior in NSCLC. In conclusion, CHFR could be a biomarker for diagnosis of NSCLC, and a promising drug target for development of gene therapy in SCC. CHFR promoter methylation is potentially associated with poor overall survival, additional studies need to be carried out for confirmation in future.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Wenxia Ma
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Rong Wei
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Xiaoqin Zhang
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Ningning Shen
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Lifang Shang
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Li E
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Ying Wang
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Lifang Gao
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Xin Li
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Bin Wang
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Yaping Zhang
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| | - Aiping Du
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P.R. China
| |
Collapse
|
34
|
Yoshida E, Terao Y, Hayashi N, Mogushi K, Arakawa A, Tanaka Y, Ito Y, Ohmiya H, Hayashizaki Y, Takeda S, Itoh M, Kawaji H. Promoter-level transcriptome in primary lesions of endometrial cancer identified biomarkers associated with lymph node metastasis. Sci Rep 2017; 7:14160. [PMID: 29074988 PMCID: PMC5658375 DOI: 10.1038/s41598-017-14418-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
For endometrial cancer patients, lymphadenectomy is recommended to exclude rarely metastasized cancer cells. This procedure is performed even in patients with low risk of recurrence despite the risk of complications such as lymphedema. A method to accurately identify cases with no lymph node metastases (LN-) before lymphadenectomy is therefore highly required. We approached this clinical problem by examining primary lesions of endometrial cancers with CAGE (Cap Analysis Gene Expression), which quantifies promoter-level expression across the genome. Fourteen profiles delineated distinct transcriptional networks between LN + and LN- cases, within those classified as having the low or intermediate risk of recurrence. Subsequent quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses of 115 primary tumors showed SEMA3D mRNA and TACC2 isoforms expressed through a novel promoter as promising biomarkers with high accuracy (area under the receiver operating characteristic curve, 0.929) when used in combination. Our high-resolution transcriptome provided evidence of distinct molecular profiles underlying LN + /LN- status in endometrial cancers, raising the possibility of preoperative diagnosis to reduce unnecessary operations in patients with minimum recurrence risk.
Collapse
Affiliation(s)
- Emiko Yoshida
- Department of Obstetrics & Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Yasuhisa Terao
- Department of Obstetrics & Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan.
| | - Noriko Hayashi
- Department of Obstetrics & Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kaoru Mogushi
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Arakawa
- Department of Human Pathology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuji Tanaka
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- Preventive Medicine and Applied Genomics Unit, RIKEN Advanced Center for Computing and Communication, Yokohama, Japan
| | - Yosuke Ito
- Department of Obstetrics & Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Preventive Medicine and Applied Genomics Unit, RIKEN Advanced Center for Computing and Communication, Yokohama, Japan
| | - Hiroko Ohmiya
- Preventive Medicine and Applied Genomics Unit, RIKEN Advanced Center for Computing and Communication, Yokohama, Japan
| | | | - Satoru Takeda
- Department of Obstetrics & Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masayoshi Itoh
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan
| | - Hideya Kawaji
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- Preventive Medicine and Applied Genomics Unit, RIKEN Advanced Center for Computing and Communication, Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan
| |
Collapse
|
35
|
Development of diagnostic model of lung cancer based on multiple tumor markers and data mining. Oncotarget 2017; 8:94793-94804. [PMID: 29212267 PMCID: PMC5706913 DOI: 10.18632/oncotarget.21935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/26/2017] [Indexed: 01/14/2023] Open
Abstract
Objective To develop early intelligent discriminative model of lung cancer and evaluate the efficiency of diagnosis value. Methods Based on the genetic polymorphism profile of CYP1A1-rs1048943, GSTM1, mEH-rs1051740, XRCC1-rs1799782 and XRCC1-rs25489 and the methylations of p16 and RASSF1A gene, and the length of telomere in the peripheral blood from 200 lung cancer patients and 200 health persons, the discriminative model was established through decision tree and ANN technique. Results ACU of the discriminative model based on multiple tumour markers increased by about 10%; The accuracy rate of decision tree model and ANN model for testing set were 93.00% and 89.62% respectively. The ROC analysis showed the decision tree model’s AUC is 0.929 (0.894∼0.964), the ANN model’s AUC is 0.894 (0.853∼0.935). However, the classify accuracy rate and AUC of Fisher discriminatory analysis model are all about 0.7. Conclusion The early intelligent discriminative model of lung cancer based on multiple tumor markers and data mining techniques has a higher accuracy rate and might be useful for early diagnosis of lung cancer.
Collapse
|
36
|
ANKRD22 promotes progression of non-small cell lung cancer through transcriptional up-regulation of E2F1. Sci Rep 2017; 7:4430. [PMID: 28667340 PMCID: PMC5493668 DOI: 10.1038/s41598-017-04818-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/19/2017] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is the leading cause of death among all malignancies due to rapid tumor progression and relapse; however, the underlying molecular mechanisms of tumor progression are unclear. In the present study, we identified ANKRD22 as a novel tumor-associated gene in non-small cell lung cancer (NSCLC). According to the clinical correlation analysis, ANKRD22 was highly expressed in primary cancerous tissue compared with adjacent cancerous tissue, and high expression levels of ANKRD22 were significantly correlated with relapse and short overall survival time. Knockdown and overexpression analysis revealed that ANKRD22 promoted tumor progression by increasing cell proliferation. In xenograft assays, knockdown of ANKRD22 or in vivo treatment with ANKRD22 siRNA inhibited tumor growth. Furthermore, ANKRD22 was shown to participate in the transcriptional regulation of E2F1, and ANKRD22 promoted cell proliferation by up-regulating the expression of E2F1 which enhanced cell cycle progression. Therefore, our studies indicated that ANKRD22 up-regulated the transcription of E2F1 and promoted the progression of NSCLC by enhancing cell proliferation. These findings suggest that ANKRD22 could potentially act as a novel therapeutic target for NSCLC.
Collapse
|
37
|
Hao L, Du B, Xi X. TRIM59 is a novel potential prognostic biomarker in patients with non-small cell lung cancer: A research based on bioinformatics analysis. Oncol Lett 2017; 14:2153-2164. [PMID: 28789440 PMCID: PMC5530082 DOI: 10.3892/ol.2017.6467] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/14/2017] [Indexed: 12/28/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated mortality worldwide and its prognosis is poor. Few effective biomarkers for non-small cell lung cancer (NSCLC) have been translated into the clinical practice aiming to assist in the treatment plan design and prognosis evaluation. The aim of the present study was to identify novel potential prognostic biomarkers for NSCLC. Tripartite motif 59 (TRIM59) was identified from a microarray dataset of matched-samples and was verified as an aberrantly upregulated gene in NSCLC tissue. The expression level of TRIM59 in NSCLC subtypes was observed to be significantly increased in large cell lung carcinoma and squamous cell carcinoma as compared with that in adenocarcinoma. Its expression correlated with several clinicopathological features, including gender, smoking habits, and unfavorable tumor node and pathological stages. Notably, TRIM59 demonstrated a negative correlation with survival time and its overexpression indicated a poor prognosis in NSCLC. Furthermore, univariate and multivariate Cox's regression analyses indicated that TRIM59 was an independent prognostic factor in tumor tissue as compared with age, gender, tumor stage, node stage, and metastasis. Gene set enrichment analysis and protein-protein interaction network construction revealed that TRIM59 was associated with oncogenic mammalian target of rapamycin (MTOR) and eukaryotic initiation factor 4E (EIF4E) signaling through ubiquitin C binding. In conclusion, it was revealed that TRIM59 is a novel prognostic biomarker modulating oncogenic MTOR and EIF4E signaling pathways in NSCLC. These findings provided a novel insight into the clinical application of TRIM59. Therefore, TRIM59 may serve as an independent predictor for prognosis and a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Ling Hao
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Boyu Du
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xueyan Xi
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
38
|
Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone. Cell Biol Toxicol 2017; 33:361-371. [DOI: 10.1007/s10565-017-9393-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/18/2017] [Indexed: 12/16/2022]
|
39
|
|
40
|
Wang DC, Wang X. Tomorrow's genome medicine in lung cancer. Semin Cancer Biol 2016; 42:39-43. [PMID: 27840277 DOI: 10.1016/j.semcancer.2016.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/08/2016] [Indexed: 02/03/2023]
Abstract
Tomorrow's genome medicine in lung cancer should focus more on the homogeneity and heterogeneity of lung cancer which play an important role in the development of drug resistance, genetic complexity, as well as confusion and difficulty of early diagnosis and therapy. Chromosome positioning and repositioning may contribute to the sensitivity of lung cancer cells to therapy, the heterogeneity associated with drug resistance, and the mechanism of lung carcinogenesis. The CCCTC-binding factor plays critical roles in genome topology and function, increased risk of carcinogenicity, and potential of lung cancer-specific mediations. Chromosome reposition in lung cancer can be regulated by CCCTC binding factor. Single-cell gene sequencing, as part of genome medicine, was paid special attention in lung cancer to understand mechanical phenotypes, single-cell biology, heterogeneity, and chromosome positioning and function of single lung cancer cells. We at first propose to develop an intelligent single-cell robot of human cells to integrate together systems information of molecules, genes, proteins, organelles, membranes, architectures, signals, and functions. It can be a powerful automatic system to assist clinicians in the decision-making, molecular understanding, risk analyzing, and prognosis predicting.
Collapse
Affiliation(s)
- Diane C Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
| |
Collapse
|