1
|
Lin Z, Assaraf YG, Kwok HF. Peptides for microbe-induced cancers: latest therapeutic strategies and their advanced technologies. Cancer Metastasis Rev 2024; 43:1315-1336. [PMID: 39008152 DOI: 10.1007/s10555-024-10197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
Cancer is a significant global health concern associated with multiple distinct factors, including microbial and viral infections. Numerous studies have elucidated the role of microorganisms, such as Helicobacter pylori (H. pylori), as well as viruses for example human papillomavirus (HPV), hepatitis B virus (HBV), and hepatitis C virus (HCV), in the development of human malignancies. Substantial attention has been focused on the treatment of these microorganism- and virus-associated cancers, with promising outcomes observed in studies employing peptide-based therapies. The current paper provides an overview of microbe- and virus-induced cancers and their underlying molecular mechanisms. We discuss an assortment of peptide-based therapies which are currently being developed, including tumor-targeting peptides and microbial/viral peptide-based vaccines. We describe the major technological advancements that have been made in the design, screening, and delivery of peptides as anticancer agents. The primary focus of the current review is to provide insight into the latest research and development in this field and to provide a realistic glimpse into the future of peptide-based therapies for microbe- and virus-induced neoplasms.
Collapse
Affiliation(s)
- Ziqi Lin
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Instituteof Technology, Haifa, 3200003, Israel
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
2
|
Wang J, Hu J, Pu W, Chen X, Ma C, Jiang Y, Wang T, Chen T, Shaw C, Zhou M, Wang L. Discovery, development and optimisation of a novel frog antimicrobial peptide with combined mode of action against drug-resistant bacteria. Comput Struct Biotechnol J 2024; 23:3391-3406. [PMID: 39345903 PMCID: PMC11437748 DOI: 10.1016/j.csbj.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Antimicrobial peptides (AMP) have emerged as promising candidates for addressing the clinical challenges posed by the rapid evolution of antibiotic-resistant microorganisms. Brevinins, a representative frog-derived AMP family, exhibited broad-spectrum antimicrobial activities, attacking great attentions in previous studies. However, their strong haemolytic activity and cytotoxicity, greatly limit their further development. In this work, we identified and characterised a novel brevinin-1 peptide, brevinin-1pl, from the skin secretions of the northern leopard frog, Rana pipiens. Like many brevinins, brevinin-1pl also displayed strong haemolytic activity, resulting in a lower therapeutic index. We employed several bioinformatics tools to analyse the structure and potential membrane interactions of brevinin-1pl, leading to a series of modifications. Among these analogues, des-Ala16-[Lys4]brevinin-1pl exhibited great enhanced therapeutic efficacy in both in vitro and in vivo tests, particularly against some antibiotics-resistant Escherichia coli strains. Mechanistic studies suggest that des-Ala16-[Lys4]brevinin-1pl may exert bactericidal effects through multiple mechanisms, including membrane disruption and DNA binding. Consequently, des-Ala16-[Lys4]brevinin-1pl holds promise as a candidate for the treatment of drug-resistant Escherichia coli infections.
Collapse
Affiliation(s)
- Jingkai Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Jibo Hu
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
- China Medical University-The Queen's University of Belfast Joint College, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Wenyuan Pu
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
- China Medical University-The Queen's University of Belfast Joint College, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
3
|
Stany B, Mishra S, Tharani PV, Sarkar A, Mandal AKA, Rao KVB. Investigation of anticancer potential of a novel bioactive molecule from Trichosporon asahii VITSTB1 in breast cancer cell lines: an in vitro study. Med Oncol 2024; 42:19. [PMID: 39609299 DOI: 10.1007/s12032-024-02569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
The current study investigates the anticancer activity of protein derived from yeast against breast cancer. Yeast-derived proteins illustrate potential as an anticancer agent through mechanisms, such as immune system stimulation via beta-glucans, cytotoxic effects, and modulation of gut microbiota by probiotic strains. The antioxidant activity of yeast-derived proteins can aid in anticancer activity by neutralizing free radicals, thereby reducing oxidative stress and preventing damage to cellular DNA. Employing a comprehensive methodology encompassing yeast isolation, antioxidant screening, molecular characterization, bioactive protein purification, and MTT assay, the research provides crucial insights into the anticancer attributes of the protein extracted from the yeast. The findings reveal significant antioxidant activity that reduces reactive oxygen species (ROS) levels, which are implicated in cancer development. The MTT assay on MCF-7 breast cancer cell lines, characterized by estrogen receptor and progesterone receptor positivity and HER-2 negativity, determined an IC50 value of 54.89 µg/ml, indicating a dose-dependent decrease in cytotoxic effects. These results suggest that the protein derived from Trichosporon asahii VITSTB1 exhibits promising anti-breast cancer properties. Further research is necessary to elucidate the underlying mechanisms, assess efficacy and safety profiles, explore synergies with existing therapies, and conduct animal model studies. Advancing this line of inquiry will significantly contribute to biomedical research and industrial innovation.
Collapse
Affiliation(s)
- B Stany
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shatakshi Mishra
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - P V Tharani
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anwesha Sarkar
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Abul Kalam Azad Mandal
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - K V Bhaskara Rao
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
4
|
Ochoa-Mosquera J, Montoya-Gómez A, Jiménez-Charris E. Snake venom toxins as potential therapeutic agents in the treatment of prostate cancer. Mol Biol Rep 2024; 51:1153. [PMID: 39540995 PMCID: PMC11564369 DOI: 10.1007/s11033-024-09970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Prostate cancer is a significant global health concern and one of the leading causes of death from diseases in men. There is a growing interest in exploring new therapeutic approaches to enhance patient treatment outcomes and quality of life. Snake venom-derived compounds have emerged as promising candidates for anticancer treatment due to their potential to be selective and reduce adverse effects. In this article, we conduct a literature review on prostate cancer and discuss the investigation of snake venoms as potential alternatives in treatments to minimize toxicity and maximize efficacy. The potential of snake venom toxins in modulating key processes such as cell apoptosis, inhibition of cell migration, and angiogenesis is highlighted. This comprehensive exploration reaffirms the importance of advancing research into snake venom-based therapies to combat prostate cancer, transform treatment paradigms, and improve the well-being of affected individuals.
Collapse
Affiliation(s)
- Jesika Ochoa-Mosquera
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Calle 4B # 36-00, Edificio 116, Oficina, Cali, 5002, Colombia.
| | - Alejandro Montoya-Gómez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Calle 4B # 36-00, Edificio 116, Oficina, Cali, 5002, Colombia
| | - Eliécer Jiménez-Charris
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Calle 4B # 36-00, Edificio 116, Oficina, Cali, 5002, Colombia.
| |
Collapse
|
5
|
Anandhan Sujatha V, Gopalakrishnan C, Anbarasu A, Ponnusamy CS, Choudhary R, Saravanan Geetha SA, Ramalingam R. Beyond the venom: Exploring the antimicrobial peptides from Androctonus species of scorpion. J Pept Sci 2024; 30:e3613. [PMID: 38749486 DOI: 10.1002/psc.3613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 10/08/2024]
Abstract
Prevalent worldwide, the Androctonus scorpion genus contributes a vital role in scorpion envenoming. While diverse scorpionisms are observed because of several different species, their secretions to protect themselves have been identified as a potent source of antimicrobial peptide (AMP)-like compounds. Distinctly, the venom of these species contains around 24 different AMPs, with definite molecules studied for their therapeutic potential as antimicrobial, antifungal, antiproliferative and antiangiogenic agents. Our review focuses on the therapeutic potential of native and synthetic AMPs identified so far in the Androctonus scorpion genus, identifying research gaps in peptide therapeutics and guiding further investigations. Certain AMPs have demonstrated remarkable compatibility to be prescribed as anticancer drug to reduce cancer cell proliferation and serve as a potent antibiotic alternative. Besides, analyses were performed to explore the characteristics and affinities of peptides for membranes. Overall, the study of AMPs derived from the Androctonus scorpion genus provides valuable insights into their potential applications in medicine and drug development.
Collapse
Affiliation(s)
- Vinutha Anandhan Sujatha
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - Chandrasekhar Gopalakrishnan
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - Amarnath Anbarasu
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - Chandra Sekar Ponnusamy
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - Rajkumar Choudhary
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - Sree Agash Saravanan Geetha
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - Rajasekaran Ramalingam
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| |
Collapse
|
6
|
Cheong HH, Zuo W, Chen J, Un CW, Si YW, Wong KH, Kwok HF, Siu SWI. Identification of Anticancer Peptides from the Genome of Candida albicans: in Silico Screening, in Vitro and in Vivo Validations. J Chem Inf Model 2024; 64:6174-6189. [PMID: 39008832 DOI: 10.1021/acs.jcim.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Anticancer peptides (ACPs) are promising future therapeutics, but their experimental discovery remains time-consuming and costly. To accelerate the discovery process, we propose a computational screening workflow to identify, filter, and prioritize peptide sequences based on predicted class probability, antitumor activity, and toxicity. The workflow was applied to identify novel ACPs with potent activity against colorectal cancer from the genome sequences of Candida albicans. As a result, four candidates were identified and validated in the HCT116 colon cancer cell line. Among them, PCa1 and PCa2 emerged as the most potent, displaying IC50 values of 3.75 and 56.06 μM, respectively, and demonstrating a 4-fold selectivity for cancer cells over normal cells. In the colon xenograft nude mice model, the administration of both peptides resulted in substantial inhibition of tumor growth without causing significant adverse effects. In conclusion, this work not only contributes a proven computational workflow for ACP discovery but also introduces two peptides, PCa1 and PCa2, as promising candidates poised for further development as targeted therapies for colon cancer. The method as a web service is available at https://app.cbbio.online/acpep/home and the source code at https://github.com/cartercheong/AcPEP_classification.git.
Collapse
Affiliation(s)
- Hong-Hin Cheong
- Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, China
| | - Weimin Zuo
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, China
| | - Jiarui Chen
- Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, China
| | - Chon-Wai Un
- Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, China
| | - Yain-Whar Si
- Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, China
| | - Koon Ho Wong
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, China
| | - Shirley W I Siu
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, R. de Luís Gonzaga Gomes, Macau SAR 999078, China
- Institute of Science and Environment, University of Saint Joseph, Estrada Marginal da Ilha Verde 14-17, Macau SAR 999078, China
| |
Collapse
|
7
|
Zhang J, Wu Y, Li Y, Li S, Liu J, Yang X, Xia G, Wang G. Natural products and derivatives for breast cancer treatment: From drug discovery to molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155600. [PMID: 38614043 DOI: 10.1016/j.phymed.2024.155600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Breast cancer stands as the most common malignancy among women globally and a leading cause of cancer-related mortality. Conventional treatments, such as surgery, hormone therapy, radiotherapy, chemotherapy, and small-molecule targeted therapy, often fall short of addressing the complexity and heterogeneity of certain breast cancer subtypes, leading to drug resistance and metastatic progression. Thus, the search for novel therapeutic targets and agents is imperative. Given their low toxicity and abundant variety, natural products and their derivatives are increasingly considered valuable sources for small-molecule anticancer drugs. PURPOSE This review aims to elucidate the pharmacological impacts and underlying mechanisms of active compounds found in select natural products and their derivatives, primarily focusing on breast cancer treatment. It intends to underscore the potential of these substances in combating breast cancer and guide future research directions for the development of natural product-based therapeutics. METHODS We conducted comprehensive searches in electronic databases such as PubMed, Web of Science, and Scopus until October 2023, using keywords such as 'breast cancer', 'natural products', 'derivatives', 'mechanism', 'signaling pathways', and various keyword combinations. RESULTS The review presents a spectrum of phytochemicals, including but not limited to flavonoids, polyphenols, and alkaloids, and examines their actions in various animal and cellular models of breast cancer. The anticancer effects of these natural products and derivatives are manifested through diverse mechanisms, including induction of cell death via apoptosis and autophagy, and suppression of tumor angiogenesis. CONCLUSION An increasing array of natural products and their derivatives are proving effective against breast cancer. Future therapeutic strategies can benefit from strategic enhancement of the anticancer properties of natural compounds, optimization for targeted action, improved bioavailability, and minimized side effects. The forthcoming research on natural products should prioritize these facets to maximize their therapeutic potential.
Collapse
Affiliation(s)
- Jing Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yanhong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China; Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Shutong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Jiaxi Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Xiao Yang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Guiyang Xia
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5, Ocean Warehouse, Dongcheng District, Beijing, 100700, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
8
|
Offor BC, Piater LA. Snake venom toxins: Potential anticancer therapeutics. J Appl Toxicol 2024; 44:666-685. [PMID: 37697914 DOI: 10.1002/jat.4544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Snake venom contains a cocktail of compounds dominated by proteins and peptides, which make up the toxin. The toxin components of snake venom attack several targets in the human body including the neuromuscular system, kidney and blood coagulation system and cause pathologies. As such, the venom toxins can be managed and used for the treatment of these diseases. In this regard, Captopril used in the treatment of cardiovascular diseases was the first animal venom toxin-based drug approved by the US Food and Drug Administration and the European Medicines Agency. Cancers cause morbidity and mortality worldwide. Due to side effects associated with the current cancer treatments including chemotherapy, radiotherapy, immunotherapy, hormonal therapy and surgery, there is a need to improve the efficacy of current treatments and/or develop novel drugs from natural sources including animal toxin-based drugs. There is a long history of earlier and ongoing studies implicating snake venom toxins as potential anticancer therapies. Here, we review the role of crude snake venoms and toxins including phospholipase A2, L-amino acid oxidase, C-type lectin and disintegrin as potential anticancer agents tested in cancer cell lines and animal tumour models in comparison to normal cell lines. Some of the anti-tumour activities of snake venom toxins include induction of cytotoxicity, apoptosis, cell cycle arrest and inhibition of metastasis, angiogenesis and tumour growth. We thus propose the advancement of multidisciplinary approaches to more pre-clinical and clinical studies for enhanced bioavailability and targeted delivery of snake venom toxin-based anticancer drugs.
Collapse
Affiliation(s)
- Benedict C Offor
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
9
|
Rashno Z, Rismani E, Ghasemi JB, Mansouri M, Shabani M, Afgar A, Dabiri S, Rezaei Makhouri F, Hatami A, Harandi MF. Design of ion channel blocking, toxin-like Kunitz inhibitor peptides from the tapeworm, Echinococcus granulosus, with potential anti-cancer activity. Sci Rep 2023; 13:11465. [PMID: 37454225 PMCID: PMC10349847 DOI: 10.1038/s41598-023-38159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Over-expression of K+ channels has been reported in human cancers and is associated with the poor prognosis of several malignancies. EAG1, a particular potassium ion channel, is widely expressed in the brain but poorly expressed in other normal tissues. Kunitz proteins are dominant in metazoan including the dog tapeworm, Echinococcus granulosus. Using computational analyses on one A-type potassium channel, EAG1, and in vitro cellular methods, including major cancer cell biomarkers expression, immunocytochemistry and whole-cell patch clamp, we demonstrated the anti-tumor activity of three synthetic small peptides derived from E. granulosus Kunitz4 protease inhibitors. Experiments showed induced significant apoptosis and inhibition of proliferation in both cancer cell lines via disruption in cell-cycle transition from the G0/G1 to S phase. Western blotting showed that the levels of cell cycle-related proteins including P27 and P53 were altered upon kunitz4-a and kunitz4-c treatment. Patch clamp analysis demonstrated a significant increase in spontaneous firing frequency in Purkinje neurons, and exposure to kunitz4-c was associated with an increase in the number of rebound action potentials after hyperpolarized current. This noteworthy component in nature could act as an ion channel blocker and is a potential candidate for cancer chemotherapy based on potassium channel blockage.
Collapse
Affiliation(s)
- Zahra Rashno
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Jahan B Ghasemi
- Faculty of Chemistry, School of Sciences, University of Tehran, Tehran, Iran
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Abbas Hatami
- Pathology and Stem Cell Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran.
| |
Collapse
|
10
|
Sarkar A, Bhaskara Rao KV. Unraveling anticancer potential of a novel serine protease inhibitor from marine yeast Candida parapsilosis ABS1 against colorectal and breast cancer cells. World J Microbiol Biotechnol 2023; 39:225. [PMID: 37296286 DOI: 10.1007/s11274-023-03670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
The study was planned to isolate a serine protease inhibitor compound with anticancer potential against colorectal and breast cancer cells from marine yeast. Protease enzymes play a crucial role in the mechanism of life-threatening diseases like cancer, malaria and AIDS. Hence, blocking these enzymes with potential inhibitors can be an efficient approach in drug therapy for these diseases. A total of 12 marine yeast isolates, recovered from mangrove swamps of Sundarbans, India, showed inhibition activity against trypsin. The yeast isolate ABS1 showed highest inhibition activity (89%). The optimum conditions for protease inhibitor production were found to be glucose, ammonium phosphate, pH 7.0, 30 °C and 2 M NaCl. The PI protein from yeast isolate ABS1 was purified using ethyl acetate extraction and anion exchange chromatography. The purified protein was characterized using denaturing SDS-PAGE, Liquid Chromatography Electrospray Ionization Mass Spectrometry (LC-ESI-MS), Reverse Phase High Pressure Liquid Chromatography (RP-HPLC) and Fourier Transform Infra-red Spectroscopy (FTIR) analysis. The intact molecular weight of the PI protein was determined to be 25.584 kDa. The PI protein was further studied for in vitro anticancer activities. The IC50 value for MTT cell proliferation assay was found to be 43 µg/ml against colorectal cancer HCT15 cells and 48 µg/ml against breast cancer MCF7 cells. Hoechst staining, DAPI staining and DNA fragmentation assay were performed to check the apoptotic cells. The marine yeast was identified as Candida parapsilosis ABS1 (Accession No. MH782231) using 18s rRNA sequencing.
Collapse
Affiliation(s)
- Anwesha Sarkar
- Marine Biotechnology Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - K V Bhaskara Rao
- Marine Biotechnology Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
11
|
Bea RDLS, Frawley E, Shen Q, Moyo S, Thelven JM, North L. Synthesized peptide analogs from Eumenes pomiformis (Hymenoptera: Eumenidae) venom reveals their antibiotic and pesticide activity potential. Toxicon 2023; 224:107032. [PMID: 36690087 DOI: 10.1016/j.toxicon.2023.107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
One natural antimicrobial peptide (EpVP2a, Eumenes pomiformis Venom Peptide 2a) found in the venom of a potter wasp (Eumenes pomiformis) and six analogs were synthesized and tested to compare their antimicrobial, antifungal, pesticide, and hemolytic activity with the wild type. Our results indicated that while the original peptide and the synthetic analogs had no antifungal activity or anti-bacterial activity against Pseudomonas aeruginosa, the original peptide and the analog with substitution of the aspartic acid on the sequence by a lysine (EpVP2a-D2K2) had activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis. This same analog also shows significant insecticide activity. The analog with substitution of lysine with a slightly smaller ornithine had activity against E. coli and B. subtilis. All analogs show low hemolytic activity compared to the natural peptide. The peptide with a reverse sequence to the natural one (EpVp2a Retro) shows low helix structure which can also explain why it has no antibacterial activity and low hemolytic activity. Circular dichroism spectra show that these peptides form an alpha helix structure and their amino acid positions predict an amphipathic nature.
Collapse
Affiliation(s)
| | - Elaine Frawley
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - Qian Shen
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - Sydney Moyo
- Department of Biology and Program in Environmental Studies and Sciences, Rhodes College, Memphis, TN 38112, USA
| | - Jeremy M Thelven
- Department of Chemistry, North Carolina State University. Raleigh, NC 27695, USA
| | - Lily North
- Department of Chemistry, The University of Arizona. Tucson, AZ 85721, USA
| |
Collapse
|
12
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
13
|
Synthetic Peptide ΔM4-Induced Cell Death Associated with Cytoplasmic Membrane Disruption, Mitochondrial Dysfunction and Cell Cycle Arrest in Human Melanoma Cells. Molecules 2020; 25:molecules25235684. [PMID: 33276536 PMCID: PMC7730669 DOI: 10.3390/molecules25235684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Melanoma is the most dangerous and lethal form of skin cancer, due to its ability to spread to different organs if it is not treated at an early stage. Conventional chemotherapeutics are failing as a result of drug resistance and weak tumor selectivity. Therefore, efforts to evaluate novel molecules for the treatment of skin cancer are necessary. Antimicrobial peptides have become attractive anticancer agents because they execute their biological activity with features such as a high potency of action, a wide range of targets, and high target specificity and selectivity. In the present study, the antiproliferative activity of the synthetic peptide ΔM4 on A375 human melanoma cells and spontaneously immortalized HaCaT human keratinocytes was investigated. The cytotoxic effect of ΔM4 treatment was evaluated through propidium iodide uptake by flow cytometry. The results indicated selective toxicity in A375 cells and, in order to further investigate the mode of action, assays were carried out to evaluate morphological changes, mitochondrial function, and cell cycle progression. The findings indicated that ΔM4 exerts its antitumoral effects by multitarget action, causing cell membrane disruption, a change in the mitochondrial transmembrane potential, an increase of reactive oxygen species, and cell cycle accumulation in S-phase. Further exploration of the peptide may be helpful in the design of novel anticancer peptides.
Collapse
|