1
|
Weerasinghe HN, Burrage PM, Jr DVN, Burrage K. Agent-based modeling for the tumor microenvironment (TME). MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:7621-7647. [PMID: 39696854 DOI: 10.3934/mbe.2024335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Cancer is a disease that arises from the uncontrolled growth of abnormal (tumor) cells in an organ and their subsequent spread into other parts of the body. If tumor cells spread to surrounding tissues or other organs, then the disease is life-threatening due to limited treatment options. This work applies an agent-based model to investigate the effect of intra-tumoral communication on tumor progression, plasticity, and invasion, with results suggesting that cell-cell and cell-extracellular matrix (ECM) interactions affect tumor cell behavior. Additionally, the model suggests that low initial healthy cell densities and ECM protein densities promote tumor progression, cell motility, and invasion. Furthermore, high ECM breakdown probabilities of tumor cells promote tumor invasion. Understanding the intra-tumoral communication under cellular stress can potentially lead to the design of successful treatment strategies for cancer.
Collapse
Affiliation(s)
- Hasitha N Weerasinghe
- School of Mathematical Sciences, Queensland University of Technology, Queensland, Brisbane, Australia
| | - Pamela M Burrage
- School of Mathematical Sciences, Queensland University of Technology, Queensland, Brisbane, Australia
| | - Dan V Nicolau Jr
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Kevin Burrage
- School of Mathematical Sciences, Queensland University of Technology, Queensland, Brisbane, Australia
- Department of Computer Science, University of Oxford, United Kingdom
| |
Collapse
|
2
|
Kim H, Kim KE, Madan E, Martin P, Gogna R, Rhee HW, Won KJ. Unveiling contact-mediated cellular crosstalk. Trends Genet 2024; 40:868-879. [PMID: 38906738 DOI: 10.1016/j.tig.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Cell-cell interactions orchestrate complex functions in multicellular organisms, forming a regulatory network for diverse biological processes. Their disruption leads to disease states. Recent advancements - including single-cell sequencing and spatial transcriptomics, coupled with powerful bioengineering and molecular tools - have revolutionized our understanding of how cells respond to each other. Notably, spatial transcriptomics allows us to analyze gene expression changes based on cell proximity, offering a unique window into the impact of cell-cell contact. Additionally, computational approaches are being developed to decipher how cell contact governs the symphony of cellular responses. This review explores these cutting-edge approaches, providing valuable insights into deciphering the intricate cellular changes influenced by cell-cell communication.
Collapse
Affiliation(s)
- Hyobin Kim
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West, Hollywood, CA, USA
| | - Kwang-Eun Kim
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea; Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Esha Madan
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; School of Medicine, Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Patrick Martin
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West, Hollywood, CA, USA
| | - Rajan Gogna
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; School of Medicine, Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, South Korea.
| | - Kyoung-Jae Won
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West, Hollywood, CA, USA.
| |
Collapse
|
3
|
Conde-Lopez C, Marripati D, Elkabets M, Hess J, Kurth I. Unravelling the Complexity of HNSCC Using Single-Cell Transcriptomics. Cancers (Basel) 2024; 16:3265. [PMID: 39409886 PMCID: PMC11475296 DOI: 10.3390/cancers16193265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous and the most common form of head and neck cancer, posing significant challenges for disease management. The objective of this review is to assess the utility of single-cell RNA sequencing (scRNAseq) in addressing these challenges by enabling a detailed characterization of the tumor microenvironment (TME) at the cellular level. METHODS This review compiles and analyzes current strategies that utilize scRNAseq and other single-cell technologies in HNSCC research. RESULTS For HNSCC etiology, scRNAseq allows for the construction of cellular atlases, characterization of different cell types, and investigation of genes and processes involved in cancer initiation, development, and progression within the TME. In terms of HNSCC diagnosis and prognosis, the resolution offered by scRNAseq enables the identification of cell type-specific signatures, enhancing prognostic models and disease stratifiers for patient outcome assessments. Regarding HNSCC treatment, scRNAseq provides insights into cellular responses to various treatments, including radiotherapy, chemotherapy, and immunotherapy, contributing to a better understanding of treatment efficacy and patient outcomes. CONCLUSIONS This review highlights the contributions of scRNAseq to HNSCC research, addressing its cellular and biological complexity, and emphasizes its potential for advancing research and clinical practice in other cancer types.
Collapse
Affiliation(s)
- Cristina Conde-Lopez
- Division Radiooncology/Radiobiology, German Cancer Research Center (DKFZ) Heidelberg, 69120 Heidelberg, Germany; (J.H.); (I.K.)
| | - Divyasree Marripati
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (D.M.); (M.E.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (D.M.); (M.E.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Jochen Hess
- Division Radiooncology/Radiobiology, German Cancer Research Center (DKFZ) Heidelberg, 69120 Heidelberg, Germany; (J.H.); (I.K.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Ina Kurth
- Division Radiooncology/Radiobiology, German Cancer Research Center (DKFZ) Heidelberg, 69120 Heidelberg, Germany; (J.H.); (I.K.)
| |
Collapse
|
4
|
Zhang Y, Xu W, Peng C, Ren S, Mustafe Hidig S, Zhang C. Exploring the role of m7G modification in Cancer: Mechanisms, regulatory proteins, and biomarker potential. Cell Signal 2024; 121:111288. [PMID: 38971569 DOI: 10.1016/j.cellsig.2024.111288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The dysregulation of N(7)-methylguanosine (m7G) modification is increasingly recognized as a key factor in the pathogenesis of cancers. Aberrant expression of these regulatory proteins in various cancers, including lung, liver, and bladder cancers, suggests a universal role in tumorigenesis. Studies have established a strong correlation between the expression levels of m7G regulatory proteins, such as Methyltransferase like 1 (METTL1) and WD repeat domain 4 (WDR4), and clinical parameters including tumor stage, grade, and patient prognosis. For example, in hepatocellular carcinoma, high METTL1 expression is associated with advanced tumor stage and poor prognosis. Similarly, WDR4 overexpression in colorectal cancer correlates with increased tumor invasiveness and reduced patient survival. This correlation underscores the potential of these proteins as valuable biomarkers for cancer diagnosis and prognosis. Additionally, m7G modification regulatory proteins influence cancer progression by modulating the expression of target genes involved in critical biological processes, including cell proliferation, apoptosis, migration, and invasion. Their ability to regulate these processes highlights their significance in the intricate network of molecular interactions driving tumor development and metastasis. Given their pivotal role in cancer biology, m7G modification regulatory proteins are emerging as promising therapeutic targets. Targeting these proteins could offer a novel approach to disrupt the malignant behavior of cancer cells and enhance treatment outcomes. Furthermore, their diagnostic and prognostic value could aid in the early detection of cancer and the selection of appropriate therapeutic strategies, ultimately enhancing patient management and survival rates. This review aims to explore the mechanisms of action of RNA m7G modification regulatory proteins in tumors and their potential applications in cancer progression and treatment. By delving into the roles of these regulatory proteins, we intend to provide a theoretical foundation for the development of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weihao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shenli Ren
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sakarie Mustafe Hidig
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Zhejiang University School of Medicine Fourth Affiliated Hospital, Yiwu, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Wang S, Cheng H, Li M, Gao D, Wu H, Zhang S, Huang Y, Guo K. BNIP3-mediated mitophagy boosts the competitive growth of Lenvatinib-resistant cells via energy metabolism reprogramming in HCC. Cell Death Dis 2024; 15:484. [PMID: 38969639 PMCID: PMC11226677 DOI: 10.1038/s41419-024-06870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
An increasing evidence supports that cell competition, a vital selection and quality control mechanism in multicellular organisms, is involved in tumorigenesis and development; however, the mechanistic contributions to the association between cell competition and tumor drug resistance remain ill-defined. In our study, based on a contructed lenvitinib-resistant hepatocellular carcinoma (HCC) cells display obvious competitive growth dominance over sensitive cells through reprogramming energy metabolism. Mechanistically, the hyperactivation of BCL2 interacting protein3 (BNIP3) -mediated mitophagy in lenvatinib-resistant HCC cells promotes glycolytic flux via shifting energy production from mitochondrial oxidative phosphorylation to glycolysis, by regulating AMP-activated protein kinase (AMPK) -enolase 2 (ENO2) signaling, which perpetually maintaining lenvatinib-resistant HCC cells' competitive advantage over sensitive HCC cells. Of note, BNIP3 inhibition significantly sensitized the anti-tumor efficacy of lenvatinib in HCC. Our findings emphasize a vital role for BNIP3-AMPK-ENO2 signaling in maintaining the competitive outcome of lenvitinib-resistant HCC cells via regulating energy metabolism reprogramming; meanwhile, this work recognizes BNIP3 as a promising target to overcome HCC drug resistance.
Collapse
Affiliation(s)
- Sikai Wang
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Hongxia Cheng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200032, China
| | - Miaomiao Li
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Haoran Wu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shanshan Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yilan Huang
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China.
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Tao SM, Wang LL, Li MD, Wang J, Gu HM, Zhang LJ. Cancer risk associated with low-dose ionizing radiation: A systematic review of epidemiological and biological evidence. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108517. [PMID: 39522793 DOI: 10.1016/j.mrrev.2024.108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The current radiation protection reference standards on stochastic cancer risk, drafted by the International Committee on Radiation Protection, are mostly based on the Life Span Study (LSS), though sufficient epidemiological and basic research evidence is lacking. The relationship between low-dose ionizing radiation (LDIR) and cancer risk is currently modeled with linear non-threshold (LNT) models. However, with the widespread use of medical examinations, the demand for substantial evidence of cancer risk under LDIR and the establishment of a threshold has become more significant. In the first part of the review, we summarize pivotal research in epidemiology, which includes the LSS, medical radiation studies, and occupational and environmental exposure studies. We describe and discuss solid cancers and hematopoietic malignancies induced by LDIR separately, attempting to identify the consistency and differences in the research results, and offering suggestions for future research directions. In the second part, we review recent progress in the underlying biology of cancer associated with LDIR. Besides the obvious harmful effect of DNA damage, chromosome aberrations caused by LDIR, epigenetic regulation also requires attention due to their relationship with carcinogenic and genetic risk. The multistage carcinogenesis model of stem cells, along with the varying effects of radiation on different tumors, may challenge the LNT model. Related research of stem cells, mitochondria and omic biology also offers promising directions for future research in this field.
Collapse
Affiliation(s)
- Shu Min Tao
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Le Le Wang
- Department of Radiology, Xuzhou cancer hospital, Xuzhou 221000, China
| | - Min Da Li
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong 226001, China; Department of Radiology, The Frist Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Jing Wang
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Hong Mei Gu
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Long Jiang Zhang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| |
Collapse
|
7
|
Zhou H, Li G, Kan L, Yang M, Liu Y, Miu X, Shi L, Yang Z, Zheng X, Chen H, Ren C. Synergistic induction of autophagy in gastric cancer by targeting CDK4/6 and MEK through AMPK/mTOR pathway. Heliyon 2024; 10:e30475. [PMID: 38726124 PMCID: PMC11079098 DOI: 10.1016/j.heliyon.2024.e30475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
KRAS is a commonly mutated oncogene in human gastric cancer and is often associated with drug resistance and poor prognosis. Co-clinical trial of combined MEK-CDK4/6 inhibition in KRAS mutated cancers demonstrated therapeutic efficacy in patient-derived xenografts and safety in patients. Here, present research focuses on targeting CDK4/6 and MEK synergistically block the proliferation of KRAS-mutated gastric cancer cells in vitro and in vivo and induced autophagy through the AMPK/mTOR pathway. Furthermore, autophagy inhibitor combined with targeting CDK4/6 and MEK therapy had significant antitumor effects on KRAS mutant gastric cancer cells. Clinical trials are needed to determine the mechanism behind this finding and its clinical utility. In conclusion, our results demonstrate autophagy inhibitor combined targeting MEK and CDK4/6 that concurrently block multiple metabolic processes may be an effective therapeutic approach for gastric cancer.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Laboratory Medicine, Clinical College of Yangzhou University and Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, China
| | - Guiling Li
- Department of Laboratory Medicine, Clinical College of Yangzhou University and Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, China
| | - Liuyue Kan
- Department of Laboratory Medicine, Clinical College of Yangzhou University and Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, China
| | - Mingyu Yang
- Department of Laboratory Medicine, Clinical College of Yangzhou University and Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, China
| | - Yu Liu
- Department of Laboratory Medicine, Clinical College of Yangzhou University and Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, China
| | - Xiaye Miu
- Department of Laboratory Medicine, Clinical College of Yangzhou University and Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, China
| | - Lei Shi
- Department of Gastrointestinal Surgery, Clinical College of Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Zhanjun Yang
- Department of Chemistry, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Xucai Zheng
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Hui Chen
- Department of Geriatrics, Clinical College of Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Chuanli Ren
- Department of Laboratory Medicine, Clinical College of Yangzhou University and Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, China
- Department of Laboratory Medicine, Clinical College of Xuzhou Medica University, Yangzhou, Jiangsu, 225001, China
| |
Collapse
|
8
|
Wang S, Cheng H, Huang Y, Li M, Gao D, Chen H, Su R, Guo K. HSP90a promotes the resistance to oxaliplatin in HCC through regulating IDH1-induced cell competition. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119680. [PMID: 38280407 DOI: 10.1016/j.bbamcr.2024.119680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/06/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Though burgeoning research manifests that cell competition, an essential selection and quality control mechanism for maintaining tissue or organ growth and homeostasis in multicellular organisms, is closely related to tumorigenesis and development, the mechanism of cell competition associated with tumor drug resistance remains elusive. In the study, we uncovered that oxaliplatin-resistant hepatocellular carcinoma (HCC) cells exhibit a pronounced competitive advantage against their sensitive counterparts, which is related to lipid takeover of resistant cells from sensitive cells. Of note, such lipid takeover is dependent on the existence of isocitrate dehydrogenase 1 (IDH1) in resistant HCC cells. Mechanistically, IDH1 activity is regulated by heat shock protein 90 alpha (HSP90α) through binding with each other, which orchestrates the expressions of lipid metabolic enzymes and lipid accumulation in resistant HCC cells. Our results suggest that HCC cell competition-driven chemoresistance can be regulated by HSP90α/IDH1-mediated lipid metabolism, which may serve as a promising target for overcoming drug resistance in HCC.
Collapse
Affiliation(s)
- Sikai Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Hongxia Cheng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200434, China
| | - Yilan Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Miaomiao Li
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Huaping Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi 530021, China
| | - Ruxiong Su
- Puning People's Hospital, Southern Medical University, Guangdong 515300, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China; Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Sun Z, Sun X, Yuan Y, Li H, Li X, Yao Z. FCGR2B as a prognostic and immune microenvironmental marker for gliomas based on transcriptomic analysis. Medicine (Baltimore) 2023; 102:e35084. [PMID: 37713871 PMCID: PMC10508392 DOI: 10.1097/md.0000000000035084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023] Open
Abstract
To explore the expression and prognosis of Fc fragment of IgG low affinity IIb receptor (FCGR2B) in glioma and its relationship with immune microenvironment, so as to provide potential molecular targets for the treatment of glioma. We analyzed the gene expression of FCGR2B using the Cancer Genome Atlas database, Chinese Glioma Genome Atlas, Gene Expression Omnibus database and other glioma related databases. Moreover, we generated survival receiver operating characteristic curve, carried out univariate and multivariate Cox analysis and nomograph construction, and analyzed the relationship between FCGR2B and prognosis. According to the median of FCGR2B gene expression value, the differential expression analysis was carried out by high and low grouping method, and the gene ontology, Kyoto encyclopedia of genes and genomes, and gene set enrichment analysis enrichment analysis were carried out to explore the possible mechanism. Then, the correlation between immune score of glioma and prognosis, World Health Organization grade and FCGR2B expression was analyzed. Finally, the correlation between FCGR2B expression and the proportion of tumor infiltrating immune cells, immune checkpoints, tumor mutation load and immune function was analyzed. The expression of FCGR2B in gliomas was higher than that in normal tissues and was associated with poor prognosis. Independent prognostic analysis showed that FCGR2B was an independent prognostic factor for glioma. The analysis of gene ontology and gene set enrichment analysis showed that FCGR2B was closely related to immune-related functions. The analysis of immune scores and prognosis, World Health Organization grade and FCGR2B expression in gliomas indicated that patients with high immune scores had significantly poorer overall survival and higher tumor pathological grade. In addition, immune scores were significantly positively correlated with the expression of FCGR2B. The analysis of tumor infiltrating immune cells suggested that the expression level of FCGR2B affected the immune activity of TME. In addition, the expression of FCGR2B was positively correlated with almost all immune checkpoint molecules including CD28, CD44, TNFSF14, PDCD1LG2, LAIR1, and CD48 and was significantly positively correlated with tumor mutation load. All immunobiological functions of the high expression group of FCGR2B were significantly inhibited. FCGR2B may play an important role in the occurrence, development and invasion of tumor by influencing the tumor microenvironment of immunosuppression. FCGR2B may be an important target for the treatment of glioma.
Collapse
Affiliation(s)
- Zhimin Sun
- Department of Neurosurgery and Radiology, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Xiaoli Sun
- Department of Neurosurgery and Radiology, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Yaqin Yuan
- Department of Neurosurgery and Radiology, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Hongsheng Li
- Department of Neurology, The People Hospital of Xingtai City, Xingtai, China
| | - Xiaona Li
- Department of Pediatrics, The People Hospital of Linxi County, Xingtai, China
| | - Zhigang Yao
- Department of Neurosurgery and Radiology, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| |
Collapse
|
10
|
Knapp K, Verchio V, Coburn-Flynn O, Li Y, Xiong Z, Morrison JC, Shersher DD, Spitz F, Chen X. Exploring cell competition for the prevention and therapy of esophageal squamous cell carcinoma. Biochem Pharmacol 2023; 214:115639. [PMID: 37290594 PMCID: PMC10528900 DOI: 10.1016/j.bcp.2023.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is characterized by the development of cancer in the esophageal squamous epithelium through a step-by-step accumulation of genetic, epigenetic, and histopathological alterations. Recent studies have demonstrated that cancer-associated gene mutations exist in histologically normal or precancerous clones of the human esophageal epithelium. However, only a small proportion of such mutant clones will develop ESCC, and most ESCC patients develop only one cancer. This suggests that most of these mutant clones are kept in a histologically normal state by neighboring cells with higher competitive fitness. When some of the mutant cells evade cell competition, they become "super-competitors" and develop into clinical cancer. It is known that human ESCC is composed of a heterogeneous population of cancer cells that interact with and influence their environment and neighbors. During cancer therapy, these cancer cells not only respond to therapeutic agents but also compete with each other. Therefore, competition between ESCC cells within the same ESCC tumor is a constantly dynamic process. However, it remains challenging to fine-tune the competitive fitness of various clones for therapeutic benefits. In this review, we will explore the role of cell competition in carcinogenesis, cancer prevention, and therapy, using NRF2, NOTCH pathway, and TP53 as examples. We believe that cell competition is a research area with promising targets for clinical translation. Manipulating cell competition may help improve the prevention and therapy of ESCC.
Collapse
Affiliation(s)
- Kristen Knapp
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, USA
| | - Vincent Verchio
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, USA
| | | | - Yahui Li
- Coriell Institute for Medical Research, Camden, NJ 08103, USA
| | - Zhaohui Xiong
- Coriell Institute for Medical Research, Camden, NJ 08103, USA
| | - Jamin C Morrison
- MD Anderson Cancer Center at Cooper, Camden, NJ 08103, USA; Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - David D Shersher
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, USA; MD Anderson Cancer Center at Cooper, Camden, NJ 08103, USA; Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Francis Spitz
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, USA; MD Anderson Cancer Center at Cooper, Camden, NJ 08103, USA; Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Xiaoxin Chen
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, USA; Coriell Institute for Medical Research, Camden, NJ 08103, USA; MD Anderson Cancer Center at Cooper, Camden, NJ 08103, USA; Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| |
Collapse
|
11
|
Kim K, Huang H, Parida PK, He L, Marquez-Palencia M, Reese TC, Kapur P, Brugarolas J, Brekken RA, Malladi S. Cell Competition Shapes Metastatic Latency and Relapse. Cancer Discov 2023; 13:85-97. [PMID: 36098678 PMCID: PMC9839468 DOI: 10.1158/2159-8290.cd-22-0236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/21/2022] [Accepted: 09/06/2022] [Indexed: 01/17/2023]
Abstract
Cell competition, a fitness-sensing process, is essential for tissue homeostasis. Using cancer metastatic latency models, we show that cell competition results in the displacement of latent metastatic (Lat-M) cells from the primary tumor. Lat-M cells resist anoikis and survive as residual metastatic disease. A memodeled extracellular matrix facilitates Lat-M cell displacement and survival in circulation. Disrupting cell competition dynamics by depleting secreted protein and rich in cysteine (SPARC) reduced displacement from orthotopic tumors and attenuated metastases. In contrast, depletion of SPARC after extravasation in lung-resident Lat-M cells increased metastatic outgrowth. Furthermore, multiregional transcriptomic analyses of matched primary tumors and metachronous metastases from patients with kidney cancer identified tumor subclones with Lat-M traits. Kidney cancer enriched for these Lat-M traits had a rapid onset of metachronous metastases and significantly reduced disease-free survival. Thus, an unexpected consequence of cell competition is the displacement of cells with Lat-M potential, thereby shaping metastatic latency and relapse. SIGNIFICANCE We demonstrate that cell competition within the primary tumor results in the displacement of Lat-M cells. We further show the impact of altering cell competition dynamics on metastatic incidence that may guide strategies to limit metastatic recurrences. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Huocong Huang
- Hamon Center for Therapeutic Oncology Research and Department of Surgery, UT Southwestern Medical Center, Dallas, Texas
| | - Pravat Kumar Parida
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Lan He
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mauricio Marquez-Palencia
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Tanner C Reese
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.,Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Payal Kapur
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, UT Southwestern Medical Center, Dallas, Texas
| | - James Brugarolas
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, UT Southwestern Medical Center, Dallas, Texas.,Hematology-Oncology Division, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Rolf A Brekken
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.,Hamon Center for Therapeutic Oncology Research and Department of Surgery, UT Southwestern Medical Center, Dallas, Texas
| | - Srinivas Malladi
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
12
|
Wang M, Liu L, Dai Q, Jin M, Huang G. Developing a primary tumor and lymph node 18F-FDG PET/CT-clinical (TLPC) model to predict lymph node metastasis of resectable T2-4 NSCLC. J Cancer Res Clin Oncol 2023; 149:247-261. [PMID: 36565319 PMCID: PMC9889531 DOI: 10.1007/s00432-022-04545-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE The goal of this study was to investigate whether the combined PET/CT radiomic features of the primary tumor and lymph node could predict lymph node metastasis (LNM) of resectable non-small cell lung cancer (NSCLC) in stage T2-4. METHODS This retrospective study included 192 NSCLC patients who underwent tumor and node dissection between August 2016 and December 2017 and underwent 18F-fluorodeoxyglucose (18F-FDG) PET/CT scanning 1-3 weeks before surgery. In total, 192 primary tumors (> 3 cm) and 462 lymph nodes (LN > 0.5 cm) were analyzed. The pretreatment clinical features of these patients were recorded, and the radiomic features of their primary tumor and lymph node were extracted from PET/CT imaging. The Spearman's relevance combined with the least absolute shrinkage and selection operator was used for radiomic feature selection. Five independent machine learning models (multi-layer perceptron, extreme Gradient Boosting, light gradient boosting machine, gradient boosting decision tree, and support vector machine) were tested as classifiers for model development. We developed the following three models to predict LNM: tumor PET/CT-clinical (TPC), lymph PET/CT-clinical (LPC), and tumor and lymph PET/CT-clinical (TLPC). The performance of the models and the clinical node (cN) staging was evaluated using the ROC curve and confusion matrix analysis. RESULTS The ROC analysis showed that among the three models, the TLPC model had better predictive clinical utility and efficiency in predicting LNM of NSCLC (AUC = 0.93, accuracy = 85%; sensitivity = 0.93; specificity = 0.75) than both the TPC model (AUC = 0.54, accuracy = 50%; specificity = 0.38; sensitivity = 0.59) and the LPC model (AUC = 0.82, accuracy = 70%; specificity = 0.41; sensitivity = 0.92). The TLPC model also exhibited great potential in predicting the N2 stage in NSCLC (AUC = 0.94, accuracy = 79%; specificity = 0.64; sensitivity = 0.91). CONCLUSION The combination of CT and PET radiomic features of the primary tumor and lymph node showed great potential for predicting LNM of resectable T2-4 NSCLC. The TLPC model can non-invasively predict lymph node metastasis in NSCLC, which may be helpful for clinicians to develop more rational therapeutic strategies.
Collapse
Affiliation(s)
- Meng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China ,Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318 China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200003 China
| | - Qian Dai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China ,Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318 China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318 China
| | - Gang Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China ,Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318 China , Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318 China
| |
Collapse
|
13
|
Sun C, Huang Y, Jiang C, Li Z. Updates on fluorescent probes and open-field imaging methods for fluorescence-guided cytoreductive surgery for epithelial ovarian cancer: A review. BJOG 2022; 129 Suppl 2:50-59. [PMID: 36485071 PMCID: PMC10107465 DOI: 10.1111/1471-0528.17332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluorescence-guided surgery has emerged as a promising imaging technique for real-time intraoperative tumour delineation and visualisation of submillimetre tumour masses in cytoreductive surgery for epithelial ovarian cancer (EOC). Researchers have developed several EOC-targeted fluorescent probes, most of which are currently in the preclinical stage. Interestingly, imaging devices designed for open surgery are proof of concept. This review summarises the recent advances in EOC-targeted fluorescent probes and open-field fluorescence imaging strategies and discusses the challenges and potential solutions for clinical translation.
Collapse
Affiliation(s)
- Chongen Sun
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yue Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Caixia Jiang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Sun X, Li KX, Figueiredo ML, Lin CC, Li BY, Yokota H. Generation of the Chondroprotective Proteomes by Activating PI3K and TNFα Signaling. Cancers (Basel) 2022; 14:cancers14133039. [PMID: 35804814 PMCID: PMC9264838 DOI: 10.3390/cancers14133039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Chondrosarcoma and inflammatory arthritis are two joint-damaging diseases. Here, we examined whether a counterintuitive approach of activating tumorigenic and inflammatory signaling may generate joint-protective proteomes in mesenchymal stem cells and chondrocytes for the treatment of chondrosarcoma and inflammatory arthritis. While activating PI3K signaling and the administration of TNFα to chondrosarcoma cells and chondrocytes promoted tumor progression and inflammatory responses, those cells paradoxically generated a chondroprotective conditioned medium. Notably, the chondroprotective conditioned medium was enriched with Hsp90ab1 that interacted with GAPDH. Extracellular GAPDH interacted with L1CAM, an oncogenic transmembrane protein, and inhibited tumorigenic behaviors, whereas intracellular GAPDH downregulated p38 in chondrocytes and exerted anti-inflammatory effects. The result supports the unconventional approach of generating chondroprotective proteomes. Abstract Purpose: To develop a novel treatment option for Chondrosarcoma (CS) and inflammatory arthritis, we evaluated a counterintuitive approach of activating tumorigenic and inflammatory signaling for generating joint-protective proteomes. Methods: We employed mesenchymal stem cells and chondrocytes to generate chondroprotective proteomes by activating PI3K signaling and the administration of TNFα. The efficacy of the proteomes was examined using human and mouse cell lines as well as a mouse model of CS. The regulatory mechanism was analyzed using mass spectrometry-based whole-genome proteomics. Results: While tumor progression and inflammatory responses were promoted by activating PI3K signaling and the administration of TNFα to CS cells and chondrocytes, those cells paradoxically generated a chondroprotective conditioned medium (CM). The application of CM downregulated tumorigenic genes in CS cells and TNFα and MMP13 in chondrocytes. Mechanistically, Hsp90ab1 was enriched in the chondroprotective CM, and it immunoprecipitated GAPDH. Extracellular GAPDH interacted with L1CAM and inhibited tumorigenic behaviors, whereas intracellular GAPDH downregulated p38 and exerted anti-inflammatory effects. Conclusions: We demonstrated that the unconventional approach of activating oncogenic and inflammatory signaling can generate chondroprotective proteomes. The role of Hsp90ab1 and GAPDH differed in their locations and they acted as the uncommon protectors of the joint tissue from tumor and inflammatory responses.
Collapse
Affiliation(s)
- Xun Sun
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (X.S.); (K.-X.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Ke-Xin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (X.S.); (K.-X.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Marxa L. Figueiredo
- Department of Basic Medical Sciences and Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette, IN 47907, USA;
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (X.S.); (K.-X.L.)
- Correspondence: (B.-Y.L.); (H.Y.); Tel.: +86-451-8667-1354 (B.-Y.L.); +1-317-278-5177 (H.Y.); Fax: +86-451-8667-1354 (B.-Y.L.); +1-317-278-2455 (H.Y.)
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (B.-Y.L.); (H.Y.); Tel.: +86-451-8667-1354 (B.-Y.L.); +1-317-278-5177 (H.Y.); Fax: +86-451-8667-1354 (B.-Y.L.); +1-317-278-2455 (H.Y.)
| |
Collapse
|
15
|
Zhang D, Wang W, Zhou H, Su L, Han X, Zhang X, Han W, Wang Y, Xue X. ANXA1: An Important Independent Prognostic Factor and Molecular Target in Glioma. Front Genet 2022; 13:851505. [PMID: 35711921 PMCID: PMC9193966 DOI: 10.3389/fgene.2022.851505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: The expression, prognosis, and related mechanisms of ANXA1 are investigated in glioma, with the objective to find potential therapeutic molecular targets for glioma. Methods: We analyzed the gene expression of ANXA1 using glioma-related databases, including the Chinese Glioma Genome Atlas (CGGA) database, The Cancer Genome Atlas (TCGA) database, and the Gene Expression Omnibus (GEO) database. Moreover, we collected the sample tissues and corresponding paracancerous tissues of 23 glioma patients and then conducted a Western blot experiment to verify the expression and correlate survival of ANXA1. Moreover, we generated survival ROC curves, performing univariate and multivariate Cox analyses and the construction of the nomogram. Differential expression analysis was conducted by high and low grouping based on the median of the ANXA1 gene expression values. We conducted Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Set Enrichment Analysis (GSEA) to explore possible mechanisms, and gene co-expression analysis was also performed. Results: The results showed that the ANXA1 expression level was higher in gliomas than in normal tissues, and a high expression level of ANXA1 in gliomas was associated with poorer prognosis. The independent prognosis analysis showed that the ANXA1 gene was an independent prognostic factor of glioma. In the analysis of KEGG and Gene Set Enrichment Analysis (GSEA), it is shown that ANXA1 may play an important role in glioma patients by affecting extracellular matrix (ECM)-receptor interaction and the focal adhesion signal pathway. The core genes, including COL1A1, COL1A2, FN1, ITGA1, and ITGB1, were screened for gene correlation and prognosis analysis. The expression level of the five genes was verified by qPCR in glioma. We concluded that these five core genes and ANXA1 could play a synergistic role in gliomas. Conclusion: The results indicated that a high expression level of ANXA1 leads to worse prognosis and ANXA1 is an independent prognostic factor and a potentially important target for the treatment of gliomas.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenyan Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Linlin Su
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinyuan Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Oncology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Wei Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Yu Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
Chen Q, Xiao H, Gu Y, Weng Z, Wei L, Li B, Liao B, Li J, Lin J, Hei M, Peng S, Wang W, Kuang M, Chen S. Deep learning for evaluation of microvascular invasion in hepatocellular carcinoma from tumor areas of histology images. Hepatol Int 2022; 16:590-602. [PMID: 35349075 PMCID: PMC9174315 DOI: 10.1007/s12072-022-10323-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/16/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Microvascular invasion (MVI) is essential for the management of hepatocellular carcinoma (HCC). However, MVI is hard to evaluate in patients without sufficient peri-tumoral tissue samples, which account for over a half of HCC patients. METHODS We established an MVI deep-learning (MVI-DL) model with a weakly supervised multiple-instance learning framework, to evaluate MVI status using only tumor tissues from the histological whole slide images (WSIs). A total of 350 HCC patients (2917 WSIs) from the First Affiliated Hospital of Sun Yat-sen University (FAHSYSU cohort) were divided into a training and test set. One hundred and twenty patients (504 WSIs) from Dongguan People's Hospital and Shunde Hospital of Southern Medical University (DG-SD cohort) formed an external test set. Unsupervised clustering and class activation mapping were applied to visualize the key histological features. RESULTS In the FAHSYSU and DG-SD test set, the MVI-DL model achieved an AUC of 0.904 (95% CI 0.888-0.920) and 0.871 (95% CI 0.837-0.905), respectively. Visualization results showed that macrotrabecular architecture with rich blood sinus, rich tumor stroma and high intratumor heterogeneity were identified as the key features associated with MVI ( +), whereas severe immune infiltration and highly differentiated tumor cells were associated with MVI (-). In the simulation of patients with only one WSI or biopsies only, the AUC of the MVI-DL model reached 0.875 (95% CI 0.855-0.895) and 0.879 (95% CI 0.853-0.906), respectively. CONCLUSION The effective, interpretable MVI-DL model has potential as an important tool with practical clinical applicability in evaluating MVI status from the tumor areas on the histological slides.
Collapse
Affiliation(s)
- Qiaofeng Chen
- Department of Gastroenterology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Han Xiao
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Yunquan Gu
- Clinical Trials Unit, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zongpeng Weng
- Clinical Trials Unit, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lihong Wei
- Department of Pathology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bin Li
- Clinical Trials Unit, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bing Liao
- Department of Pathology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiali Li
- Department of Liver and Pancreatobiliary Surgery, Dongguan People's Hospital, Dongguan, Guangdong, China
| | - Jie Lin
- Department of Liver and Pancreatobiliary Surgery, Shunde Hospital of Southern Medical University, Shunde, Guangdong, China
| | - Mengying Hei
- Department of Pathology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Sui Peng
- Department of Gastroenterology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Clinical Trials Unit, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
| | - Ming Kuang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
- Department of Liver Surgery, Cancer Center, Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
| | - Shuling Chen
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
17
|
Russell RC, Guan KL. The multifaceted role of autophagy in cancer. EMBO J 2022; 41:e110031. [PMID: 35535466 PMCID: PMC9251852 DOI: 10.15252/embj.2021110031] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a cellular degradative pathway that plays diverse roles in maintaining cellular homeostasis. Cellular stress caused by starvation, organelle damage, or proteotoxic aggregates can increase autophagy, which uses the degradative capacity of lysosomal enzymes to mitigate intracellular stresses. Early studies have shown a role for autophagy in the suppression of tumorigenesis. However, work in genetically engineered mouse models and in vitro cell studies have now shown that autophagy can be either cancer-promoting or inhibiting. Here, we summarize the effects of autophagy on cancer initiation, progression, immune infiltration, and metabolism. We also discuss the efforts to pharmacologically target autophagy in the clinic and highlight future areas for exploration.
Collapse
Affiliation(s)
- Ryan C Russell
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Han Z, Gong C, Li J, Guo H, Chen X, Jin Y, Gao S, Tai Z. Immunologically modified enzyme-responsive micelles regulate the tumor microenvironment for cancer immunotherapy. Mater Today Bio 2021; 13:100170. [PMID: 34938989 DOI: 10.1016/j.mtbio.2021.100170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/23/2023] Open
Abstract
Immune checkpoint blockade has been proven to have great therapeutic potential and has revolutionized the treatment of tumors. However, various limitations remain, including the low response rate of exhausted T cells and mutual regulation of multiple immunosuppressive cell types that compromise the effect of single-target therapy. Nano-delivery systems can be used to regulate the tumor immune microenvironment in favor of immunotherapy. In this study, we constructed a polypeptide-based micellar system that encapsulates an aryl hydrocarbon receptor (AhR) inhibitor (CH223191) conjugated to T cell activator anti-CD28. The inhibition of AhR activation downregulates the fraction of immunosuppressive cells and effectively inhibits tumor cell metastasis. In addition, the combination with co-stimulatory antibodies improves T-cell activation and synergistically enhances the antitumor effect of AhR inhibitors. The micellar system developed in this study represents a novel and effective tumor immunotherapy approach.
Collapse
Affiliation(s)
- Zhimin Han
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Chunai Gong
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Juanjuan Li
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Huanhuan Guo
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Xinlu Chen
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yangli Jin
- Ningbo Yinzhou No.2 Hospital, Ningbo, 315192, China
| | - Shen Gao
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
19
|
Marongiu F, Cheri S, Laconi E. Cell competition, cooperation, and cancer. Neoplasia 2021; 23:1029-1036. [PMID: 34500336 PMCID: PMC8429595 DOI: 10.1016/j.neo.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 12/29/2022]
Abstract
Complex multicellular organisms require quantitative and qualitative assessments on each of their constitutive cell types to ensure coordinated and cooperative behavior towards overall functional proficiency. Cell competition represents one of the operating arms of such quality control mechanisms and relies on fitness comparison among individual cells. However, what is exactly included in the fitness equation for each cell type is still uncertain. Evidence will be discussed to suggest that the ability of the cell to integrate and collaborate within the organismal community represents an integral part of the best fitness phenotype. Thus, under normal conditions, cell competition will select against the emergence of altered cells with disruptive behavior towards tissue integrity and/or tissue pattern formation. On the other hand, the winner phenotype prevailing as a result of cell competition does not entail, by itself, any degree of growth autonomy. While cell competition per se should not be considered as a biological driving force towards the emergence of the neoplastic phenotype, it is possible that the molecular machinery involved in the winner/loser interaction could be hijacked by evolving cancer cell populations.
Collapse
Affiliation(s)
- Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Samuele Cheri
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, Italy.
| |
Collapse
|
20
|
Liu S, Wu D, Sun X, Fan Y, Zha R, Jalali A, Feng Y, Li K, Sano T, Vike N, Li F, Rispoli J, Sudo A, Liu J, Robling A, Nakshatri H, Li BY, Yokota H. Overexpression of Lrp5 enhanced the anti-breast cancer effects of osteocytes in bone. Bone Res 2021; 9:32. [PMID: 34230453 PMCID: PMC8260600 DOI: 10.1038/s41413-021-00152-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 02/22/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023] Open
Abstract
Osteocytes are the most abundant cells in bone, which is a frequent site of breast cancer metastasis. Here, we focused on Wnt signaling and evaluated tumor-osteocyte interactions. In animal experiments, mammary tumor cells were inoculated into the mammary fat pad and tibia. The role of Lrp5-mediated Wnt signaling was examined by overexpressing and silencing Lrp5 in osteocytes and establishing a conditional knockout mouse model. The results revealed that administration of osteocytes or their conditioned medium (CM) inhibited tumor progression and osteolysis. Osteocytes overexpressing Lrp5 or β-catenin displayed strikingly elevated tumor-suppressive activity, accompanied by downregulation of tumor-promoting chemokines and upregulation of apoptosis-inducing and tumor-suppressing proteins such as p53. The antitumor effect was also observed with osteocyte-derived CM that was pretreated with a Wnt-activating compound. Notably, silencing Lrp5 in tumors inhibited tumor progression, while silencing Lrp5 in osteocytes in conditional knockout mice promoted tumor progression. Osteocytes exhibited elevated Lrp5 expression in response to tumor cells, implying that osteocytes protect bone through canonical Wnt signaling. Thus, our results suggest that the Lrp5/β-catenin axis activates tumor-promoting signaling in tumor cells but tumor-suppressive signaling in osteocytes. We envision that osteocytes with Wnt activation potentially offer a novel cell-based therapy for breast cancer and osteolytic bone metastasis.
Collapse
Affiliation(s)
- Shengzhi Liu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Di Wu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China.,Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xun Sun
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Yao Fan
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Rongrong Zha
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Aydin Jalali
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Yan Feng
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Kexin Li
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Tomohiko Sano
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Orthopedic Surgery, Mie University, Tsu, Mie, Japan
| | - Nicole Vike
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Fangjia Li
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Joseph Rispoli
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Mie University, Tsu, Mie, Japan
| | - Jing Liu
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Alexander Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA. .,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China. .,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA. .,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA. .,Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
21
|
Xu W, Li C, Ma B, Lu Z, Wang Y, Jiang H, Luo Y, Yang Y, Wang X, Liao T, Ji Q, Wang Y, Wei W. Identification of Key Functional Gene Signatures Indicative of Dedifferentiation in Papillary Thyroid Cancer. Front Oncol 2021; 11:641851. [PMID: 33996555 PMCID: PMC8113627 DOI: 10.3389/fonc.2021.641851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/19/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Differentiated thyroid cancer (DTC) is the most common type of thyroid cancer. Many of them can relapse to dedifferentiated thyroid cancer (DDTC) and exhibit different gene expression profiles. The underlying mechanism of dedifferentiation and the involved genes or pathways remained to be investigated. Methods: A discovery cohort obtained from patients who received surgical resection in the Fudan University Shanghai Cancer Center (FUSCC) and two validation cohorts derived from Gene Expression Omnibus (GEO) database were used to screen out differentially expressed genes in the dedifferentiation process. Weighted gene co-expression network analysis (WGCNA) was constructed to identify modules highly related to differentiation. Gene Set Enrichment Analysis (GSEA) was used to identify pathways related to differentiation, and all differentially expressed genes were grouped by function based on the GSEA and literature reviewing data. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to control the number of variables in each group. Next, we used logistic regression to build a gene signature in each group to indicate differentiation status, and we computed receiver operating characteristic (ROC) curve to evaluate the indicative performance of each signature. Results: A total of 307 upregulated and 313 downregulated genes in poorly differentiated thyroid cancer (PDTC) compared with papillary thyroid cancer (PTC) and normal thyroid (NT) were screened out in FUSCC cohort and validated in two GEO cohorts. WGCNA of 620 differential genes yielded the seven core genes with the highest correlation with thyroid differentiation score (TDS). Furthermore, 395 genes significantly correlated with TDS in univariate logistic regression analysis were divided into 11 groups. The areas under the ROC curve (AUCs) of the gene signature of group transcription and epigenetic modification, signal and substance transport, extracellular matrix (ECM), and metabolism in the training set [The Cancer Genome Atlas (TCGA) cohort] and validation set (combined GEO cohort) were both >0.75. The gene signature based on group transcription and epigenetic modification, cilia formation and movement, and proliferation can reflect the patient's disease recurrence state. Conclusion: The dedifferentiation of DTC is affected by a variety of mechanisms including many genes. The gene signature of group transcription and epigenetic modification, signal and substance transport, ECM, and metabolism can be used as biomarkers for DDTC.
Collapse
Affiliation(s)
- Weibo Xu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cuiwei Li
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongwu Lu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuchen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongyi Jiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Luo
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yichen Yang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Amrenova A, Suzuki K, Saenko V, Yamashita S, Mitsutake N. Cell competition between anaplastic thyroid cancer and normal thyroid follicular cells exerts reciprocal stress response defining tumor suppressive effects of normal epithelial tissue. PLoS One 2021; 16:e0249059. [PMID: 33793628 PMCID: PMC8016217 DOI: 10.1371/journal.pone.0249059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/10/2021] [Indexed: 11/25/2022] Open
Abstract
The microenvironment of an early-stage tumor, in which a small number of cancer cells is surrounded by a normal counterpart milieu, plays a crucial role in determining the fate of initiated cells. Here, we examined cell competition between anaplastic thyroid cancer cells and normal thyroid follicular cells using co-culture method. Cancer cells were grown until they formed small clusters, to which normal cells were added to create high-density co-culture condition. We found that co-culture with normal cells significantly suppressed the growth of cancer cell clusters through the activation of Akt-Skp2 pathway. In turn, cancer cells triggered apoptosis in the neighboring normal cells through local activation of ERK1/2. A bi-directional cell competition provides a suppressive mechanism of anaplastic thyroid cancer progression. Since the competitive effect was negated by terminal growth arrest caused by radiation exposure to normal cells, modulation of reciprocal stress response in vivo could be an intrinsic mechanism associated with tumor initiation, propagation, and metastasis.
Collapse
Affiliation(s)
- Aidana Amrenova
- Life Sciences and Radiation Research, Graduate School of Biomedical Sciences Nagasaki University, Nagasaki, Japan
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute, Nagasaki, Japan
| | - Keiji Suzuki
- Life Sciences and Radiation Research, Graduate School of Biomedical Sciences Nagasaki University, Nagasaki, Japan
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute, Nagasaki, Japan
- * E-mail:
| | - Vladimir Saenko
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute, Nagasaki, Japan
| | - Shunichi Yamashita
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute, Nagasaki, Japan
- Fukushima Medical University, Fukushima, Japan
- Center for Advanced Radiation Emergency Medicine at the National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Norisato Mitsutake
- Life Sciences and Radiation Research, Graduate School of Biomedical Sciences Nagasaki University, Nagasaki, Japan
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute, Nagasaki, Japan
| |
Collapse
|
23
|
Paraskevopoulos M, McGuigan AP. Application of CRISPR screens to investigate mammalian cell competition. Brief Funct Genomics 2021; 20:135-147. [PMID: 33782689 DOI: 10.1093/bfgp/elab020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 11/14/2022] Open
Abstract
Cell competition is defined as the context-dependent elimination of cells that is mediated by intercellular communication, such as paracrine or contact-dependent cell signaling, and/or mechanical stresses. It is considered to be a quality control mechanism that facilitates the removal of suboptimal cells from both adult and embryonic tissues. Cell competition, however, can also be hijacked by transformed cells to acquire a 'super-competitor' status and outcompete the normal epithelium to establish a precancerous field. To date, many genetic drivers of cell competition have been identified predominately through studies in Drosophila. Especially during the last couple of years, ethylmethanesulfonate-based genetic screens have been instrumental to our understanding of the molecular regulators behind some of the most common competition mechanisms in Drosophila, namely competition due to impaired ribosomal function (or anabolism) and mechanical sensitivity. Despite recent findings in Drosophila and in mammalian models of cell competition, the drivers of mammalian cell competition remain largely elusive. Since the discovery of CRISPR/Cas9, its use in functional genomics has been indispensable to uncover novel cancer vulnerabilities. We envision that CRISPR/Cas9 screens will enable systematic, genome-scale probing of mammalian cell competition to discover novel mutations that not only trigger cell competition but also identify novel molecular components that are essential for the recognition and elimination of less fit cells. In this review, we summarize recent contributions that further our understanding of the molecular mechanisms of cell competition by genetic screening in Drosophila, and provide our perspective on how similar and novel screening strategies made possible by whole-genome CRISPR/Cas9 screening can advance our understanding of mammalian cell competition in the future.
Collapse
|
24
|
Liu B, Chen X, Zhan Y, Wu B, Pan S. Identification of a Gene Signature for Renal Cell Carcinoma-Associated Fibroblasts Mediating Cancer Progression and Affecting Prognosis. Front Cell Dev Biol 2021; 8:604627. [PMID: 33634098 PMCID: PMC7901886 DOI: 10.3389/fcell.2020.604627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Cancer-associated fibroblasts (CAFs) are mainly involved in cancer progression and treatment failure. However, the specific signature of CAFs and their related clinicopathological parameters in renal cell carcinoma (RCC) remain unclear. Here, methods to recognize gene signatures were employed to roughly assess the infiltration of CAFs in RCC, based on the data from The Cancer Genome Atlas (TCGA). Weighted Gene Coexpression Network Analysis (WGCNA) was used to cluster transcriptomes and correlate with CAFs to identify the gene signature. Single-cell and cell line sequencing data were used to verify the expression specificity of the gene signature in CAFs. The gene signature was used to evaluate the infiltration of CAFs in each sample, and the clinical significance of each key gene in the gene signature and CAFs was analyzed. We observed that the CAF infiltration was higher in kidney cancer and advanced tumor stage and grade than in normal tissues. The seven key genes of the CAF gene signature identified using WGCNA showed high expression of CAF-related characteristics in the cell clustering landscape and fibroblast cell lines; these genes were found to be associated with extracellular matrix function, collagen synthesis, cell surface interaction, and adhesion. The high CAF infiltration and the key genes were verified from the TCGA and Gene Expression Omnibus data related to the advanced grade, advanced stage, and poor prognosis of RCC. In summary, our findings indicate that the clinically significant gene signature may serve as a potential biomarker of CAFs in RCC, and the infiltration of CAFs is associated with the pathological grade, stage, and prognosis of RCC.
Collapse
Affiliation(s)
- Bitian Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunhong Zhan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Paran Y, Liron Y, Batsir S, Mabjeesh N, Geiger B, Kam Z. Multi-parametric characterization of drug effects on cells. F1000Res 2021; 9. [PMID: 33363713 PMCID: PMC7737707 DOI: 10.12688/f1000research.26254.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/28/2022] Open
Abstract
We present here a novel multi-parametric approach for the characterization of multiple cellular features, using images acquired by high-throughput and high-definition light microscopy. We specifically used this approach for deep and unbiased analysis of the effects of a drug library on five cultured cell lines. The presented method enables the acquisition and analysis of millions of images, of treated and control cells, followed by an automated identification of drugs inducing strong responses, evaluating the median effect concentrations and those cellular properties that are most highly affected by the drug. The tools described here provide standardized quantification of multiple attributes for systems level dissection of complex functions in normal and diseased cells, using multiple perturbations. Such analysis of cells, derived from pathological samples, may help in the diagnosis and follow-up of treatment in patients.
Collapse
Affiliation(s)
- Yael Paran
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel.,IDEA Biomedical Ltd., Rehovot, 76705, Israel
| | - Yuvalal Liron
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Sarit Batsir
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nicola Mabjeesh
- Department of Urology, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel.,Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Zvi Kam
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
26
|
Javed Z, Khan K, Rasheed A, Sadia H, Shahwani MN, Irshad A, Raza S, Salehi B, Sharifi-Rad J, Suleria HAR, Cruz-Martins N, Quispe C. Targeting androgen receptor signaling with MicroRNAs and Curcumin: a promising therapeutic approach for Prostate Cancer Prevention and intervention. Cancer Cell Int 2021; 21:77. [PMID: 33499881 PMCID: PMC7836194 DOI: 10.1186/s12935-021-01777-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/16/2021] [Indexed: 12/29/2022] Open
Abstract
Prostate cancer (PC) is a multifactorial disease characterized by the abrogation of androgen receptor signaling. Advancement in microbiology techniques has highlighted the significant role of microRNAs (miRNAs) in the progression of PC cells from an androgen-dependent to an androgen-independent state. At that stage, prostate tumors also fail to respond to currently practiced hormone therapies. So, studies in recent decades are focused on investigating the anti-tumor effects of natural compounds in PC. Curcumin is widely recognized and now of huge prestige for its anti-proliferative abilities in different types of cancer. However, its limited solubility, compatibility, and instability in the aqueous phase are major hurdles when administering. Nanoformulations have proven to be an excellent drug delivery system for various drugs and can be used as potential delivery platforms for curcumin in PC. In this review, a shed light is given on the miRNAs-mediated regulation of androgen receptor (AR) signaling and miRNA-curcumin interplay in PC, as well as on curcumin-based nanoformulations that can be used as possible therapeutic solutions for PC.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, DHA, Sector-C, Phase VI, Lahore, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000, Islamabad, Pakistan
| | - Amna Rasheed
- School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, PR China
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Muhammad Naeem Shahwani
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Asma Irshad
- Department of Life Sciences, University of Management Sciences, Lahore, Pakistan
| | - Shahid Raza
- Office for Research Innovation and Commercialization, Lahore Garrison University, DHA, Sector-C, Phase VI, Lahore, Pakistan
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010, Parkville, VIC, Australia
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal. .,Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal. .,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135, Porto, Portugal.
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939, Iquique, Chile.
| |
Collapse
|
27
|
Sun X, Li K, Zha R, Liu S, Fan Y, Wu D, Hase M, Aryal UK, Lin CC, Li BY, Yokota H. Preventing tumor progression to the bone by induced tumor-suppressing MSCs. Theranostics 2021; 11:5143-5159. [PMID: 33859739 PMCID: PMC8039940 DOI: 10.7150/thno.58779] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Advanced breast cancer metastasizes to many organs including bone, but few effective treatments are available. Here we report that induced tumor-suppressing (iTS) MSCs protected bone from metastases while un-induced MSCs did not. Methods: iTS MSCs were generated by overexpressing Lrp5, β-catenin, Snail, or Akt. Their tumor-suppressing capability was tested using a mouse model of mammary tumors and bone metastasis, human breast cancer tissues and cancer cell lines. Results: In a mouse model, the induced MSC-derived conditioned medium (MSC CM) reduced mammary tumors and suppressed tumor-induced osteolysis. Tumor-promoting genes such as CXCL2 and LIF, as well as PDL1, a blocker of T-cell-based immune responses were downregulated. Proteomics analysis revealed that heat shock protein 90 (Hsp90ab1), calreticulin (Calr) and peptidylprolyl isomerase B (Ppib), which are highly expressed intracellular proteins in many cancers, were enriched in MSC CM as atypical tumor suppressors. Thus, overexpressing selected genes that were otherwise tumorigenic rendered MSCs the tumor-suppressing capability through the atypical suppressors, as well as p53 and Trail. Notably, the inhibitory effect of Lrp5- and Akt-overexpressing MSC CMs, Hsp90ab1 and Calr presented selective inhibition to tumor cells than non-tumor cells. The development of bone-resorbing osteoclasts was also suppressed by MSC CMs. Conclusion: Collectively, the results showed an anti-tumor effect of iTS MSCs and suggested novel therapeutic approaches to suppress the progression of tumors into the bone.
Collapse
Affiliation(s)
- Xun Sun
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Kexin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Rongrong Zha
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Shengzhi Liu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Yao Fan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Di Wu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Misato Hase
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Graduate School of Engineering, Mie University, Mie 514, Japan
| | - Uma K. Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- ✉ Corresponding authors: Hiroki Yokota, PhD, Department of Biomedical Engineering, Indiana U. Purdue U. Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN 46202 USA. Phone: 317-278-5177, Fax: 317-278-2455, E-mail: ; Bai-Yan Li, MD/PhD, Department of Pharmacology, School of Pharmacy, Harbin Medical University, #157 Baojian Road, Harbin 150081, China. Phone/Fax: +86 451-8667-134, E-mail:
| | - Hiroki Yokota
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- ✉ Corresponding authors: Hiroki Yokota, PhD, Department of Biomedical Engineering, Indiana U. Purdue U. Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN 46202 USA. Phone: 317-278-5177, Fax: 317-278-2455, E-mail: ; Bai-Yan Li, MD/PhD, Department of Pharmacology, School of Pharmacy, Harbin Medical University, #157 Baojian Road, Harbin 150081, China. Phone/Fax: +86 451-8667-134, E-mail:
| |
Collapse
|
28
|
The Crosstalk between Tumor Cells and the Microenvironment in Hepatocellular Carcinoma: The Role of Exosomal microRNAs and their Clinical Implications. Cancers (Basel) 2020; 12:cancers12040823. [PMID: 32235370 PMCID: PMC7226466 DOI: 10.3390/cancers12040823] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
The communication between hepatocellular carcinoma (HCC) cells and their microenvironment is an essential mechanism supporting or preventing tumor development and progression. Recent evidence has identified extracellular vesicles (EVs) as one of the mechanisms mediating paracrine signaling between cells. Exosomes, the most described class of EVs, deliver proteins, mRNAs, noncoding RNAs, DNA, and lipids to recipient cells, also at remote distances. MicroRNAs (miRNAs), as part of the non-coding RNA exosomal cargo, have an important role in regulating cellular pathways in targeted cells, regulating several processes related to tumor progression invasion and metastasis, such as angiogenesis, immune-escape, epithelial-to-mesenchymal transition, invasion, and multi-drug resistance. Accumulating evidence suggests exosomal miRNAs as relevant players in the dynamic crosstalk among cancerous, immune, and stromal cells in establishing the tumorigenic microenvironment. In addition, they sustain the metastasic niche formation at distant sites. In this review, we summarized the recent findings on the role of the exosome-derived miRNAs in the cross-communication between tumor cells and different hepatic resident cells, with a focus on the molecular mechanisms responsible for the cell re-programming. In addition, we describe the clinical implication derived from the exosomal miRNA-driven immunomodulation to the current immunotherapy strategies and the molecular aspects influencing the resistance to therapeutic agents.
Collapse
|