1
|
Mizuno S, Bustos MA, Hayashi Y, Abe K, Furuhashi S, Naeini Y, Xu X, Bilchik AJ, Hoon DSB. Induced collagen type-I secretion by hepatocytes of the melanoma liver metastasis is associated with a reduction in tumour-infiltrating lymphocytes. Clin Transl Med 2024; 14:e70067. [PMID: 39496484 PMCID: PMC11534464 DOI: 10.1002/ctm2.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Overall patients with melanoma liver metastasis (MLiM) have a dismal prognosis and poor responses to the standard of care treatment. Understanding the role of the tumour microenvironment (TME) is critical for discovering better strategies to overcome intrinsic therapy resistance in MLiM. The aim was to understand the crosstalk signalling pathways between hepatocytes and metastatic melanoma cells in the TME of MLiM. METHODS Hepatocytes and melanoma tumour cells of MLiM were assessed using transcriptomic NanoString GeoMx digital spatial profiling (NGDSP) assay. Functional assays were performed using normal hepatocytes and MLiM-derived cell lines. Validation was performed using multiplex immunofluorescence. RESULTS In NGDSP analysis adjacent normal hepatocytes (ANH) had higher CXCR4 and COL1A1/2 levels than distant normal hepatocytes (DNH), while melanoma cells had higher TNF-α levels. In vitro, MLiM cell lines released TNF-α which upregulated CXCR4 and CXCL12 levels in ANH. CXCL12 activated CXCR4, which triggered AKT and NFκB signalling pathways. Consequently, AKT signalling induced the upregulation of collagen type I. MLiM were significantly encircled by a shield of collagen, whereas other liver metastases showed reduced levels of collagen. Of all the liver metastasis analyzed, the presence of collagen in melanoma liver metastasis was associated with a reduction in tumour-infiltrating lymphocytes. CONCLUSIONS MLiM modified ANH to increase collagen production and created a physical barrier. The collagen barrier was associated with a reduction of immune cell infiltration which could potentially deter MLiM immune surveillance and treatment responses. HIGHLIGHTS Spatial analyses of melanoma liver metastasis show that adjacent normal hepatocytes have increased collagen-type I levels. Melanoma liver metastases tumour cells secrete enhanced levels of TNF-α to stimulate CXCR4/CXCL12 upregulation in adjacent normal hepatocytes. Activation of CXCR4 promotes AKT and NF-κB signalling pathways to promote collagen-type I secretion in adjacent normal hepatocytes. Elevated collagen levels were associated with reduced tumour-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Shodai Mizuno
- Department of Translational Molecular MedicineSaint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC)Santa MonicaCaliforniaUSA
| | - Matias A. Bustos
- Department of Translational Molecular MedicineSaint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC)Santa MonicaCaliforniaUSA
| | - Yoshinori Hayashi
- Department of Translational Molecular MedicineSaint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC)Santa MonicaCaliforniaUSA
| | - Kodai Abe
- Department of Translational Molecular MedicineSaint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC)Santa MonicaCaliforniaUSA
| | - Satoru Furuhashi
- Department of Translational Molecular MedicineSaint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC)Santa MonicaCaliforniaUSA
| | - Yalda Naeini
- Department of Surgical Pathologyat Providence SJHCSanta MonicaCaliforniaUSA
| | - Xiaowei Xu
- Abramson Cancer Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Anton J Bilchik
- Department of Gastrointestinal and Hepatobiliary Surgery, Providence SJHCSanta MonicaCaliforniaUSA
| | - Dave S. B. Hoon
- Department of Translational Molecular MedicineSaint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC)Santa MonicaCaliforniaUSA
- Department of Genome Sequencing CenterSJCI, Providence SJHCSanta MonicaCaliforniaUSA
| |
Collapse
|
2
|
Hamid O, Lewis KD, Weise A, McKean M, Papadopoulos KP, Crown J, Kim TM, Lee DH, Thomas SS, Mehnert J, Kaczmar J, Lakhani NJ, Kim KB, Middleton MR, Rabinowits G, Spira AI, Yushak M, Mehmi I, Fang F, Chen S, Mani J, Jankovic V, Wang F, Fiaschi N, Brennan L, Paccaly A, Masinde S, Salvati M, Fury MG, Kroog G, Lowy I, Gullo G. Phase I Study of Fianlimab, a Human Lymphocyte Activation Gene-3 (LAG-3) Monoclonal Antibody, in Combination With Cemiplimab in Advanced Melanoma. J Clin Oncol 2024; 42:2928-2938. [PMID: 38900987 PMCID: PMC11328921 DOI: 10.1200/jco.23.02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/26/2024] [Accepted: 03/20/2024] [Indexed: 06/22/2024] Open
Abstract
PURPOSE Coblockade of lymphocyte activation gene-3 (LAG-3) and PD-1 receptors could provide significant clinical benefit for patients with advanced melanoma. Fianlimab and cemiplimab are high-affinity, human, hinge-stabilized IgG4 monoclonal antibodies, targeting LAG-3 and PD-1, respectively. We report results from a first-in-human phase-I study of fianlimab and cemiplimab safety and efficacy in various malignancies including advanced melanoma. METHODS Patients with advanced melanoma were eligible for enrollment into four cohorts: three for patients without and one for patients with previous anti-PD-1 therapy in the advanced disease setting. Patients were treated with fianlimab 1,600 mg and cemiplimab 350 mg intravenously once every 3 weeks for up to 51 weeks, with an optional additional 51 weeks if clinically indicated. The primary end point was objective response rate (ORR) per RECIST 1.1 criteria. RESULTS ORRs were 63% for patients with anti-PD-1-naïve melanoma (cohort-6; n = 40; median follow-up 20.8 months), 63% for patients with systemic treatment-naïve melanoma (cohort-15; n = 40; 11.5 months), and 56% for patients with previous neo/adjuvant treatment melanoma (cohort-16; n = 18, 9.7 months). At a median follow-up of 12.6 months for the combined cohorts (6 + 15 + 16), the ORR was 61.2% and the median progression-free survival (mPFS) 13.3 months (95% CI, 7.5 to not estimated [NE]). In patients (n = 13) with previous anti-PD-1 adjuvant therapy, ORR was 61.5% and mPFS 12 months (95% CI, 1.4 to NE). ORR in patients with previous anti-PD-1 therapy for advanced disease (n = 15) was 13.3% and mPFS 1.5 months (95% CI, 1.3 to 7.7). Treatment-emergent and treatment-related adverse events ≥grade 3 (G3) were observed in 44% and 22% of patients, respectively. Except for increased incidence of adrenal insufficiency (12%-G1-4, 4%-G3-4), no new safety signals were recorded. CONCLUSION The current results show a promising benefit-risk profile of fianlimab/cemiplimab combination for patients with advanced melanoma, including those with previous anti-PD-1 therapy in the adjuvant, but not advanced, setting.
Collapse
Affiliation(s)
- Omid Hamid
- The Angeles Clinical and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, CA
| | - Karl D Lewis
- University of Colorado Denver Cancer Center, Aurora, CO
| | | | - Meredith McKean
- Sarah Cannon Research Institute/Tennessee Oncology PLLC, Nashville, TN
| | | | - John Crown
- St Vincent's University Hospital, Dublin, Ireland
| | - Tae Min Kim
- Seoul National University Hospital, Seoul, South Korea
| | | | - Sajeve S Thomas
- University of Florida Health Cancer Center at Orlando Health, Orlando, FL
| | - Janice Mehnert
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | | | | | - Kevin B Kim
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, CA
| | - Mark R Middleton
- Department of Oncology, NIHR Biomedical Research Centre, Oxford, United Kingdom
| | | | | | - Melinda Yushak
- Department of Hematology and Medical Oncology at Emory University School of Medicine, Atlanta, GA
| | - Inderjit Mehmi
- The Angeles Clinical and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, CA
| | - Fang Fang
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | | | - Fang Wang
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | | | | | | | | | - Glenn Kroog
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | - Israel Lowy
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | |
Collapse
|
3
|
Obrador E, Salvador-Palmer R, López-Blanch R, Oriol-Caballo M, Moreno-Murciano P, Estrela JM. Survival Mechanisms of Metastatic Melanoma Cells: The Link between Glucocorticoids and the Nrf2-Dependent Antioxidant Defense System. Cells 2023; 12:cells12030418. [PMID: 36766760 PMCID: PMC9913432 DOI: 10.3390/cells12030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Circulating glucocorticoids increase during stress. Chronic stress, characterized by a sustained increase in serum levels of cortisol, has been associated in different cases with an increased risk of cancer and a worse prognosis. Glucocorticoids can promote gluconeogenesis, mobilization of amino acids, fat breakdown, and impair the body's immune response. Therefore, conditions that may favor cancer growth and the acquisition of radio- and chemo-resistance. We found that glucocorticoid receptor knockdown diminishes the antioxidant protection of murine B16-F10 (highly metastatic) melanoma cells, thus leading to a drastic decrease in their survival during interaction with the vascular endothelium. The BRAFV600E mutation is the most commonly observed in melanoma patients. Recent studies revealed that VMF/PLX40-32 (vemurafenib, a selective inhibitor of mutant BRAFV600E) increases mitochondrial respiration and reactive oxygen species (ROS) production in BRAFV600E human melanoma cell lines. Early-stage cancer cells lacking Nrf2 generate high ROS levels and exhibit a senescence-like growth arrest. Thus, it is likely that a glucocorticoid receptor antagonist (RU486) could increase the efficacy of BRAF-related therapy in BRAFV600E-mutated melanoma. In fact, during early progression of skin melanoma metastases, RU486 and VMF induced metastases regression. However, treatment at an advanced stage of growth found resistance to RU486 and VMF. This resistance was mechanistically linked to overexpression of proteins of the Bcl-2 family (Bcl-xL and Mcl-1 in different human models). Moreover, melanoma resistance was decreased if AKT and NF-κB signaling pathways were blocked. These findings highlight mechanisms by which metastatic melanoma cells adapt to survive and could help in the development of most effective therapeutic strategies.
Collapse
Affiliation(s)
- Elena Obrador
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
- Correspondence: (E.O.); (J.M.E.); Tel.: +34-963864646 (J.M.E.)
| | - Rosario Salvador-Palmer
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Rafael López-Blanch
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
| | - María Oriol-Caballo
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
| | | | - José M. Estrela
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
- Correspondence: (E.O.); (J.M.E.); Tel.: +34-963864646 (J.M.E.)
| |
Collapse
|
4
|
Zhu L, Gao H, Huang S, Cao T, Zhai X, Hu J, Wang T, Dong J, Liu Z, Chen J, Liu J, Zhang Z, Zhou Q. Combination of STING agonist and CXCR3 antagonist disrupts immune tolerance to overcome anti-PD-L1 resistance in lung adenocarcinoma under oxidative stress. Gene 2023; 851:146962. [DOI: 10.1016/j.gene.2022.146962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 11/27/2022]
|
5
|
Identification of ATG7 as a Regulator of Proferroptosis and Oxidative Stress in Osteosarcoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8441676. [PMID: 36254233 PMCID: PMC9569205 DOI: 10.1155/2022/8441676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
Background Ferroptosis has gained significant attention from oncologists as a vital outcome of oxidative stress. The aim of this study was to develop a prognostic signature that was based on the ferroptosis-related genes (FRGs) for osteosarcoma patients and explore their specific role in osteosarcoma. Methods The training cohort dataset was extracted from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Different techniques like the univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, multivariate Cox regression analyses, and the Kaplan-Meier (KM) survival analyses were utilized to develop a prognostic signature. Then, the intrinsic relationship between the developed gene signature and the infiltration levels of the immune cells was further investigated. An external validation dataset from the Gene Expression Omnibus (GEO) database was employed to assess the predictive ability of the developed gene signature. Subsequently, the specific function of potential FRG in affecting the oxidative stress reaction and ferroptosis of osteosarcoma cells was identified. Results A prognostic signature based on 5 FRGs (CBS, MUC1, ATG7, SOCS1, and PEBP1) was developed, and the patients were classified into the low- and high-risk groups (categories). High-risk patients displayed poor overall survival outcomes. The risk level was seen to be an independent risk factor for determining the prognosis of osteosarcoma patients (p < 0.001, hazard ratio: 7.457, 95% CI: 3.302-16.837). Additionally, the risk level was associated with immune function, which might affect the survival status of osteosarcoma patients. Moreover, the findings of the study indicated that the expression of ATG7 was related to the regulation of oxidative stress in osteosarcoma. Silencing the ATG7 gene promoted the proliferation and migration in osteosarcoma cells, suppressing the oxidative stress and ferroptosis process. Conclusions A novel FRG signature was developed in this study to predict the prognosis of osteosarcoma patients. The results indicated that ATG7 might regulate the process of oxidative stress and ferroptosis in osteosarcoma cells and could be used as a potential target to develop therapeutic strategies for treating osteosarcoma.
Collapse
|
6
|
Gu Y, Du Y, Jiang L, Tang X, Li A, Zhao Y, Lang Y, Liu X, Liu J. αvβ3 integrin-specific exosomes engineered with cyclopeptide for targeted delivery of triptolide against malignant melanoma. J Nanobiotechnology 2022; 20:384. [PMID: 35999612 PMCID: PMC9400227 DOI: 10.1186/s12951-022-01597-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/16/2022] [Indexed: 12/18/2022] Open
Abstract
Background Melanoma is the most malignant skin tumor and is difficult to cure with the alternative treatments of chemotherapy, biotherapy, and immunotherapy. Our previous study showed that triptolide (TP) exhibited powerful tumoricidal activity against melanoma. However, the clinical potential of TP is plagued by its poor aqueous solubility, short half-life, and biotoxicity. Therefore, developing an ideal vehicle to efficiently load TP and achieving targeted delivery to melanoma is a prospective approach for making full use of its antitumor efficacy. Results We applied exosome (Exo) derived from human umbilical cord mesenchymal stromal cells (hUCMSCs) and engineered them exogenously with a cyclic peptide, arginine-glycine-aspartate (cRGD), to encapsulate TP to establish a bionic-targeted drug delivery system (cRGD-Exo/TP), achieving synergism and toxicity reduction. The average size of cRGD-Exo/TP was 157.34 ± 6.21 nm, with a high drug loading of 10.76 ± 1.21%. The in vitro antitumor results showed that the designed Exo delivery platform could be effectively taken up by targeted cells and performed significantly in antiproliferation, anti-invasion, and proapoptotic activities in A375 cells via the caspase cascade and mitochondrial pathways and cell cycle alteration. Furthermore, the biodistribution and pharmacokinetics results demonstrated that cRGD-Exo/TP possessed superior tumor targetability and prolonged the half-life of TP. Notably, cRGD-Exo/TP significantly inhibited tumor growth and extended survival time with negligible systemic toxicity in tumor-bearing mice. Conclusion The results indicated that the functionalized Exo platform provides a promising strategy for targeted therapy of malignant melanoma. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01597-1.
Collapse
Affiliation(s)
- Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Du
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Pharmacy, Children's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Liangdi Jiang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaomeng Tang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Aixue Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yunan Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yitian Lang
- Department of Pharmacy, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoyan Liu
- Department of Pharmacy, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, SAR, Avenida Wai Long, Taipa, 999078, Macau, China.
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Obrador E, Salvador-Palmer R, López-Blanch R, Oriol-Caballo M, Moreno-Murciano P, Estrela JM. N-Acetylcysteine Promotes Metastatic Spread of Melanoma in Mice. Cancers (Basel) 2022; 14:cancers14153614. [PMID: 35892873 PMCID: PMC9331881 DOI: 10.3390/cancers14153614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Malignant melanoma is a cancer derived from melanocytes, the cells that produce pigment (melanin) in the skin. It develops on the skin, but can also appear on the mucous membranes and in other locations. Melanomas are responsible for 80% of deaths related to skin cancers. In recent years, the number of cases has increased alarmingly, likely in relation to sun exposure habits. Once melanoma spreads to distant parts of the body, the 5-year survival rate is about 10%. N-acetylcysteine (NAC) is a drug with antioxidant properties, and thereby could play a role in preventing cancer. NAC is commonly used as a mucolytic in different respiratory diseases, to treat acetaminophen (Tylenol) poisoning, and is also present in different nutritional supplements. Nevertheless, the use of NAC and other antioxidants in cancer has been questioned. Here, we show that high therapeutic doses of NAC may cause metastatic spread of a malignant melanoma. Abstract N-acetylcysteine (NAC) is a direct Cys donor and a promoter of glutathione (GSH) synthesis. GSH regulates melanoma growth and NAC has been suggested to increase melanoma metastases in mice. We found that high therapeutic doses of NAC do not increase the growth of melanoma xenografts, but can cause metastatic spread and distant metastases. Nevertheless, this is not due to an antioxidant effect since NAC, in fact, increases the generation of reactive oxygen species in the growing metastatic melanoma. Trolox, an antioxidant vitamin E derivative, administered in vivo, decreased metastatic growth. Metastatic cells isolated from NAC-treated mice showed an increase in the nuclear translocation of Nrf2, as compared to controls. Nrf2, a master regulator of the antioxidant response, controls the expression of different antioxidant enzymes and of the γ-glutamylcysteine ligase (the rate-limiting step in GSH synthesis). Cystine uptake through the xCT cystine-glutamate antiporter (generating intracellular Cys) and the γ-glutamylcysteine ligase activity are key to control metastatic growth. This is associated to an increase in the utilization of L-Gln by the metastatic cells, another metastases promoter. Our results demonstrate the potential of NAC as an inducer of melanoma metastases spread, and suggest that caution should be taken when administering GSH promoters to cancer patients.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (R.L.-B.); (M.O.-C.)
- Scientia BioTech S.L., 46002 Valencia, Spain;
- Correspondence: (E.O.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (R.L.-B.); (M.O.-C.)
| | - Rafael López-Blanch
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (R.L.-B.); (M.O.-C.)
- Scientia BioTech S.L., 46002 Valencia, Spain;
| | - María Oriol-Caballo
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (R.L.-B.); (M.O.-C.)
| | | | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (R.L.-B.); (M.O.-C.)
- Scientia BioTech S.L., 46002 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
- Correspondence: (E.O.); (J.M.E.)
| |
Collapse
|
8
|
Tang Y, Zhang Z, Chen Y, Qin S, Zhou L, Gao W, Shen Z. Metabolic Adaptation-Mediated Cancer Survival and Progression in Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11071324. [PMID: 35883815 PMCID: PMC9311581 DOI: 10.3390/antiox11071324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Undue elevation of ROS levels commonly occurs during cancer evolution as a result of various antitumor therapeutics and/or endogenous immune response. Overwhelming ROS levels induced cancer cell death through the dysregulation of ROS-sensitive glycolytic enzymes, leading to the catastrophic depression of glycolysis and oxidative phosphorylation (OXPHOS), which are critical for cancer survival and progression. However, cancer cells also adapt to such catastrophic oxidative and metabolic stresses by metabolic reprograming, resulting in cancer residuality, progression, and relapse. This adaptation is highly dependent on NADPH and GSH syntheses for ROS scavenging and the upregulation of lipolysis and glutaminolysis, which fuel tricarboxylic acid cycle-coupled OXPHOS and biosynthesis. The underlying mechanism remains poorly understood, thus presenting a promising field with opportunities to manipulate metabolic adaptations for cancer prevention and therapy. In this review, we provide a summary of the mechanisms of metabolic regulation in the adaptation of cancer cells to oxidative stress and the current understanding of its regulatory role in cancer survival and progression.
Collapse
Affiliation(s)
- Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Wei Gao
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu 610106, China
- Correspondence: (W.G.); (Z.S.)
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, China
- Correspondence: (W.G.); (Z.S.)
| |
Collapse
|
9
|
Trzeciak ER, Zimmer N, Gehringer I, Stein L, Graefen B, Schupp J, Stephan A, Rietz S, Prantner M, Tuettenberg A. Oxidative Stress Differentially Influences the Survival and Metabolism of Cells in the Melanoma Microenvironment. Cells 2022; 11:cells11060930. [PMID: 35326381 PMCID: PMC8946823 DOI: 10.3390/cells11060930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 12/12/2022] Open
Abstract
The cellular composition of the tumor microenvironment, including tumor, immune, stromal, and endothelial cells, significantly influences responses to cancer therapies. In this study, we analyzed the impact of oxidative stress, induced by cold atmospheric plasma (CAP), on tumor cells, T cells, and macrophages, which comprise part of the melanoma microenvironment. To accomplish this, cells were grown in different in vitro cell culture models and were treated with varying amounts of CAP. Subsequent alterations in viability, proliferation, and phenotype were analyzed via flow cytometry and metabolic alterations by Seahorse Cell Mito Stress Tests. It was found that cells generally exhibited reduced viability and proliferation, stemming from CAP induced G2/M cell cycle arrest and subsequent apoptosis, as well as increased mitochondrial stress following CAP treatment. Overall, sensitivity to CAP treatment was found to be cell type dependent with T cells being the most affected. Interestingly, CAP influenced the polarization of M0 macrophages to a "M0/M2-like" phenotype, and M1 macrophages were found to display a heightened sensitivity to CAP induced mitochondrial stress. CAP also inhibited the growth and killed melanoma cells in 2D and 3D in vitro cell culture models in a dose-dependent manner. Improving our understanding of oxidative stress, mechanisms to manipulate it, and its implications for the tumor microenvironment may help in the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Emily R. Trzeciak
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.R.T.); (N.Z.); (I.G.); (L.S.); (B.G.); (J.S.); (S.R.)
| | - Niklas Zimmer
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.R.T.); (N.Z.); (I.G.); (L.S.); (B.G.); (J.S.); (S.R.)
| | - Isabelle Gehringer
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.R.T.); (N.Z.); (I.G.); (L.S.); (B.G.); (J.S.); (S.R.)
| | - Lara Stein
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.R.T.); (N.Z.); (I.G.); (L.S.); (B.G.); (J.S.); (S.R.)
- Institute of Immunology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Barbara Graefen
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.R.T.); (N.Z.); (I.G.); (L.S.); (B.G.); (J.S.); (S.R.)
| | - Jonathan Schupp
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.R.T.); (N.Z.); (I.G.); (L.S.); (B.G.); (J.S.); (S.R.)
- Institute of Neurology (Edinger Institute), Goethe University Hospital Frankfurt, 60528 Frankfurt, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt, Germany
| | - Achim Stephan
- BOWA-Electronic GmbH & Co. KG, 72810 Gomaringen, Germany; (A.S.); (M.P.)
| | - Stephan Rietz
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.R.T.); (N.Z.); (I.G.); (L.S.); (B.G.); (J.S.); (S.R.)
| | - Michael Prantner
- BOWA-Electronic GmbH & Co. KG, 72810 Gomaringen, Germany; (A.S.); (M.P.)
| | - Andrea Tuettenberg
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.R.T.); (N.Z.); (I.G.); (L.S.); (B.G.); (J.S.); (S.R.)
- Research Center for Immunotherapy, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
10
|
Carvalho LAC, Queijo RG, Baccaro ALB, Siena ÁDD, Silva WA, Rodrigues T, Maria-Engler SS. Redox-Related Proteins in Melanoma Progression. Antioxidants (Basel) 2022; 11:438. [PMID: 35326089 PMCID: PMC8944639 DOI: 10.3390/antiox11030438] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Despite the available therapies, the minimum residual disease is still refractory. Reactive oxygen and nitrogen species (ROS and RNS) play a dual role in melanoma, where redox imbalance is involved from initiation to metastasis and resistance. Redox proteins modulate the disease by controlling ROS/RNS levels in immune response, proliferation, invasion, and relapse. Chemotherapeutics such as BRAF and MEK inhibitors promote oxidative stress, but high ROS/RNS amounts with a robust antioxidant system allow cells to be adaptive and cooperate to non-toxic levels. These proteins could act as biomarkers and possible targets. By understanding the complex mechanisms involved in adaptation and searching for new targets to make cells more susceptible to treatment, the disease might be overcome. Therefore, exploring the role of redox-sensitive proteins and the modulation of redox homeostasis may provide clues to new therapies. This study analyzes information obtained from a public cohort of melanoma patients about the expression of redox-generating and detoxifying proteins in melanoma during the disease stages, genetic alterations, and overall patient survival status. According to our analysis, 66% of the isoforms presented differential expression on melanoma progression: NOS2, SOD1, NOX4, PRX3, PXDN and GPX1 are increased during melanoma progression, while CAT, GPX3, TXNIP, and PRX2 are decreased. Besides, the stage of the disease could influence the result as well. The levels of PRX1, PRX5 and PRX6 can be increased or decreased depending on the stage. We showed that all analyzed isoforms presented some genetic alteration on the gene, most of them (78%) for increased mRNA expression. Interestingly, 34% of all melanoma patients showed genetic alterations on TRX1, most for decreased mRNA expression. Additionally, 15% of the isoforms showed a significant reduction in overall patient survival status for an altered group (PRX3, PRX5, TR2, and GR) and the unaltered group (NOX4). Although no such specific antioxidant therapy is approved for melanoma yet, inhibitors or mimetics of these redox-sensitive proteins have achieved very promising results. We foresee that forthcoming investigations on the modulation of these proteins will bring significant advances for cancer therapy.
Collapse
Affiliation(s)
- Larissa A. C. Carvalho
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| | - Rodrigo G. Queijo
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| | - Alexandre L. B. Baccaro
- Centro de Pós-Graduação e Pesquisa Oswaldo Cruz, Faculdade Oswaldo Cruz, Rua Brigadeiro Galvão, 535, Sao Paulo 01151-000, SP, Brazil;
| | - Ádamo D. D. Siena
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, SP, Brazil; (Á.D.D.S.); (W.A.S.J.)
| | - Wilson A. Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, SP, Brazil; (Á.D.D.S.); (W.A.S.J.)
| | - Tiago Rodrigues
- Center for Natural and Human Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo Andre 09210-580, SP, Brazil;
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| |
Collapse
|
11
|
Effect of Kaempferol and Its Glycoside Derivatives on Antioxidant Status of HL-60 Cells Treated with Etoposide. Molecules 2022; 27:molecules27020333. [PMID: 35056649 PMCID: PMC8777684 DOI: 10.3390/molecules27020333] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 11/23/2022] Open
Abstract
Kaempferol is a well-known antioxidant found in many plants and plant-based foods. In plants, kaempferol is present mainly in the form of glycoside derivatives. In this work, we focused on determining the effect of kaempferol and its glycoside derivatives on the expression level of genes related to the reduction of oxidative stress—NFE2L2, NQO1, SOD1, SOD2, and HO-1; the enzymatic activity of superoxide dismutases; and the level of glutathione. We used HL-60 acute promyelocytic leukemia cells, which were incubated with the anticancer drug etoposide and kaempferol or one of its three glycoside derivatives isolated from the aerial parts of Lens culinaris Medik.—kaempferol 3-O-[(6-O-E-caffeoyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P2), kaempferol 3-O-[(6-O-E-p-coumaroyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P5), and kaempferol 3-O-[(6-O-E-feruloyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P7). We showed that none of the tested compounds affected NFE2L2 gene expression. Co-incubation with etoposide (1 µM) and kaempferol (10 and 50 µg/mL) leads to an increase in the expression of the HO-1 (9.49 and 9.33-fold at 10 µg/mL and 50 µg/mL, respectively), SOD1 (1.68-fold at 10 µg/mL), SOD2 (1.72-fold at 10–50 µg/mL), and NQO1 (1.84-fold at 50 µg/mL) genes in comparison to cells treated only with etoposide. The effect of kaempferol derivatives on gene expression differs depending on the derivative. All tested polyphenols increased the SOD activity in cells co-incubated with etoposide. We observed that the co-incubation of HL-60 cells with etoposide and kaempferol or derivative P7 increases the level of total glutathione in these cells. Taken together, our observations suggest that the antioxidant activity of kaempferol is related to the activation of antioxidant genes and proteins. Moreover, we observed that glycoside derivatives can have a different effect on the antioxidant cellular systems than kaempferol.
Collapse
|
12
|
An Intercellular Flow of Glutathione Regulated by Interleukin 6 Links Astrocytes and the Liver in the Pathophysiology of Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2021; 10:antiox10122007. [PMID: 34943110 PMCID: PMC8698416 DOI: 10.3390/antiox10122007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress has been proposed as a major mechanism of damage to motor neurons associated with the progression of amyotrophic lateral sclerosis (ALS). Astrocytes are the most numerous glial cells in the central nervous system and, under physiological conditions, protect neurons from oxidative damage. However, it is uncertain how their reactive phenotype may affect motor neurons during ALS progression. In two different ALS mouse models (SOD1G93A and FUS-R521C), we found that increased levels of proinflammatory interleukin 6 facilitate glutathione (GSH) release from the liver to blood circulation, which can reach the astrocytes and be channeled towards motor neurons as a mechanism of antioxidant protection. Nevertheless, although ALS progression is associated with an increase in GSH efflux from astrocytes, generation of reactive oxygen species also increases, suggesting that as the disease progresses, astrocyte-derived oxidative stress could be key to motor-neuron damage.
Collapse
|
13
|
Ketoprofen Combined with UVA Irradiation Exerts Higher Selectivity in the Mode of Action against Melanotic Melanoma Cells than against Normal Human Melanocytes. Int J Mol Sci 2021; 22:ijms222111966. [PMID: 34769396 PMCID: PMC8584642 DOI: 10.3390/ijms222111966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Malignant melanoma is responsible for the majority of skin cancer-related deaths. The methods of cancer treatment include surgical removal, chemotherapy, immunotherapy, and targeted therapy. However, neither of these methods gives satisfactory results. Therefore, the development of new anticancer therapeutic strategies is very important and may extend the life span of people suffering from melanoma. The aim of this study was to examine the effect of ketoprofen (KTP) and UVA radiation (UVAR) therapy on cell proliferation, apoptosis, and cell cycle distribution in both melanotic melanoma cells (COLO829) and human melanocytes (HEMn-DP) in relation to its supportive effect in the treatment of melanoma. The therapy combining the use of pre-incubation with KTP and UVAR causes a significant increase in the anti-proliferative properties of ketoprofen towards melanoma cells and the co-exposure of melanotic melanoma cells induced apoptosis shown as the mitochondrial membrane breakdown, cell-cycle deregulation, and DNA fragmentation. Moreover, co-treatment led to GSH depletion showing its pro-apoptotic effect dependent on ROS overproduction. The treatment did not show a significant effect on normal cells—melanocytes—which indicates its high selectivity. The results suggest a possible benefit from the use of the ketoprofen and ultraviolet A irradiation as a new concept of melanotic melanoma therapy.
Collapse
|