1
|
Tiwari MK, Goslinski T. Searching for the Holy Grail - Highly Potent Bridged Endoperoxides for Targeted Cancer Therapy. Bioorg Chem 2024; 153:107893. [PMID: 39454496 DOI: 10.1016/j.bioorg.2024.107893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
The International Agency for Research on Cancer (IARC) recently estimated the global cancer burden in 2050. The statistics are startling, with a 77% hike and 35 million new cancer cases per year. The present discoveries have recommended plant-derived bridged endoperoxides or artemisinin-based semisynthetic analogues as safe, well-tolerated and powerful substitutes that could be effectively utilized as a warhead to fight against global enemies like cancer. In addition, artemisinin-based drug repositioning crucially can reduce overriding drug development expenditures and establish accessibility of approved drugs with low risk to patients. Hence, the present review article provides a comprehensive account of the recent chemical and synthetic advancement of diverse cytotoxic artemisinin derivatives such as C(10)-O, C, N, S linked artemisinin analogues, artemisinin-derived metal complexes, artemisinin-derived hybrids/conjugates with other pharmaceutically active substances, and artemisinin-derived dimers, trimers and tetramers perceived during the last three decades (1997-2024). Moreover, the current preclinical and clinical anticancer application prospects of artemisinin derivatives with other defined drugs and their utilization in combination therapy and also nanoformulation approaches for targeted drug delivery have been discussed.
Collapse
Affiliation(s)
- Mohit K Tiwari
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806, Poznań, Poland.
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806, Poznań, Poland
| |
Collapse
|
2
|
Kang DW, Kim JH, Kim KM, Cho SJ, Choi GW, Cho HY. Inter-Species Pharmacokinetic Modeling and Scaling for Drug Repurposing of Pyronaridine and Artesunate. Int J Mol Sci 2024; 25:6998. [PMID: 39000107 PMCID: PMC11241507 DOI: 10.3390/ijms25136998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Even though several new targets (mostly viral infection) for drug repurposing of pyronaridine and artesunate have recently emerged in vitro and in vivo, inter-species pharmacokinetic (PK) data that can extend nonclinical efficacy to humans has not been reported over 30 years of usage. Since extrapolation of animal PK data to those of humans is essential to predict clinical outcomes for drug repurposing, this study aimed to investigate inter-species PK differences in three animal species (hamster, rat, and dog) and to support clinical translation of a fixed-dose combination of pyronaridine and artesunate. PK parameters (e.g., steady-state volume of distribution (Vss), clearance (CL), area under the concentration-time curve (AUC), mean residence time (MRT), etc.) of pyronaridine, artesunate, and dihydroartemisinin (an active metabolite of artesunate) were determined by non-compartmental analysis. In addition, one- or two-compartment PK modeling was performed to support inter-species scaling. The PK models appropriately described the blood concentrations of pyronaridine, artesunate, and dihydroartemisinin in all animal species, and the estimated PK parameters in three species were integrated for inter-species allometric scaling to predict human PKs. The simple allometric equation (Y = a × Wb) well explained the relationship between PK parameters and the actual body weight of animal species. The results from the study could be used as a basis for drug repurposing and support determining the effective dosage regimen for new indications based on in vitro/in vivo efficacy data and predicted human PKs in initial clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (D.W.K.); (J.H.K.); (K.M.K.); (S.-j.C.); (G.-W.C.)
| |
Collapse
|
3
|
Elbadawi M, Efferth T. In Vivo and Clinical Studies of Natural Products Targeting the Hallmarks of Cancer. Handb Exp Pharmacol 2024. [PMID: 38797749 DOI: 10.1007/164_2024_716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite more than 200 approved anticancer agents, cancer remains a leading cause of death worldwide due to disease complexity, tumour heterogeneity, drug toxicity, and the emergence of drug resistance. Accordingly, the development of chemotherapeutic agents with higher efficacy, a better safety profile, and the capability of bypassing drug resistance would be a cornerstone in cancer therapy. Natural products have played a pivotal role in the field of drug discovery, especially for the pharmacotherapy of cancer, infectious, and chronic diseases. Owing to their distinctive structures and multiple mechanistic activities, natural products and their derivatives have been utilized for decades in cancer treatment protocols. In this review, we delve into the potential of natural products as anticancer agents by targeting cancer's hallmarks, including sustained proliferative signalling, evading growth suppression, resisting apoptosis and cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. We highlight the molecular mechanisms of some natural products, in vivo studies, and promising clinical trials. This review emphasizes the significance of natural products in fighting cancer and the need for further studies to uncover their fully therapeutic potential.
Collapse
Affiliation(s)
- Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
4
|
Zhong H, Jiang Q, Wu C, Yu H, Li B, Zhou X, Fu R, Wang W, Sheng W. Design, Synthesis, and Antitumor Activity Evaluation of Artemisinin Bivalent Ligands. Molecules 2024; 29:409. [PMID: 38257322 PMCID: PMC10818997 DOI: 10.3390/molecules29020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Five artemisinin bivalent ligands molecules 4a-4e were designed, synthesized, and confirmed by 1H NMR, 13C NMR, and low-resolution mass spectrometry, and the bioactivities of the target compounds were investigated against four human tumor cell lines in vitro, including BGC-823, HepG-2, MCF-7, and HCT-116. The results showed 4a, 4d, and 4e exhibited significantly tumor cell inhibitory activity compared with the artemisinin and dihydroartemisinin; compound 4e has good biological activity inhibiting BGC-823 with an IC50 value of 8.30 μmol/L. Then, the good correlations with biological results were validated by molecular docking through the established bivalent ligands multi-target model, which showed that 4e could bind well with the antitumor protein MMP-9.
Collapse
Affiliation(s)
- Hui Zhong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (H.Z.); (Q.J.); (C.W.); (H.Y.); (B.L.); (X.Z.); (R.F.)
| | - Qi Jiang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (H.Z.); (Q.J.); (C.W.); (H.Y.); (B.L.); (X.Z.); (R.F.)
| | - Cong Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (H.Z.); (Q.J.); (C.W.); (H.Y.); (B.L.); (X.Z.); (R.F.)
| | - Huanghe Yu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (H.Z.); (Q.J.); (C.W.); (H.Y.); (B.L.); (X.Z.); (R.F.)
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bin Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (H.Z.); (Q.J.); (C.W.); (H.Y.); (B.L.); (X.Z.); (R.F.)
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xudong Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (H.Z.); (Q.J.); (C.W.); (H.Y.); (B.L.); (X.Z.); (R.F.)
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ronggeng Fu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (H.Z.); (Q.J.); (C.W.); (H.Y.); (B.L.); (X.Z.); (R.F.)
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (H.Z.); (Q.J.); (C.W.); (H.Y.); (B.L.); (X.Z.); (R.F.)
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenbing Sheng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (H.Z.); (Q.J.); (C.W.); (H.Y.); (B.L.); (X.Z.); (R.F.)
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
5
|
Fan YX, Chen LR, Gan RX, Yin SJ, Wang P, Meng R, Huang YH, Jiang FF, He GH. A meta-analysis of associations of IL-10 gene polymorphisms with acute leukemia susceptibility. Cytokine 2023; 170:156312. [PMID: 37542945 DOI: 10.1016/j.cyto.2023.156312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Recently, increasing evidence has demonstrated that IL-10 single nucleotide polymorphisms (SNPs) are associated with the risk of acute leukemia (AL), but the findings of different articles remain controversial. Thus, we performed a meta-analysis to further investigate the exact roles of IL-10 SNPs in AL susceptibility. METHODS Six common Chinese and English databases were utilized to retrieve eligible studies. The strength of the association was assessed by calculating odds ratios and 95 % confidence intervals. All analyses were carried out using Review Manager (version 5.3) and STATA (version 15.1). The registered number of this research is CRD42022373362. RESULTS A total of 6391 participants were enrolled in this research. The results showed that the AG genotype of rs1800896 increased AL risk in the heterozygous codominant model (AG vs. AA, OR = 1.41, 95 % CI = 1.04-1.92, P = 0.03) and overdominant model (AG vs. AA + GG, OR = 1.32, 95 % CI = 1.04-1.70, P = 0.03). In the subgroup analysis, associations between the G allele, GG genotype, AG genotype, AG + GG genotype of rs1800896 and increased AL risk were also observed in the mixed population based on allelic, homozygote codominant, heterozygous codominant, dominant, and overdominant models. Furthermore, an association between the AC genotype of rs1800872 and increased AL risk was observed in the Caucasian population in the overdominant model. However, the rs1800871, rs3024489 and rs3024493 polymorphisms did not affect AL risk. CONCLUSION IL-10 rs1800896 and rs1800872 affected the susceptibility of AL and therefore may be biomarkers for early screening and risk prediction of AL.
Collapse
Affiliation(s)
- Yu-Xin Fan
- Research Center of Clinical Pharmacology, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Li-Rong Chen
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
| | - Run-Xin Gan
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
| | - Sun-Jun Yin
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
| | - Ping Wang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
| | - Rui Meng
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
| | - Yan-Hua Huang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
| | - Fang-Fang Jiang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
| | - Gong-Hao He
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China.
| |
Collapse
|
6
|
Xu W, Zou X, Zha Y, Zhang J, Bian H, Shen Z. Novel Bis-Artemisinin-Phloroglucinol hybrid molecules with dual anticancer and immunomodulatory Activities: Synthesis and evaluation. Bioorg Chem 2023; 139:106705. [PMID: 37406517 DOI: 10.1016/j.bioorg.2023.106705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Bis-(10-deoxydihydroartemisinin)-phloroglucinol (9), has been synthesized in a one-step reaction and has demonstrated strong inhibition to cancer cell proliferation and immunosuppressive activity. The structure modification of the compound reduced its cytotoxicity, and among the analogs, bis-(10-deoxydihydroartemisinin)-phloroglucinol phenyl decanoate (16) showed significant reduction of ear swelling in a mouse model for DNFB-induced delayed-type hypersensitivity without observable toxicity in a dose-dependent manner.
Collapse
Affiliation(s)
- Wei Xu
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaosu Zou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai 201203, China
| | - Yufeng Zha
- Yunnan Baiyao Group Co. Ltd., 3686 Yunnan Baiyao Street, Kunming 650200, China
| | - Jinghua Zhang
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongzhu Bian
- Yunnan Baiyao Group Co. Ltd., 3686 Yunnan Baiyao Street, Kunming 650200, China
| | - Zhengwu Shen
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai 201203, China.
| |
Collapse
|
7
|
Azmi WA, Rizki AFM, Djuardi Y, Artika IM, Siregar JE. Molecular insights into artemisinin resistance in Plasmodium falciparum: An updated review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105460. [PMID: 37269964 DOI: 10.1016/j.meegid.2023.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Malaria still poses a major burden on human health around the world, especially in endemic areas. Plasmodium resistance to several antimalarial drugs has been one of the major hindrances in control of malaria. Thus, the World Health Organization recommended artemisinin-based combination therapy (ACT) as a front-line treatment for malaria. The emergence of parasites resistant to artemisinin, along with resistant to ACT partner drugs, has led to ACT treatment failure. The artemisinin resistance is mostly related to the mutations in the propeller domain of the kelch13 (k13) gene that encodes protein Kelch13 (K13). The K13 protein has an important role in parasite reaction to oxidative stress. The most widely spread mutation in K13, with the highest degree of resistance, is a C580Y mutation. Other mutations, which are already identified as markers of artemisinin resistance, are R539T, I543T, and Y493H. The objective of this review is to provide current molecular insights into artemisinin resistance in Plasmodium falciparum. The trending use of artemisinin beyond its antimalarial effect is described. Immediate challenges and future research directions are discussed. Better understanding of the molecular mechanisms underlying artemisinin resistance will accelerate implementation of scientific findings to solve problems with malarial infection.
Collapse
Affiliation(s)
- Wihda Aisarul Azmi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Master's Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - Andita Fitri Mutiara Rizki
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Master's Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - Yenny Djuardi
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - I Made Artika
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|
8
|
Xu Z, Chen L, Xu D. Pentanoate‐Tethered Artemisinin‐Isatin Hybrids with Antileukemic Potential. ChemistrySelect 2023. [DOI: 10.1002/slct.202300002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Tao Y, Li W, Yang J, Xue T, Wang Y, Dong X, Xu H, Ren J, Lu J. Exploring underlying mechanism of artesunate in treatment of acute myeloid leukemia using network pharmacology and molecular docking. Clin Transl Oncol 2023:10.1007/s12094-023-03125-5. [PMID: 36952106 DOI: 10.1007/s12094-023-03125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/11/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a highly heterogeneous hematological cancer. The current diagnosis and therapy model of AML has gradually shifted to personalization and accuracy. Artesunate, a member of the artemisinin family, has anti-tumor impacts on AML. This research uses network pharmacology and molecular docking to anticipate artesunate potential mechanisms of action in the therapy of AML. METHODS Screening the action targets of artesunate through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), PubChem, and Swiss Target Prediction databases; The databases of Online Mendelian Inheritance in Man (OMIM), Disgenet, GeneCards, and Drugbank were utilized to identify target genes of AML, and an effective target of artesunate for AML treatment was obtained through cross-analysis. Protein-protein interaction (PPI) networks are built on the Cytoscape platform. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted on the relevant targets using R software. Finally, using molecular docking technology and Pymol, we performed verification of the effects of active components and essential targets. RESULTS Artesunate 30 effective targets for treating AML include CASP3, EGFR, MAPK1, and STAT3, four targeted genes that may have a crucial function in disease management. The virus infection-related pathway (HeptatisB (HBV), Human papillomavirus (HPV), Epstein-Barr virus (EBV) infection and etc.), FoxO, viral carcinogenesis, and proteoglycans in cancer signaling pathways have all been hypothesized to be involved in the action mechanism of GO, which is enriched in 2044 biological processes, 125 molecular functions, 209 cellular components, and 106 KEGG pathways. Molecular docking findings revealed that artesunate was critically important in the therapy of AML due to its high affinity for the four primary disease targets. Molecular docking with a low binding energy yields helpful information for developing medicines against AML. CONCLUSIONS Consequently, artesunate may play a role in multi-targeted, multi-signaling pathways in treating AML, suggesting that artesunate may have therapeutic potential for AML.
Collapse
Affiliation(s)
- Yuchen Tao
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenhang Li
- Meishan Traditional Chinese Medicine Hospital, The Affiliated Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, China
| | - Jianying Yang
- Meishan Traditional Chinese Medicine Hospital, The Affiliated Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, China
| | - Tingting Xue
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanlu Wang
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojie Dong
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Xu
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Ren
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahui Lu
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
10
|
Yang Y, Jin Y, Yin L, Liu P, Zhu L, Gao H. Sertaconazole nitrate targets IDO1 and regulates the MAPK signaling pathway to induce autophagy and apoptosis in CRC cells. Eur J Pharmacol 2023; 942:175515. [PMID: 36669614 DOI: 10.1016/j.ejphar.2023.175515] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/28/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Colorectal cancer (CRC) has become the third most frequently occurring malignant tumor worldwide. It is vital to identify novel, effective targeted treatments while considering side effects and drug resistance in the clinic. Recently, the tryptophan-metabolizing enzyme indole-2, 3-dioxygenase 1 (IDO1) has been widely reported to be overexpressed in CRC, indicating that blocking IDO1 with small-molecule inhibitors may be a promising approach to CRC treatment. In this study, the antifungal drug sertaconazole nitrate (STZ) was repurposed and showed antitumor activity, and therefore, its anticancer effect was further investigated in CRC cells. The SwissTargetPrediction analysis indicated that STZ binding to IDO1 was significantly and highly probable, and STZ was found to downregulate IDO1 in CRC cells in a dose-dependent manner. STZ exhibited considerable antiproliferative activity and induced apoptosis and autophagy in HCT116 and RKO cells. Moreover, based on an RNA-seq analysis, STZ was shown to regulate signal transducer and activator of transcription 3 (STAT3) and the mitogen-activated protein kinase (MAPK) signaling pathways. We discovered that STZ suppressed tumor growth in an HCT116 nude mouse xenograft tumor model without causing evident cytotoxicity. In conclusion, our results reveal that STZ induces antitumor effects in CRC by inhibiting IDO1-modulated autophagy and apoptosis, providing a clue for repurposing STZ as a novel and potentially effective candidate medication for the future treatment of CRC.
Collapse
Affiliation(s)
- Yiren Yang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yue Jin
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Linzhou Yin
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Pengyu Liu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lingjuan Zhu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
11
|
Cheikh IA, El-Baba C, Youssef A, Saliba NA, Ghantous A, Darwiche N. Lessons learned from the discovery and development of the sesquiterpene lactones in cancer therapy and prevention. Expert Opin Drug Discov 2022; 17:1377-1405. [PMID: 36373806 DOI: 10.1080/17460441.2023.2147920] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Sesquiterpene lactones (SLs) are one of the most diverse bioactive secondary metabolites found in plants and exhibit a broad range of therapeutic properties . SLs have been showing promising potential in cancer clinical trials, and the molecular mechanisms underlying their anticancer potential are being uncovered. Recent evidence also points to a potential utility of SLs in cancer prevention. AREAS COVERED This work evaluates SLs with promising anticancer potential based on cell, animal, and clinical models: Artemisinin, micheliolide, thapsigargin dehydrocostuslactone, arglabin, parthenolide, costunolide, deoxyelephantopin, alantolactone, isoalantolactone, atractylenolide 1, and xanthatin as well as their synthetic derivatives. We highlight actionable molecular targets and biological mechanisms underlying the anticancer therapeutic properties of SLs. This is complemented by a unique assessment of SL mechanisms of action that can be exploited in cancer prevention. We also provide insights into structure-activity and pharmacokinetic properties of SLs and their potential use in combination therapies. EXPERT OPINION We extract seven major lessons learned and present evidence-based solutions that can circumvent some scientific limitations or logistic impediments in SL anticancer research. SLs continue to be at the forefront of cancer drug discovery and are worth a joint interdisciplinary effort in order to leverage their potential in cancer therapy and prevention.
Collapse
Affiliation(s)
- Israa A Cheikh
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Chirine El-Baba
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Ali Youssef
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Najat A Saliba
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
12
|
Network Pharmacology of Adaptogens in the Assessment of Their Pleiotropic Therapeutic Activity. Pharmaceuticals (Basel) 2022; 15:ph15091051. [PMID: 36145272 PMCID: PMC9504187 DOI: 10.3390/ph15091051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 02/07/2023] Open
Abstract
The reductionist concept, based on the ligand–receptor interaction, is not a suitable model for adaptogens, and herbal preparations affect multiple physiological functions, revealing polyvalent pharmacological activities, and are traditionally used in many conditions. This review, for the first time, provides a rationale for the pleiotropic therapeutic efficacy of adaptogens based on evidence from recent gene expression studies in target cells and where the network pharmacology and systems biology approaches were applied. The specific molecular targets and adaptive stress response signaling mechanisms involved in nonspecific modes of action of adaptogens are identified.
Collapse
|
13
|
Kello M, Kuruc T, Petrova K, Goga M, Michalova Z, Coma M, Rucova D, Mojzis J. Pro-Apoptotic Potential of Pseudevernia furfuracea (L.) Zopf Extract and Isolated Physodic Acid in Acute Lymphoblastic Leukemia Model In Vitro. Pharmaceutics 2021; 13:pharmaceutics13122173. [PMID: 34959454 PMCID: PMC8703293 DOI: 10.3390/pharmaceutics13122173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most frequently diagnosed type of leukemia among children. Although chemotherapy is a common treatment for cancer, it has a wide range of serious side effects, including myelo- and immunosuppression, hepatotoxicity and neurotoxicity. Combination therapies using natural substances are widely recommended to attenuate the adverse effects of chemotherapy. The aim of the present study was to investigate the anti-leukemic potential of extract from the lichen Pseudevernia furfuracea (L.) Zopf (PSE) and isolated physodic acid (Phy) in an in vitro ALL model. A screening assay, flow cytometry and Western blotting were used to analyze apoptosis occurrence, oxidative stress, DNA damage and stress/survival/apoptotic pathway modulation induced by the tested substances in Jurkat cells. We demonstrate for the first time that PSE and Phy treatment-induced intrinsic caspase-dependent cell death was associated with increased oxidative stress, DNA damage and cell cycle arrest with the activation of cell cycle checkpoint proteins p53, p21 and p27 and stress/survival kinases p38 MAPK, JNK and PI3K/Akt. Moreover, using peripheral T lymphocytes, we confirmed that PSE and Phy treatment caused minimal cytotoxicity in normal cells, and therefore, these naturally occurring lichen secondary metabolites could be promising substances for ALL therapy.
Collapse
Affiliation(s)
- Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (T.K.); (K.P.); (Z.M.); (M.C.)
- Correspondence: (M.K.); (J.M.)
| | - Tomas Kuruc
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (T.K.); (K.P.); (Z.M.); (M.C.)
| | - Klaudia Petrova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (T.K.); (K.P.); (Z.M.); (M.C.)
| | - Michal Goga
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, 041 67 Košice, Slovakia; (M.G.); (D.R.)
| | - Zuzana Michalova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (T.K.); (K.P.); (Z.M.); (M.C.)
| | - Matus Coma
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (T.K.); (K.P.); (Z.M.); (M.C.)
| | - Dajana Rucova
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, 041 67 Košice, Slovakia; (M.G.); (D.R.)
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (T.K.); (K.P.); (Z.M.); (M.C.)
- Correspondence: (M.K.); (J.M.)
| |
Collapse
|
14
|
Nudelman A. Dimeric Drugs. Curr Med Chem 2021; 29:2751-2845. [PMID: 34375175 DOI: 10.2174/0929867328666210810124159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
This review intends to summarize the structures of an extensive number of symmetrical-dimeric drugs, having two monomers linked via a bridging entity while emphasizing the large versatility of biologically active substances reported to possess dimeric structures. The largest number of classes of these compounds consist of anticancer agents, antibiotics/antimicrobials, and anti-AIDS drugs. Other symmetrical-dimeric drugs include antidiabetics, antidepressants, analgesics, anti-inflammatories, drugs for the treatment of Alzheimer's disease, anticholesterolemics, estrogenics, antioxidants, enzyme inhibitors, anti-Parkisonians, laxatives, antiallergy compounds, cannabinoids, etc. Most of the articles reviewed do not compare the activity/potency of the dimers to that of their corresponding monomers. Only in limited cases, various suggestions have been made to justify unexpected higher activity of the dimers vs. the corresponding monomers. These suggestions include statistical effects, the presence of dimeric receptors, binding of a dimer to two receptors simultaneously, and others. It is virtually impossible to predict which dimers will be preferable to their respective monomers, or which linking bridges will lead to the most active compounds. It is expected that the extensive number of articles summarized, and the large variety of substances mentioned, which display various biological activities, should be of interest to many academic and industrial medicinal chemists.
Collapse
Affiliation(s)
- Abraham Nudelman
- Chemistry Department, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
15
|
Efferth T, Oesch F. The immunosuppressive activity of artemisinin-type drugs towards inflammatory and autoimmune diseases. Med Res Rev 2021; 41:3023-3061. [PMID: 34288018 DOI: 10.1002/med.21842] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022]
Abstract
The sesquiterpene lactone artemisinin from Artemisia annua L. is well established for malaria therapy, but its bioactivity spectrum is much broader. In this review, we give a comprehensive and timely overview of the literature regarding the immunosuppressive activity of artemisinin-type compounds toward inflammatory and autoimmune diseases. Numerous receptor-coupled signaling pathways are inhibited by artemisinins, including the receptors for interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), β3-integrin, or RANKL, toll-like receptors and growth factor receptors. Among the receptor-coupled signal transducers are extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), AKT serine/threonine kinase (AKT), mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK) kinase (MEK), phospholipase C γ1 (PLCγ), and others. All these receptors and signal transduction molecules are known to contribute to the inhibition of the transcription factor nuclear factor κ B (NF-κB). Artemisinins may inhibit NF-κB by silencing these upstream pathways and/or by direct binding to NF-κB. Numerous NF-κB-regulated downstream genes are downregulated by artemisinin and its derivatives, for example, cytokines, chemokines, and immune receptors, which regulate immune cell differentiation, apoptosis genes, proliferation-regulating genes, signal transducers, and genes involved in antioxidant stress response. In addition to the prominent role of NF-κB, other transcription factors are also inhibited by artemisinins (mammalian target of rapamycin [mTOR], activating protein 1 [AP1]/FBJ murine osteosarcoma viral oncogene homologue [FOS]/JUN oncogenic transcription factor [JUN]), hypoxia-induced factor 1α (HIF-1α), nuclear factor of activated T cells c1 (NF-ATC1), Signal transducers and activators of transcription (STAT), NF E2-related factor-2 (NRF-2), retinoic-acid-receptor-related orphan nuclear receptor γ (ROR-γt), and forkhead box P-3 (FOXP-3). Many in vivo experiments in disease-relevant animal models demonstrate therapeutic efficacy of artemisinin-type drugs against rheumatic diseases (rheumatoid arthritis, osteoarthritis, lupus erythematosus, arthrosis, and gout), lung diseases (asthma, acute lung injury, and pulmonary fibrosis), neurological diseases (autoimmune encephalitis, Alzheimer's disease, and myasthenia gravis), skin diseases (dermatitis, rosacea, and psoriasis), inflammatory bowel disease, and other inflammatory and autoimmune diseases. Randomized clinical trials should be conducted in the future to translate the plethora of preclinical results into clinical practice.
Collapse
Affiliation(s)
- Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Franz Oesch
- Oesch-Tox Toxicological Consulting and Expert Opinions, Ingelheim, Germany and Institute of Toxicology, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
16
|
Mavridou D, Psatha K, Aivaliotis M. Proteomics and Drug Repurposing in CLL towards Precision Medicine. Cancers (Basel) 2021; 13:cancers13143391. [PMID: 34298607 PMCID: PMC8303629 DOI: 10.3390/cancers13143391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Despite continued efforts, the current status of knowledge in CLL molecular pathobiology, diagnosis, prognosis and treatment remains elusive and imprecise. Proteomics approaches combined with advanced bioinformatics and drug repurposing promise to shed light on the complex proteome heterogeneity of CLL patients and mitigate, improve, or even eliminate the knowledge stagnation. In relation to this concept, this review presents a brief overview of all the available proteomics and drug repurposing studies in CLL and suggests the way such studies can be exploited to find effective therapeutic options combined with drug repurposing strategies to adopt and accost a more “precision medicine” spectrum. Abstract CLL is a hematological malignancy considered as the most frequent lymphoproliferative disease in the western world. It is characterized by high molecular heterogeneity and despite the available therapeutic options, there are many patient subgroups showing the insufficient effectiveness of disease treatment. The challenge is to investigate the individual molecular characteristics and heterogeneity of these patients. Proteomics analysis is a powerful approach that monitors the constant state of flux operators of genetic information and can unravel the proteome heterogeneity and rewiring into protein pathways in CLL patients. This review essences all the available proteomics studies in CLL and suggests the way these studies can be exploited to find effective therapeutic options combined with drug repurposing approaches. Drug repurposing utilizes all the existing knowledge of the safety and efficacy of FDA-approved or investigational drugs and anticipates drug alignment to crucial CLL therapeutic targets, leading to a better disease outcome. The drug repurposing studies in CLL are also discussed in this review. The next goal involves the integration of proteomics-based drug repurposing in precision medicine, as well as the application of this procedure into clinical practice to predict the most appropriate drugs combination that could ensure therapy and the long-term survival of each CLL patient.
Collapse
Affiliation(s)
- Dimitra Mavridou
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantina Psatha
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, GR-70013 Heraklion, Greece
- Correspondence: (K.P.); (M.A.)
| | - Michalis Aivaliotis
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, GR-70013 Heraklion, Greece
- Correspondence: (K.P.); (M.A.)
| |
Collapse
|
17
|
Chellan P, Avery VM, Duffy S, Land KM, Tam CC, Kim JH, Cheng LW, Romero-Canelón I, Sadler PJ. Bioactive half-sandwich Rh and Ir bipyridyl complexes containing artemisinin. J Inorg Biochem 2021; 219:111408. [PMID: 33826972 DOI: 10.1016/j.jinorgbio.2021.111408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Reaction of dihydroartemisinin (DHA) with 4-methyl-4'-carboxy-2,2'-bipyridine yielded the new ester derivative L1. Six novel organometallic half-sandwich chlorido Rh(III) and Ir(III) complexes (1-6) containing pentamethylcyclopentadienyl, (Cp*), tetramethylphenylcyclopentadienyl (Cpxph), or tetramethylbiphenylcyclopentadienyl (Cpxbiph), and N,N-chelated bipyridyl group of L1, have been synthesized and characterized. The complexes were screened for inhibitory activity against the Plasmodium falciparum 3D7 (sensitive), Dd2 (multi-drug resistant) and NF54 late stage gametocytes (LSGNF54), the parasite strain Trichomonas vaginalis G3, as well as A2780 (human ovarian carcinoma), A549 (human alveolar adenocarcinoma), HCT116 (human colorectal carcinoma), MCF7 (human breast cancer) and PC3 (human prostate cancer) cancer cell lines. They show nanomolar antiplasmodial activity, outperforming chloroquine and artemisinin. Their activities were also comparable to dihydroartemisinin. As anticancer agents, several of the complexes showed high inhibitory effects, with Ir(III) complex 3, containing the tetramethylbiphenylcyclopentadienyl ligand, having similar IC50 values (concentration for 50% of maximum inhibition of cell growth) as the clinical drug cisplatin (1.06-9.23 μM versus 0.24-7.2 μM, respectively). Overall, the iridium complexes (1-3) are more potent compared to the rhodium derivatives (4-6), and complex 3 emerges as the most promising candidate for future studies.
Collapse
Affiliation(s)
- Prinessa Chellan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Vicky M Avery
- Discovery Biology, Griffith University, Nathan, Queensland 4111, Australia
| | - Sandra Duffy
- Discovery Biology, Griffith University, Nathan, Queensland 4111, Australia
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States of America
| | - Christina C Tam
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States of America
| | - Jong H Kim
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States of America
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States of America
| | | | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
18
|
Mancuso RI, Foglio MA, Olalla Saad ST. Artemisinin-type drugs for the treatment of hematological malignancies. Cancer Chemother Pharmacol 2020; 87:1-22. [PMID: 33141328 DOI: 10.1007/s00280-020-04170-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022]
Abstract
Qinghaosu, known as artemisinin (ARS), has been for over two millennia, one of the most common herbs prescribed in traditional Chinese medicine (TCM). ARS was developed as an antimalarial drug and currently belongs to the established standard treatments of malaria as a combination therapy worldwide. In addition to the antimalarial bioactivity of ARS, anticancer activities have been shown both in vitro and in vivo. Like other natural products, ARS acts in a multi-specific manner also against hematological malignancies. The chemical structure of ARS is a sesquiterpene lactone, which contains an endoperoxide bridge essential for activity. The main mechanism of action of ARS and its derivatives (artesunate, dihydroartemisinin, artemether) toward leukemia, multiple myeloma, and lymphoma cells comprises oxidative stress response, inhibition of proliferation, induction of various types of cell death as apoptosis, autophagy, ferroptosis, inhibition of angiogenesis, and signal transducers, as NF-κB, MYC, amongst others. Therefore, new pharmaceutically active compounds, dimers, trimers, and hybrid molecules, could enhance the existing therapeutic alternatives in combating hematologic malignancies. Owing to the high potency and good tolerance without side effects of ARS-type drugs, combination therapies with standard chemotherapies could be applied in the future after further clinical trials in hematological malignancies.
Collapse
Affiliation(s)
- R I Mancuso
- Hematology and Hemotherapy Center, University of Campinas, HEMOCENTRO UNICAMP, Campinas, São Paulo, Brazil
| | - M A Foglio
- Faculty of Pharmaceutical Science, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - S T Olalla Saad
- Hematology and Hemotherapy Center, University of Campinas, HEMOCENTRO UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|