1
|
Yang P, Basílio N, Liao X, Xu Z, Dangles O, Pina F. Influence of Acylation by Hydroxycinnamic Acids on the Reversible and Irreversible Processes of Anthocyanins in Acidic to Basic Aqueous Solution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25955-25971. [PMID: 39503621 DOI: 10.1021/acs.jafc.4c06847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In this work, the thermodynamics and kinetics of the reversible and irreversible processes of cyanidin 3,5-O-diglucoside and cyanidin 3-O-(2-O-glucosyl, 6-O-sinapoyl)glucoside-2-O-glucoside, 5-O-glucoside were studied by covering all pH range (holistic approach). The acylation (i) decreases the mole fraction of the colorless hemiketal in acidic medium and increases that of the colored quinoidal base, (ii) expands the pH domain of the flavylium cation, and (iii) moderately decreases the rate of tautomerization and isomerization of the neutral and monoanionic species. Degradation of cyanidin-3,5-O-diglucoside in a basic medium occurs in two distinct stages. After the formation of the anionic quinoidal bases (double proton loss from flavylium cation), a fast kinetic step, only observed by stopped flow, gives rise to the B4n- hydroxide adducts (n = 2,3) in equilibrium with the respective quinoidal bases An- (n = 1,2), leading to a first transient state. The quinoidal bases and B4n- adducts disappear completely from the first to a second transient state by means of two parallel reactions: (i) one reversible, giving the anionic cis- and trans-chalcones, (ii) the other irreversible, giving degradation products and exhibiting a pH-dependent bell-shaped mole fraction with maximum around pH = 12. From the second transient state, the anionic chalcones disappear completely in a few days. Acylation prevents formation of the first transient state. All of these effects are compatible with anthocyanidin-acyl π-stacking interactions (intramolecular copigmentation).
Collapse
Affiliation(s)
- Peiqing Yang
- National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- LAQV - REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Nuno Basílio
- LAQV - REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Xiaojun Liao
- National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Xu
- National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Olivier Dangles
- Research Unit SQPOV, Avignon University, INRAE, 84000 Avignon, France
| | - Fernando Pina
- LAQV - REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
2
|
Yan Y, Li J. Association of dietary anthocyanidins intake with all-cause mortality and cardiovascular diseases mortality in USA adults: a prospective cohort study. Sci Rep 2024; 14:26595. [PMID: 39496659 PMCID: PMC11535342 DOI: 10.1038/s41598-024-76805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Anthocyanins, as a type of polyphenolic compound, have been discovered to offer multiple health benefits to humans, including anti-aging and anti-inflammatory properties. This prospective cohort study aims to examine the relationship of dietary intake of anthocyanin with all-cause mortality and cardiovascular diseases mortality in the US. The aim of this research was to explore the possible correlation between anthocyanin consumption and the mortality rate from all causes as well as from cardiovascular disease. Based on the Public Access NHANES-linked National Death Index files up to December 31, 2019, we identified mortality status and heart disease-specific causes of death. A multivariate Cox regression analysis was employed to evaluate the effects of anthocyanin intake on mortality outcomes, generating hazard ratios and 95% confidence intervals, adjusting for various demographic characteristics, lifestyle factors, and comorbid conditions. Additionally, we utilized Kaplan-Meier survival curves, subgroup analyses. In different scenarios, dietary anthocyanin intake was assessed using restricted cubic spline models. A total of 11,959 participants completed the final cohort, averaging 47.12 years of age (SD ± 0.35). Following adjustments for multiple variables, an inverse relationship was identified between anthocyanin intake in the highest quartile and all causes mortality, yielding a hazard ratio (HR) of 0.68 (95% CI: 0.52-0.89). Similarly, elevated anthocyanin consumption was linked to a reduction in heart disease mortality, with HR of 0.61 (95% CI: 0.38-0.97). Additionally, dose-response curve revealed a consistent decrease in both all-cause and cardiovascular mortality with increasing anthocyanin intake. Further subgroup analyses revealed that elevated intake of anthocyanins was linked to decreased all-cause mortality in White individuals and males. Moreover, high anthocyanin intake was significantly correlated with reduced all-cause mortality irrespective of hypertension or hyperlipidemia status. Our research indicates that an appropriate dietary intake of anthocyanins is associated with a reduction in overall mortality rates. Furthermore, the findings reveal a substantial association between anthocyanin intake and decreased mortality from cardiovascular diseases, suggesting that anthocyanins may effectively lower the risk of cardiovascular-related deaths.
Collapse
Affiliation(s)
- Yifei Yan
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jianchang Li
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
3
|
Yuan T, Wang L, Chen L, Zhong J, Lin Y, Wang Y, Lin C, Fan H. Combinatorial preparation and structural characterization of anthocyanins and aglycones from Purple-heart Radish for evaluation of physicochemical stability and pancreatic lipase inhibitory activity. Food Chem 2024; 446:138832. [PMID: 38412808 DOI: 10.1016/j.foodchem.2024.138832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
In this study, an efficient approach to preparation of different anthocyanins from Purple-heart Radish was developed by combining microwave-assisted extraction (MAE), macroporous resin purification (MRP) and ultrasound-assisted acid hydrolysis (UAAH) for evaluation of physicochemical stability and pancreatic lipase (PL) inhibitory activity. By optimization of MAE, MRP and UAAH processes, the anthocyanins reached the yield of 6.081 ± 0.106 mg/g, the purity of 78.54 ± 0.62 % (w/w) and the content of 76.29 ± 1.31 % (w/w), respectively. With high-resolution UHPLC-Q-Orbitrap/MS, 15 anthocyanins were identified as pelargonins with diverse glucosides and confirmed by pelargonidin standard. By glycosylation, pelargonins exhibited higher stability in different pH, temperature, light, metal ions environments than that of pelargonidin. However, PL inhibitory assay, kinetic analysis and molecular docking demonstrated that pelargonidin had higher PL inhibitory activity than pelargonins even though with similar binding sites and a dose-effect relationship. The above results revealed that the effect of glycosylation and deglycosylation on PL inhibitory activity and physicochemical stability.
Collapse
Affiliation(s)
- Tiefeng Yuan
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China national Analytical Center), Guangzhou, 510070, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Liping Wang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China national Analytical Center), Guangzhou, 510070, China
| | - Linzhou Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jinjian Zhong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yuyang Lin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yihan Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chen Lin
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China national Analytical Center), Guangzhou, 510070, China.
| | - Huajun Fan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Saini RK, Khan MI, Shang X, Kumar V, Kumari V, Kesarwani A, Ko EY. Dietary Sources, Stabilization, Health Benefits, and Industrial Application of Anthocyanins-A Review. Foods 2024; 13:1227. [PMID: 38672900 PMCID: PMC11049351 DOI: 10.3390/foods13081227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Natural phytochemicals are well known to protect against numerous metabolic disorders. Anthocyanins are vacuolar pigments belonging to the parent class of flavonoids. They are well known for their potent antioxidant and gut microbiome-modulating properties, primarily responsible for minimizing the risk of cardiovascular diseases, diabetes, obesity, neurodegenerative diseases, cancer, and several other diseases associated with metabolic syndromes. Berries are the primary source of anthocyanin in the diet. The color and stability of anthocyanins are substantially influenced by external environmental conditions, constraining their applications in foods. Furthermore, the significantly low bioavailability of anthocyanins greatly diminishes the extent of the actual health benefits linked to these bioactive compounds. Multiple strategies have been successfully developed and utilized to enhance the stability and bioavailability of anthocyanins. This review provides a comprehensive view of the recent advancements in chemistry, biosynthesis, dietary sources, stabilization, bioavailability, industrial applications, and health benefits of anthocyanins. Finally, we summarize the prospects and challenges of applications of anthocyanin in foods.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India;
| | - Mohammad Imtiyaj Khan
- Biochemistry and Molecular Biology Lab, Department of Biotechnology, Gauhati University, Guwahati 781014, Assam, India;
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China;
| | - Vikas Kumar
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana 141004, Punjab, India;
| | - Varsha Kumari
- Department of Plant Breeding and Genetics, Sri Karan Narendra Agriculture University, Jobner, Jaipur 302001, Rajasthan, India;
| | - Amit Kesarwani
- Department of Agronomy, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India;
| | - Eun-Young Ko
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Seco A, Pereira AR, Camuenho A, Oliveira J, Dias R, Brás N, Basílio N, Parola AJ, Lima JC, de Freitas V, Pina F. Comparing the Chemistry of Malvidin-3- O-glucoside and Malvidin-3,5- O-diglucoside Networks: A Holistic Approach to the Acidic and Basic Paradigms with Implications in Biological Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7497-7510. [PMID: 38520401 PMCID: PMC10995998 DOI: 10.1021/acs.jafc.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
The kinetics, thermodynamics, and degradation of malvidin mono- and diglucosides were studied following a holistic approach by extending to the basic medium. In acidic conditions, the reversible kinetics of the flavylium cation toward the equilibrium is controlled by the hydration and cis-trans isomerization steps, while in the basic medium, the OH- nucleophilic addition to the anionic quinoidal bases is the slowest step. There is a pH range (transition pHs), between the acidic and basic paradigms, that includes physiological pH (7.4), where degradation reactions occur faster, preventing the system from reaching the equilibrium. The transition pH of the diglucoside is narrower, and in contrast with the monoglucoside, there is no evidence for the formation of colored oligomers among the degradation products. Noteworthy, OH- addition in position 4 to form B42-, a kinetic product that decreases the overall equilibration rate, was observed only for the diglucoside.
Collapse
Affiliation(s)
- André Seco
- LAQV—REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Rita Pereira
- LAQV—REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Ambrósio Camuenho
- LAQV—REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Joana Oliveira
- LAQV—REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Ricardo Dias
- LAQV—REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Natércia
F. Brás
- LAQV—REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Nuno Basílio
- LAQV—REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - A. Jorge Parola
- LAQV—REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - João C. Lima
- LAQV—REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Victor de Freitas
- LAQV—REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Fernando Pina
- LAQV—REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
6
|
Macis D, Briata IM, D’Ecclesiis O, Johansson H, Aristarco V, Buttiron Webber T, Oppezzi M, Gandini S, Bonanni B, DeCensi A. Inflammatory and Metabolic Biomarker Assessment in a Randomized Presurgical Trial of Curcumin and Anthocyanin Supplements in Patients with Colorectal Adenomas. Nutrients 2023; 15:3894. [PMID: 37764678 PMCID: PMC10537228 DOI: 10.3390/nu15183894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer prevention is crucial for public health, given its high mortality rates, particularly in young adults. The early detection and treatment of precancerous lesions is key to preventing carcinogenesis progression. Natural compounds like curcumin and anthocyanins show promise in impeding adenomatous polyp progression in preclinical models. We conducted a randomized, double-blind, placebo-controlled, phase II presurgical trial in 35 patients with adenomatous polyps to explore the biological effects of curcumin and anthocyanins on circulating biomarkers of inflammation and metabolism. No significant difference in biomarker changes by treatment arm was observed. However, the network analysis before treatment revealed inverse correlations between adiponectin and BMI and glycemia, as well as direct links between inflammatory biomarkers and leptin and BMI. In addition, a considerable inverse relationship between adiponectin and grade of dysplasia was detected after treatment (corr = -0.45). Finally, a significant increase in IL-6 at the end of treatment in subjects with high-grade dysplasia was also observed (p = 0.02). The combined treatment of anthocyanins and curcumin did not result in the direct modulation of circulating biomarkers of inflammation and metabolism, but revealed a complex modulation of inflammatory and metabolic biomarkers of colon carcinogenesis.
Collapse
Affiliation(s)
- Debora Macis
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (H.J.); (V.A.); (B.B.)
| | - Irene Maria Briata
- Division of Medical Oncology, E.O. Galliera Hospital, 16128 Genoa, Italy; (I.M.B.); (T.B.W.)
| | - Oriana D’Ecclesiis
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (O.D.); (S.G.)
| | - Harriet Johansson
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (H.J.); (V.A.); (B.B.)
| | - Valentina Aristarco
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (H.J.); (V.A.); (B.B.)
| | - Tania Buttiron Webber
- Division of Medical Oncology, E.O. Galliera Hospital, 16128 Genoa, Italy; (I.M.B.); (T.B.W.)
| | - Massimo Oppezzi
- Division of Gastroenterology, E.O. Galliera Hospital, 16128 Genoa, Italy;
| | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (O.D.); (S.G.)
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (H.J.); (V.A.); (B.B.)
| | - Andrea DeCensi
- Division of Medical Oncology, E.O. Galliera Hospital, 16128 Genoa, Italy; (I.M.B.); (T.B.W.)
| |
Collapse
|
7
|
Dos Santos Lima A, Novaes RD, Pinheiro LC, de Almeida LA, Martino HSD, Giusti-Paiva A, Pap N, Granato D, Azevedo L. From waste to the gut: Can blackcurrant press cake be a new functional ingredient? Insights on in vivo microbiota modulation, oxidative stress, and inflammation. Food Res Int 2023; 170:112917. [PMID: 37316039 DOI: 10.1016/j.foodres.2023.112917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023]
Abstract
Blackcurrant press cake (BPC) is a source of anthocyanins, and this study evaluated the bioactivity and gut microbiota modulation of blackcurrant diets with or without 1,2 dimethylhydrazine (DMH)-induced colon carcinogenesis in rats. In colon cancer-induced rats (CRC), BPC at the highest dosages increased pro-inflammatory parameters and the expression of anti-apoptotic cytokines, accentuating colon cancer initiation by aberrant crypts and morphological changes. Fecal microbiome analysis showed that BPC altered the composition and function of the gut microbiome. This evidence suggests that high doses of BPC act as a pro-oxidant, accentuating the inflammatory environment and CRC progression.
Collapse
Affiliation(s)
| | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Lucas Cezar Pinheiro
- Department of Pharmacology, Federal University Santa Catarina, Santa Catarina, Brazil; Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | | - Alexandre Giusti-Paiva
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Nora Pap
- Biorefinery and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Finland
| | - Daniel Granato
- Bioactivity & Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Luciana Azevedo
- Faculty of Nutrition, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Nascimento RDPD, Machado APDF. The preventive and therapeutic effects of anthocyanins on colorectal cancer: A comprehensive review based on up-to-date experimental studies. Food Res Int 2023; 170:113028. [PMID: 37316089 DOI: 10.1016/j.foodres.2023.113028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/16/2023]
Abstract
Colorectal cancer (CRC) is the second most lethal and the third most diagnosed type of cancer worldwide. More than 75% of CRC cases are sporadic and lifestyle-related. Risk factors include diet, physical inactivity, genetics, smoking, alcohol, changes in the intestinal microbiota, and inflammation-related diseases such as obesity, diabetes, and inflammatory bowel diseases. The limits of conventional treatments (surgery, chemotherapy, radiotherapy), as demonstrated by the side effects and resistance of many CRC patients, are making professionals search for new chemopreventive alternatives. In this context, diets rich in fruits and vegetables or plant-based products, which contain high levels of phytochemicals, have been postulated as complementary therapeutic options. Anthocyanins, phenolic pigments responsible for the vivid colors of most red, purple, and blue fruits and vegetables, have been shown protective effects on CRC. Berries, grapes, Brazilian fruits, and vegetables such as black rice and purple sweet potato are examples of products rich in anthocyanins, which have been able to reduce cancer development by modulating signaling pathways associated with CRC. Therefore, this review has as main objective to present and discuss the potential preventive and therapeutic effects of anthocyanins present in fruits and vegetables, in plant extracts, or in their pure form on CRC, taking into account up-to-date experimental studies (2017-2023). Additionally, a highlight is given towards the mechanisms of action of anthocyanins on CRC.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Laboratory of Nutrition and Metabolism (LANUM), Department of Food Science and Nutrition (DECAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, 13083-862, Campinas, São Paulo, Brazil; European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Rd, CF24 4HQ, Cardiff, Wales, United Kingdom.
| | - Ana Paula da Fonseca Machado
- Study and Research Group on Agroindustrial Products from the Cerrado (GEPPAC), Faculty of Engineering (FAEN), Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway Km 12, 79804-970, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
9
|
Shen L, Yang Y, Zhang J, Feng L, Zhou Q. Diacylated anthocyanins from purple sweet potato ( Ipomoeabatatas L.) attenuate hyperglycemia and hyperuricemia in mice induced by a high-fructose/high-fat diet. J Zhejiang Univ Sci B 2023; 24:587-601. [PMID: 37455136 PMCID: PMC10350372 DOI: 10.1631/jzus.b2200587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/06/2023] [Indexed: 04/15/2023]
Abstract
Studies have shown that targeting xanthine oxidase (XO) can be a feasible treatment for fructose-induced hyperuricemia and hyperglycemia. This study aimed to evaluate the dual regulatory effects and molecular mechanisms of diacylated anthocyanins from purple sweet potato (diacylated AF-PSPs) on hyperglycemia and hyperuricemia induced by a high-fructose/high-fat diet. The body weight, organ index, serum biochemical indexes, and liver antioxidant indexes of mice were measured, and the kidneys were observed in pathological sections. The relative expression levels of messenger RNAs (mRNAs) of fructose metabolism pathway enzymes in kidney were detected by fluorescent real-time quantitative polymerase chain (qPCR) reaction technique, and the expression of renal transporter protein and inflammatory factor pathway protein was determined by immunohistochemistry (IHC) technique. Results showed that diacylated AF-PSPs alleviated hyperuricemia in mice, and that this effect might be related to the regulation of liver XO activity, lipid accumulation, and relevant renal transporters. Diacylated AF-PSPs reduced body weight and relieved lipid metabolism disorder, liver lipid accumulation, and liver oxidative stress, thereby enhancing insulin utilization and sensitivity, lowering blood sugar, and reducing hyperglycemia in mice. Also, diacylated AF-PSPs restored mRNA levels related to renal fructose metabolism, and reduced kidney injury and inflammation. This study provided experimental evidence for the mechanisms of dual regulation of blood glucose and uric acid (UA) by diacylated AF-PSPs and their utilization as functional foods in the management of metabolic syndrome.
Collapse
Affiliation(s)
- Luhong Shen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiuliang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lanjie Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Zhou
- Department of Pharmacy, Wuhan City Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| |
Collapse
|
10
|
Cai T, Ge-Zhang S, Song M. Anthocyanins in metabolites of purple corn. FRONTIERS IN PLANT SCIENCE 2023; 14:1154535. [PMID: 37089635 PMCID: PMC10118017 DOI: 10.3389/fpls.2023.1154535] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Purple corn (Zea mays L.) is a special variety of corn, rich in a large amount of anthocyanins and other functional phytochemicals, and has always ranked high in the economic benefits of the corn industry. However, most studies on the stability of agronomic traits and the interaction between genotype and environment in cereal crops focus on yield. In order to further study the accumulation and stability of special anthocyanins in the growth process of purple corn, this review starts with the elucidation of anthocyanins in purple corn, the biosynthesis process and the gene regulation mechanism behind them, points out the influence of anthocyanin metabolism on anthocyanin metabolism, and introduces the influence of environmental factors on anthocyanin accumulation in detail, so as to promote the multi-field production of purple corn, encourage the development of color corn industry and provide new opportunities for corn breeders and growers.
Collapse
Affiliation(s)
- Taoyang Cai
- Aulin College, Northeast Forestry University, Harbin, China
| | | | - Mingbo Song
- College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
11
|
Lin Y, Li C, Shi L, Wang L. Anthocyanins: Modified New Technologies and Challenges. Foods 2023; 12:foods12071368. [PMID: 37048188 PMCID: PMC10093405 DOI: 10.3390/foods12071368] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Anthocyanins are bioactive compounds belonging to the flavonoid class which are commonly applied in foods due to their attractive color and health-promoting benefits. However, the instability of anthocyanins leads to their easy degradation, reduction in bioactivity, and color fading in food processing, which limits their application and causes economic losses. Therefore, the objective of this review is to provide a systematic evaluation of the published research on modified methods of anthocyanin use. Modification technology of anthocyanins mainly includes chemical modification (chemical acylation, enzymatic acylation, and formation of pyran anthocyanidin), co-pigmentation, and physical modification (microencapsulation and preparation of pickering emulsion). Modification technology of anthocyanins can not only increase bioavailability and stability of anthocyanin but also can improve effects of anthocyanin on disease prevention and treatment. We also propose potential challenges and perspectives for diversification of anthocyanin-rich products for food application. Overall, integrated strategies are warranted for improving anthocyanin stabilization and promoting their further application in the food industry, medicine, and other fields.
Collapse
Affiliation(s)
- Yang Lin
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing 312000, China
- Changshan Agriculture Development Center, Changshan 324200, China
| | - Cong Li
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lejuan Shi
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lixia Wang
- Changshan Agriculture Development Center, Changshan 324200, China
| |
Collapse
|
12
|
Câmara JS, Locatelli M, Pereira JAM, Oliveira H, Arlorio M, Fernandes I, Perestrelo R, Freitas V, Bordiga M. Behind the Scenes of Anthocyanins-From the Health Benefits to Potential Applications in Food, Pharmaceutical and Cosmetic Fields. Nutrients 2022; 14:5133. [PMID: 36501163 PMCID: PMC9738495 DOI: 10.3390/nu14235133] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Anthocyanins are widespread and biologically active water-soluble phenolic pigments responsible for a wide range of vivid colours, from red (acidic conditions) to purplish blue (basic conditions), present in fruits, vegetables, and coloured grains. The pigments' stability and colours are influenced mainly by pH but also by structure, temperature, and light. The colour-stabilizing mechanisms of plants are determined by inter- and intramolecular co-pigmentation and metal complexation, driven by van der Waals, π-π stacking, hydrogen bonding, and metal-ligand interactions. This group of flavonoids is well-known to have potent anti-inflammatory and antioxidant effects, which explains the biological effects associated with them. Therefore, this review provides an overview of the role of anthocyanins as natural colorants, showing they are less harmful than conventional colorants, with several technological potential applications in different industrial fields, namely in the textile and food industries, as well as in the development of photosensitizers for dye-sensitized solar cells, as new photosensitizers in photodynamic therapy, pharmaceuticals, and in the cosmetic industry, mainly on the formulation of skin care formulations, sunscreen filters, nail colorants, skin & hair cleansing products, amongst others. In addition, we will unveil some of the latest studies about the health benefits of anthocyanins, mainly focusing on the protection against the most prevalent human diseases mediated by oxidative stress, namely cardiovascular and neurodegenerative diseases, cancer, and diabetes. The contribution of anthocyanins to visual health is also very relevant and will be briefly explored.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Monica Locatelli
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Marco Arlorio
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Victor Freitas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
13
|
Zhang X, Huang H, Sun S, Li D, Sun L, Li Q, Chen R, Lai X, Zhang Z, Zheng X, Wong WL, Wen S. Induction of Apoptosis via Inactivating PI3K/AKT Pathway in Colorectal Cancer Cells Using Aged Chinese Hakka Stir-Fried Green Tea Extract. Molecules 2022; 27:molecules27238272. [PMID: 36500365 PMCID: PMC9737789 DOI: 10.3390/molecules27238272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Food extract supplements, with high functional activity and low side effects, play a recognized role in the adjunctive therapy of human colorectal cancer. The present study reported a new functional beverage, which is a type of Chinese Hakka stir-fried green tea (HSGT) aged for several years. The extracts of the lyophilized powder of five HSGT samples with different aging periods were analyzed with high-performance liquid chromatography. The major components of the extract were found to include polyphenols, catechins, amino acids, catechins, gallic acid and caffeine. The tea extracts were also investigated for their therapeutic activity against human colorectal cancer cells, HT-29, an epithelial cell isolated from the primary tumor. The effect of different aging time of the tea on the anticancer potency was compared. Our results showed that, at the cellular level, all the extracts of the aged teas significantly inhibited the proliferation of HT-29 in a concentration-dependent manner. In particular, two samples prepared in 2015 (15Y, aged for 6 years) and 2019 (19Y, aged for 2 years) exhibited the highest inhibition rate for 48 h treatment (cell viability was 50% at 0.2 mg/mL). Further, all the aged tea extracts examined were able to enhance the apoptosis of HT-29 cells (apoptosis rate > 25%) and block the transition of G1/S phase (cell-cycle distribution (CSD) from <20% to >30%) population to G2/M phase (CSD from nearly 30% to nearly 10%) at 0.2 mg/mL for 24 h or 48 h. Western blotting results also showed that the tea extracts inhibited cyclin-dependent kinases 2/4 (CDK2, CDK4) and CylinB1 protein expression, as well as increased poly ADP-ribose polymerase (PRAP) expression and Bcl2-associated X (Bax)/B-cell lymphoma-2 (Bcl2) ratio. In addition, an upstream signal of one of the above proteins, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signalling, was found to be involved in the regulation, as evidenced by the inhibition of phosphorylated PI3K and AKT by the extracts of the aged tea. Therefore, our study reveals that traditional Chinese aged tea (HSGT) may inhibit colon cancer cell proliferation, cell-cycle progression and promoted apoptosis of colon cancer cells by inactivating PI3K/AKT signalling.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haiying Huang
- Tea Research Institute, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou 514071, China
| | - Shili Sun
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Lingli Sun
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- Correspondence: (W.-L.W.); (S.W.)
| | - Shuai Wen
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (W.-L.W.); (S.W.)
| |
Collapse
|
14
|
Camuenho A, Seco A, Parola AJ, Basílio N, Pina F. Intermolecular Copigmentation of Malvidin-3- O-glucoside with Caffeine in Water: The Effect of the Copigment on the pH-Dependent Reversible and Irreversible Processes. ACS OMEGA 2022; 7:25502-25509. [PMID: 35910157 PMCID: PMC9330165 DOI: 10.1021/acsomega.2c02571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intermolecular copigmentation of malvidin-3-O-glucoside with caffeine was studied using a holistic procedure that includes the extension to basic pH values. In moderately basic solutions (7.5 < pH < 9.5) and independently of the copigment presence, there is a pH region where degradation of the quinoidal base and anionic quinoidal bases is faster than hydration and OH- nucleophilic addition, preventing the system from reaching the equilibrium. Intermolecular copigmentation with caffeine reduces significantly the degradation rate of quinoidal bases. In a more basic medium, the equilibrium is reached and degradation occurs from the anionic chalcones. In this case, the addition of caffeine also reduces the degradation rate in the interval 10 < pH < 11.5.
Collapse
|
15
|
Li C, Cheng Y, Li D, An Q, Zhang W, Zhang Y, Fu Y. Antitumor Applications of Photothermal Agents and Photothermal Synergistic Therapies. Int J Mol Sci 2022; 23:ijms23147909. [PMID: 35887255 PMCID: PMC9324234 DOI: 10.3390/ijms23147909] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
As a new tumor treatment strategy, photothermal therapy (PTT) has the advantages of accuracy, ease of administration, a high efficiency and low side effects. Photothermal transduction agents (PTAs) are the key factor which play an important role in PTT. The mechanism of PTT is discussed in detail. The photothermal conversion efficiency (PCE) can be improved by increasing the light absorption and reducing the light scattering of photothermal conversion agents. Additionally, non-radiative relaxation path attenuation can also promote energy conversion to obtain a higher value in terms of PCE. The structure and photothermal characteristics of various kinds of PTAs (metal materials, carbon-based nanomaterials, two-dimensional nanomaterials, and organic materials) were compared and analyzed. This paper reviews the antitumor applications of photothermal synergistic therapies, including PTT combined with immunotherapy, chemotherapy, and photodynamic therapy. This review proposes that these PTAs promote the development of photothermal synergistic therapies and have a great potential in the application of tumor treatment.
Collapse
Affiliation(s)
- Chaowei Li
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
| | - Yue Cheng
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Dawei Li
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
- Correspondence: (D.L.); (Y.F.)
| | - Qi An
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Wei Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Yu Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Yijun Fu
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
- Correspondence: (D.L.); (Y.F.)
| |
Collapse
|
16
|
Zhang Y, Zhu M, Wan H, Chen L, Luo F. Association between Dietary Anthocyanidins and Risk of Lung Cancer. Nutrients 2022; 14:nu14132643. [PMID: 35807824 PMCID: PMC9268346 DOI: 10.3390/nu14132643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Anthocyanidins are a kind of water-soluble flavonoids widely found in flowers and fruits of many plants. Although the beneficial effect of anthocyanidins in cancer prevention has been discussed, the value of anthocyanidins in lung cancer prevention requires further investigation. In this study, we aimed to explore the role of dietary anthocyanidins in the prevention of lung cancer in population-based prospective studies. Methods: Data of participants in this study were collected from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated in Cox proportional hazards regression for the association of dietary anthocyanidins and lung cancer risk. The dose-response relationship was explored between total anthocyanidins and the incidence of lung cancer. Results: A total of 97,993 participants were included in this study. The calculated HRs showed a trend that a higher quartile of total anthocyanidins indicated lower risk of lung cancer after adjusting for covariates (HRQ4vsQ1: 0.63; 95% CI: 0.55,0.73; p for trend < 0.001). A non-linear association between total anthocyanidins and lung cancer risk was found in the restricted cubic spline model. Conclusion: A protective association between dietary anthocyanidins and risk of lung cancer in Americans was investigated.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (M.Z.); (H.W.); (L.C.)
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (M.Z.); (H.W.); (L.C.)
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huajing Wan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (M.Z.); (H.W.); (L.C.)
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (M.Z.); (H.W.); (L.C.)
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (M.Z.); (H.W.); (L.C.)
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
17
|
Panchal SK, John OD, Mathai ML, Brown L. Anthocyanins in Chronic Diseases: The Power of Purple. Nutrients 2022; 14:2161. [PMID: 35631301 PMCID: PMC9142943 DOI: 10.3390/nu14102161] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Anthocyanins are mainly purple-coloured phenolic compounds of plant origin that as secondary metabolites are important in plant survival. Understanding their health benefits in humans requires sourcing these unstable compounds in sufficient quantities at a reasonable cost, which has led to improved methods of extraction. Dark-coloured fruits, cereals and vegetables are current sources of these compounds. The range of potential sustainable sources is much larger and includes non-commercialised native plants from around the world and agri-waste containing anthocyanins. In the last 5 years, there have been significant advances in developing the therapeutic potential of anthocyanins in chronic human diseases. Anthocyanins exert their beneficial effects through improvements in gut microbiota, oxidative stress and inflammation, and modulation of neuropeptides such as insulin-like growth factor-1. Their health benefits in humans include reduced cognitive decline; protection of organs such as the liver, as well as the cardiovascular system, gastrointestinal tract and kidneys; improvements in bone health and obesity; and regulation of glucose and lipid metabolism. This review summarises some of the sources of anthocyanins and their mechanisms and benefits in the treatment of chronic human diseases.
Collapse
Affiliation(s)
- Sunil K. Panchal
- School of Science, Western Sydney University, Penrith, NSW 2753, Australia;
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW 2753, Australia
| | - Oliver D. John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; or
| | - Michael L. Mathai
- Institute of Health and Sport, College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia;
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
18
|
Reguengo LM, Nascimento RDPD, Machado APDF, Marostica Junior MR. Signaling pathways and the potential anticarcinogenic effect of native Brazilian fruits on breast cancer. Food Res Int 2022; 155:111117. [DOI: 10.1016/j.foodres.2022.111117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/22/2022]
|
19
|
Cruz L, Basílio N, Mateus N, de Freitas V, Pina F. Natural and Synthetic Flavylium-Based Dyes: The Chemistry Behind the Color. Chem Rev 2021; 122:1416-1481. [PMID: 34843220 DOI: 10.1021/acs.chemrev.1c00399] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Flavylium compounds are a well-known family of pigments because they are prevalent in the plant kingdom, contributing to colors over a wide range from shades of yellow-red to blue in fruits, flowers, leaves, and other plant parts. Flavylium compounds include a large variety of natural compound classes, namely, anthocyanins, 3-deoxyanthocyanidins, auronidins, and their respective aglycones as well as anthocyanin-derived pigments (e.g., pyranoanthocyanins, anthocyanin-flavan-3-ol dimers). During the past few decades, there has been increasing interest among chemists in synthesizing different flavylium compounds that mimic natural structures but with different substitution patterns that present a variety of spectroscopic characteristics in view of their applications in different industrial fields. This Review provides an overview of the chemistry of flavylium-based compounds, in particular, the synthetic and enzymatic approaches and mechanisms reported in the literature for obtaining different classes of pigments, their physical-chemical properties in relation to their pH-dependent equilibria network, and their chemical and enzymatic degradation. The development of flavylium-based systems is also described throughout this Review for emergent applications to explore some of the physical-chemical properties of the multistate of species generated by these compounds.
Collapse
Affiliation(s)
- Luis Cruz
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Nuno Basílio
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Fernando Pina
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
20
|
Salazar-Orbea GL, García-Villalba R, Tomás-Barberán FA, Sánchez-Siles LM. High-Pressure Processing vs. Thermal Treatment: Effect on the Stability of Polyphenols in Strawberry and Apple Products. Foods 2021; 10:2919. [PMID: 34945472 PMCID: PMC8700600 DOI: 10.3390/foods10122919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Polyphenols are important bioactive compounds that are affected by processing. The consumer's demand for minimally processed products contributes to the increase in non-thermal technologies such as high-pressure processing (HPP) in the food industry. This review is aimed at critically discussing the positive and negative effects of thermal treatment (TT) and HPP on the stability of different polyphenol families in agro-food products obtained from strawberry and apple, two of the most used fruits in food processing. Our findings show that the phenolic content was affected by processing, fruit type, polyphenol family, and storage conditions (time and temperature) of the final product. To increase shelf life, manufacturers aiming to preserve the natural content of polyphenols need to find the sweet spot between polyphenol stability and product shelf-life since the residual enzyme activity from HPP can affect polyphenols negatively.
Collapse
Affiliation(s)
- Gabriela Lorena Salazar-Orbea
- Quality, Safety and Bioactivity of Plant-Derived Foods, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), 30100 Murcia, Spain; (G.L.S.-O.); (R.G.-V.)
| | - Rocío García-Villalba
- Quality, Safety and Bioactivity of Plant-Derived Foods, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), 30100 Murcia, Spain; (G.L.S.-O.); (R.G.-V.)
| | - Francisco A. Tomás-Barberán
- Quality, Safety and Bioactivity of Plant-Derived Foods, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), 30100 Murcia, Spain; (G.L.S.-O.); (R.G.-V.)
| | - Luis Manuel Sánchez-Siles
- Research and Nutrition Department, Hero Group, 30820 Alcantarilla, Spain;
- Institute for Research and Nutrition, Hero Group, 5600 Lenzburg, Switzerland
| |
Collapse
|
21
|
Sharma A, Choi HK, Kim YK, Lee HJ. Delphinidin and Its Glycosides' War on Cancer: Preclinical Perspectives. Int J Mol Sci 2021; 22:11500. [PMID: 34768930 PMCID: PMC8583959 DOI: 10.3390/ijms222111500] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Until now, several studies have looked at the issue of anthocyanin and cancer, namely the preventive and inhibitory effects of anthocyanins, as well as the underlying molecular processes. However, no targeted review is available regarding the anticarcinogenic effects of delphinidin and its glycosides on various cancers and their plausible molecular mechanisms. Considerable evidence shows significant anticancer properties of delphinidin-rich preparations and delphinidin alone both in vitro and in vivo. This review covers the in vitro and preclinical implications of delphinidin-mediated cell protection and cancer prevention; thus, we strongly recommend that delphinidin-rich preparations be further investigated as potential functional food, dietary antioxidant supplements, and natural health products targeting specific chronic diseases, including cancer. In addition to in vitro investigations, future research should focus on more animal and human studies to determine the true potential of delphinidin.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea;
| | - Hyo-Kyoung Choi
- Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Korea;
| | - Yeon-Kye Kim
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Gijang-eup, Busan 46083, Korea;
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea
| |
Collapse
|
22
|
Kozłowska A, Dzierżanowski T. Targeting Inflammation by Anthocyanins as the Novel Therapeutic Potential for Chronic Diseases: An Update. Molecules 2021; 26:4380. [PMID: 34299655 PMCID: PMC8304181 DOI: 10.3390/molecules26144380] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Low-grade chronic inflammation (LGCI) and oxidative stress act as cooperative and synergistic partners in the pathogenesis of a wide variety of diseases. Polyphenols, including anthocyanins, are involved in regulating the inflammatory state and activating the endogenous antioxidant defenses. Anthocyanins' effects on inflammatory markers are promising and may have the potential to exert an anti-inflammatory effect in vitro and in vivo. Therefore, translating these research findings into clinical practice would effectively contribute to the prevention and treatment of chronic disease. The present narrative review summarizes the results of clinical studies from the last 5 years in the context of the anti-inflammatory and anti-oxidative role of anthocyanins in both health and disease. There is evidence to indicate that anthocyanins supplementation in the regulation of pro-inflammatory markers among the healthy and chronic disease population. Although the inconsistencies between the result of randomized control trials (RCTs) and meta-analyses were also observed. Regarding anthocyanins' effects on inflammatory markers, there is a need for long-term clinical trials allowing for the quantifiable progression of inflammation. The present review can help clinicians and other health care professionals understand the importance of anthocyanins use in patients with chronic diseases.
Collapse
Affiliation(s)
| | - Tomasz Dzierżanowski
- Department of Social Medicine and Public Health, Medical University of Warsaw, 02-776 Warsaw, Poland;
| |
Collapse
|
23
|
Polyphenol-Enriched Blueberry Preparation Controls Breast Cancer Stem Cells by Targeting FOXO1 and miR-145. Molecules 2021; 26:molecules26144330. [PMID: 34299605 PMCID: PMC8304479 DOI: 10.3390/molecules26144330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Scientific evidence supports the early deregulation of epigenetic profiles during breast carcinogenesis. Research shows that cellular transformation, carcinogenesis, and stemness maintenance are regulated by epigenetic-specific changes that involve microRNAs (miRNAs). Dietary bioactive compounds such as blueberry polyphenols may modulate susceptibility to breast cancer by the modulation of CSC survival and self-renewal pathways through the epigenetic mechanism, including the regulation of miRNA expression. Therefore, the current study aimed to assay the effect of polyphenol enriched blueberry preparation (PEBP) or non-fermented blueberry juice (NBJ) on the modulation of miRNA signature and the target proteins associated with different clinical-pathological characteristics of breast cancer such as stemness, invasion, and chemoresistance using breast cancer cell lines. To this end, 4T1 and MB-MDM-231 cell lines were exposed to NBJ or PEBP for 24 h. miRNA profiling was performed in breast cancer cell cultures, and RT-qPCR was undertaken to assay the expression of target miRNA. The expression of target proteins was examined by Western blotting. Profiling of miRNA revealed that several miRNAs associated with different clinical-pathological characteristics were differentially expressed in cells treated with PEBP. The validation study showed significant downregulation of oncogenic miR-210 expression in both 4T1 and MDA-MB-231 cells exposed to PEBP. In addition, expression of tumor suppressor miR-145 was significantly increased in both cell lines treated with PEBP. Western blot analysis showed a significant increase in the relative expression of FOXO1 in 4T1 and MDA-MB-231 cells exposed to PEBP and in MDA-MB-231 cells exposed to NBJ. Furthermore, a significant decrease was observed in the relative expression of N-RAS in 4T1 and MDA-MB-231 cells exposed to PEBP and in MDA-MB-231 cells exposed to NBJ. Our data indicate a potential chemoprevention role of PEBP through the modulation of miRNA expression, particularly miR-210 and miR-145, and protection against breast cancer development and progression. Thus, PEBP may represent a source for novel chemopreventative agents against breast cancer.
Collapse
|
24
|
Special issue: Diet, lipids, and cancer: From Pathogenic mechanisms to potential therapeutic strategies. Semin Cancer Biol 2021; 73:1-3. [PMID: 34015466 DOI: 10.1016/j.semcancer.2021.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|