1
|
Sharma S, Feng L, Boonpattrawong N, Kapur A, Barroilhet L, Patankar MS, Ericksen SS. Data mining of PubChem bioassay records reveals diverse OXPHOS inhibitory chemotypes as potential therapeutic agents against ovarian cancer. J Cheminform 2024; 16:112. [PMID: 39375760 PMCID: PMC11460086 DOI: 10.1186/s13321-024-00906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/15/2024] [Indexed: 10/09/2024] Open
Abstract
Focused screening on target-prioritized compound sets can be an efficient alternative to high throughput screening (HTS). For most biomolecular targets, compound prioritization models depend on prior screening data or a target structure. For phenotypic or multi-protein pathway targets, it may not be clear which public assay records provide relevant data. The question also arises as to whether data collected from disparate assays might be usefully consolidated. Here, we report on the development and application of a data mining pipeline to examine these issues. To illustrate, we focus on identifying inhibitors of oxidative phosphorylation, a druggable metabolic process in epithelial ovarian tumors. The pipeline compiled 8415 available OXPHOS-related bioassays in the PubChem data repository involving 312,093 unique compound records. Application of PubChem assay activity annotations, PAINS (Pan Assay Interference Compounds), and Lipinski-like bioavailability filters yields 1852 putative OXPHOS-active compounds that fall into 464 clusters. These chemotypes are diverse but have relatively high hydrophobicity and molecular weight but lower complexity and drug-likeness. These chemotypes show a high abundance of bicyclic ring systems and oxygen containing functional groups including ketones, allylic oxides (alpha/beta unsaturated carbonyls), hydroxyl groups, and ethers. In contrast, amide and primary amine functional groups have a notably lower than random prevalence. UMAP representation of the chemical space shows strong divergence in the regions occupied by OXPHOS-inactive and -active compounds. Of the six compounds selected for biological testing, 4 showed statistically significant inhibition of electron transport in bioenergetics assays. Two of these four compounds, lacidipine and esbiothrin, increased in intracellular oxygen radicals (a major hallmark of most OXPHOS inhibitors) and decreased the viability of two ovarian cancer cell lines, ID8 and OVCAR5. Finally, data from the pipeline were used to train random forest and support vector classifiers that effectively prioritized OXPHOS inhibitory compounds within a held-out test set (ROCAUC 0.962 and 0.927, respectively) and on another set containing 44 documented OXPHOS inhibitors outside of the training set (ROCAUC 0.900 and 0.823). This prototype pipeline is extensible and could be adapted for focus screening on other phenotypic targets for which sufficient public data are available.Scientific contributionHere, we describe and apply an assay data mining pipeline to compile, process, filter, and mine public bioassay data. We believe the procedure may be more broadly applied to guide compound selection in early-stage hit finding on novel multi-protein mechanistic or phenotypic targets. To demonstrate the utility of our approach, we apply a data mining strategy on a large set of public assay data to find drug-like molecules that inhibit oxidative phosphorylation (OXPHOS) as candidates for ovarian cancer therapies.
Collapse
Affiliation(s)
- Sejal Sharma
- University of Wisconsin-Madison, Department of Obstetrics and Gynecology, Madison, WI, 53705, USA
| | - Liping Feng
- University of Wisconsin-Madison, Department of Obstetrics and Gynecology, Madison, WI, 53705, USA
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Nicha Boonpattrawong
- University of Wisconsin-Madison, Department of Obstetrics and Gynecology, Madison, WI, 53705, USA
| | - Arvinder Kapur
- University of Wisconsin-Madison, Department of Obstetrics and Gynecology, Madison, WI, 53705, USA
| | - Lisa Barroilhet
- University of Wisconsin-Madison, Department of Obstetrics and Gynecology, Madison, WI, 53705, USA
| | - Manish S Patankar
- University of Wisconsin-Madison, Department of Obstetrics and Gynecology, Madison, WI, 53705, USA.
| | - Spencer S Ericksen
- University of Wisconsin-Madison, UW-Carbone Cancer Center, Drug Development Core, Small Molecule Screening Facility, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
2
|
Doostmohammadi A, Jooya H, Ghorbanian K, Gohari S, Dadashpour M. Potentials and future perspectives of multi-target drugs in cancer treatment: the next generation anti-cancer agents. Cell Commun Signal 2024; 22:228. [PMID: 38622735 PMCID: PMC11020265 DOI: 10.1186/s12964-024-01607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Cancer is a major public health problem worldwide with more than an estimated 19.3 million new cases in 2020. The occurrence rises dramatically with age, and the overall risk accumulation is combined with the tendency for cellular repair mechanisms to be less effective in older individuals. Conventional cancer treatments, such as radiotherapy, surgery, and chemotherapy, have been used for decades to combat cancer. However, the emergence of novel fields of cancer research has led to the exploration of innovative treatment approaches focused on immunotherapy, epigenetic therapy, targeted therapy, multi-omics, and also multi-target therapy. The hypothesis was based on that drugs designed to act against individual targets cannot usually battle multigenic diseases like cancer. Multi-target therapies, either in combination or sequential order, have been recommended to combat acquired and intrinsic resistance to anti-cancer treatments. Several studies focused on multi-targeting treatments due to their advantages include; overcoming clonal heterogeneity, lower risk of multi-drug resistance (MDR), decreased drug toxicity, and thereby lower side effects. In this study, we'll discuss about multi-target drugs, their benefits in improving cancer treatments, and recent advances in the field of multi-targeted drugs. Also, we will study the research that performed clinical trials using multi-target therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Ali Doostmohammadi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Jooya
- Biochemistry Group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Kimia Ghorbanian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sargol Gohari
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
3
|
Bhogal I, Pankaj V, Provaznik V, Roy S. In silico investigation of cholesterol-lowering drugs to find potential inhibitors of dehydrosqualene synthase in Staphylococcus aureus. 3 Biotech 2024; 14:39. [PMID: 38261920 PMCID: PMC10794677 DOI: 10.1007/s13205-023-03862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 11/21/2023] [Indexed: 01/25/2024] Open
Abstract
Staphylococcus aureus is a lethal pathogen that can cause various bacterial infections. This study targets the CrtM enzyme of S. aureus, which is crucial for synthesizing golden carotenoid pigment: staphyloxanthin, which provides anti-oxidant activity to this bacterium for combating antimicrobial resistance inside the host cell. The present investigation quests for human SQS inhibitors against the CrtM enzyme by employing structure-based drug design approaches including induced fit docking (IFD), molecular dynamic (MD) simulations, and binding free energy calculations. Depending upon the docking scores, two compounds, lapaquistat acetate and squalestatin analog 20, were identified as the lead molecules exhibit higher affinity toward the CrtM enzyme. These docked complexes were further subjected to 100 ns MD simulation and several thermodynamics parameters were analyzed. Further, the binding free energies (ΔG) were calculated for each simulated protein-ligand complex to study the stability of molecular contacts using the MM-GBSA approach. Pre-ADMET analysis was conducted for systematic evaluation of physicochemical and medicinal chemistry properties of these compounds. The above study suggested that lapaquistat acetate and squalestatin analog 20 can be selected as potential lead candidates with promising binding affinity for the S. aureus CrtM enzyme. This study might provide insights into the discovery of potential drug candidates for S. aureus with a high therapeutic index. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03862-y.
Collapse
Affiliation(s)
- Inderjeet Bhogal
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, 616 00 Czech Republic
| | - Vaishali Pankaj
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, 616 00 Czech Republic
| | - Valentine Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, 616 00 Czech Republic
| | - Sudeep Roy
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, 616 00 Czech Republic
| |
Collapse
|
4
|
Zhang Y, Song J, Zhou Y, Jia H, Zhou T, Sun Y, Gao Q, Zhao Y, Pan Y, Sun Z, Chu P. Discovery of selective and potent USP22 inhibitors via structure-based virtual screening and bioassays exerting anti-tumor activity. Bioorg Chem 2023; 141:106842. [PMID: 37769523 DOI: 10.1016/j.bioorg.2023.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/20/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Ubiquitin-specific protease 22 (USP22) plays a prominent role in tumor development, invasion, metastasis and immune reprogramming, which has been proposed as a potential therapeutic target for cancer. Herein, we employed a structure-based discovery and biological evaluation and discovered that Rottlerin (IC50 = 2.53 μM) and Morusin (IC50 = 8.29 μM) and as selective and potent USP22 inhibitors. Treatment of HCT116 cells and A375 cells with each of the two compounds resulted in increased monoubiquitination of histones H2A and H2B, as well as reduced protein expression levels of Sirt1 and PD-L1, all of which are known as USP22 substrates. Additionally, our study demonstrated that the administration of Rottlerin or Morusin resulted in an increase H2Bub levels, while simultaneously reducing the expression of Sirt1 and PD-L1 in a manner dependent on USP22. Furthermore, Rottlerin and Morusin were found to enhance the degradation of PD-L1 and Sirt1, as well as increase the polyubiquitination of endogenous PD-L1 and Sirt1 in HCT116 cells. Moreover, in an in vivo syngeneic tumor model, Rottlerin and Morusin exhibited potent antitumor activity, which was accompanied by an enhanced infiltration of T cells into the tumor tissues. Using in-depth molecular dynamics (MD) and binding free energy calculation, conserved residue Leu475 and non-conserved residue Arg419 were proven to be crucial for the binding affinity and inhibitory function of USP22 inhibitors. In summary, our study established a highly efficient approach for USP22-specific inhibitor discovery, which lead to identification of two selective and potent USP22 inhibitors as potential drugs in anticancer therapy.
Collapse
Affiliation(s)
- Yue Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jiankun Song
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Yuanzhang Zhou
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Huijun Jia
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Tianyu Zhou
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yingbo Sun
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Qiong Gao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Yue Zhao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Yujie Pan
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhaolin Sun
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China.
| | - Peng Chu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
5
|
Chen X, Wei Q, Si F, Wang F, Lu Q, Guo Z, Chai Y, Zhu R, Xing G, Jin Q, Zhang G. Design and Identification of a Novel Antiviral Affinity Peptide against Fowl Adenovirus Serotype 4 (FAdV-4) by Targeting Fiber2 Protein. Viruses 2023; 15:v15040821. [PMID: 37112802 PMCID: PMC10146638 DOI: 10.3390/v15040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Outbreaks of hydropericardium hepatitis syndrome caused by fowl adenovirus serotype 4 (FAdV-4) with a novel genotype have been reported in China since 2015, with significant economic losses to the poultry industry. Fiber2 is one of the important structural proteins on FAdV-4 virions. In this study, the C-terminal knob domain of the FAdV-4 Fiber2 protein was expressed and purified, and its trimer structure (PDB ID: 7W83) was determined for the first time. A series of affinity peptides targeting the knob domain of the Fiber2 protein were designed and synthesized on the basis of the crystal structure using computer virtual screening technology. A total of eight peptides were screened using an immunoperoxidase monolayer assay and RT-qPCR, and they exhibited strong binding affinities to the knob domain of the FAdV-4 Fiber2 protein in a surface plasmon resonance assay. Treatment with peptide number 15 (P15; WWHEKE) at different concentrations (10, 25, and 50 μM) significantly reduced the expression level of the Fiber2 protein and the viral titer during FAdV-4 infection. P15 was found to be an optimal peptide with antiviral activity against FAdV-4 in vitro with no cytotoxic effect on LMH cells up to 200 μM. This study led to the identification of a class of affinity peptides designed using computer virtual screening technology that targeted the knob domain of the FAdV-4 Fiber2 protein and may be developed as a novel potential and effective antiviral strategy in the prevention and control of FAdV-4.
Collapse
Affiliation(s)
- Xiao Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Fangyu Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qingxia Lu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhenhua Guo
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yongxiao Chai
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Rongfang Zhu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qianyue Jin
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Pandiyan S, Wang L. A comprehensive review on recent approaches for cancer drug discovery associated with artificial intelligence. Comput Biol Med 2022; 150:106140. [PMID: 36179510 DOI: 10.1016/j.compbiomed.2022.106140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/20/2022] [Accepted: 09/18/2022] [Indexed: 11/03/2022]
Abstract
Through the revolutionization of artificial intelligence (AI) technologies in clinical research, significant improvement is observed in diagnosis of cancer. Utilization of these AI technologies, such as machine and deep learning, is imperative for the discovery of novel anticancer drugs and improves existing/ongoing cancer therapeutics. However, building a model for complicated cancers and their types remains a challenge due to lack of effective therapeutics that hinder the establishment of effective computational tools. In this review, we exploit recent approaches and state-of-the-art in implementing AI methods for anticancer drug discovery, and discussed how advances in these applications need to be considered in the current cancer therapeutics. Considering the immense potential of AI, we explore molecular docking and their interactions to recognize metabolic activities that support drug design. Finally, we highlight corresponding strategies in applying machine and deep learning methods to various types of cancer with their pros and cons.
Collapse
Affiliation(s)
- Sanjeevi Pandiyan
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China; School of Information Science and Technology, Nantong University, Nantong, China; Nantong Research Institute for Advanced Communication Technologies, Nantong, China
| | - Li Wang
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China; School of Information Science and Technology, Nantong University, Nantong, China; Nantong Research Institute for Advanced Communication Technologies, Nantong, China.
| |
Collapse
|
7
|
Kalia VC, Lee JK, Rangappa KS, Gupta VK. Special issue Microbes in Cancer Research in 'Seminar in Cancer Biology' 2021. Semin Cancer Biol 2022; 86:1102-1104. [PMID: 34979275 DOI: 10.1016/j.semcancer.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | | | - Vijai Kumar Gupta
- Center for Safe and Improved Food, & Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|