1
|
Soeratram TTD, Beentjes I, Egthuijsen JMP, Mookhoek A, Lange MM, Meershoek-Klein Kranenbarg E, Hartgrink HH, van de Velde CJH, Ylstra B, van Laarhoven HWM, van Grieken NCT. A biopsy-based Immunoscore in patients with treatment-naïve resectable gastric cancer. Ther Adv Med Oncol 2024; 16:17588359241287747. [PMID: 39444424 PMCID: PMC11497501 DOI: 10.1177/17588359241287747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Background The prognostic significance of T-cell densities in gastric cancer (GC) was previously demonstrated in surgical resection specimens. For prognosis or response prediction, it is preferable to identify biomarkers in pre-treatment biopsies; yet, its representativeness of the tumor immune microenvironment is unclear. Objectives This study aimed to evaluate the concordance and prognostic value of T-cell densities in paired biopsies and resections. Methods Paired diagnostic biopsies and surgical resections were available for 131 patients with resectable GC who were treated with surgery alone in the D1/D2 trial. T-cell markers such as CD3, CD45RO, CD8, FOXP3, and Granzyme B were assessed by immunohistochemistry and digitally quantified. Tumors were categorized into high and low subgroups for each marker. The concordance between biopsies and resections was determined for each marker with Cohen's κ. To determine the prognostic value of T cells in biopsies, Cox regression was performed. Results The concordance of T-cell high and low tumors was moderate for CD8 (κ = 0.58) and weak for other markers (κ < 0.3). CD8 and FOXP3 densities in biopsies were significantly associated with cancer-specific survival. Multivariable analysis showed that an Immunoscore incorporating CD8 and FOXP3 served as an independent prognostic marker (low vs high: hazard ratio 3.40, 95% confidence interval: 1.27-9.10; p = 0.015). Conclusion Although the concordance in T-cell densities between biopsy and resection specimens is modest, a biopsy-based Immunoscore identified distinct biological subgroups with prognostic potential. To fully evaluate the prognostic performance of this biopsy Immunoscore, additional studies are warranted.
Collapse
Affiliation(s)
- Tanya T. D. Soeratram
- Department of Pathology, Amsterdam UMC location VUmc, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Isis Beentjes
- Department of Pathology, Amsterdam UMC location VUmc, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Jacqueline M. P. Egthuijsen
- Department of Pathology, Amsterdam UMC location VUmc, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Aart Mookhoek
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Marilyne M. Lange
- Department of Pathology, Amsterdam UMC location VUmc Amsterdam, Amsterdam, The Netherlands
| | | | - Henk H. Hartgrink
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Bauke Ylstra
- Department of Pathology, Amsterdam UMC location VUmc, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Hanneke W. M. van Laarhoven
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole C. T. van Grieken
- Department of Pathology, Amsterdam UMC location VUmc, Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Gervaso L, Ciardiello D, Oliveira RA, Borghesani M, Guidi L, Benini L, Algeri L, Spada F, Zampino MG, Cella CA, Fazio N. Immunotherapy in the neoadjuvant treatment of gastrointestinal tumors: is the time ripe? J Immunother Cancer 2024; 12:e008027. [PMID: 38782539 PMCID: PMC11116869 DOI: 10.1136/jitc-2023-008027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) revolutionized the management of mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) gastrointestinal (GI) cancers. Based on notable results observed in the metastatic setting, several clinical trials investigated ICIs as neoadjuvant treatment (NAT) for localized dMMR/MSI-H GI cancers, achieving striking results in terms of clinical and pathological responses and creating the opportunity to spare patients from neoadjuvant chemotherapy and/or radiotherapy and even surgical resection. Nevertheless, these impressive findings are mainly derived from small proof of concept phase II studies and there are still several open questions to address. Moreover, dMMR/MSI-H represents a limited subgroup accounting for less than 10% of GI cancers. Consequently, many efforts have been produced to investigate neoadjuvant ICIs also in mismatch repair-proficient/microsatellite stable (MSS) cancers, considering the potential synergistic effect in combining immune-targeted agents with standard therapies such as chemo and/or radiotherapy. However, results for combining ICIs to the standard of care in the unselected population are still unsatisfactory, without improvements in event-free survival in esophago-gastric adenocarcinoma for the addition of pembrolizumab to chemotherapy, and sometimes limited benefit in patients with locally advanced rectal cancer. Therefore, a major challenge will be to identify among the heterogenous spectrum of this disease, those patients that could take advantage of neoadjuvant immunotherapy and deliver the most effective treatment. In this review we discuss the rationale of NAT in GI malignancies, summarize the available evidence regarding the completed trials that evaluated this treatment strategy in both MSI-H and MSS tumors. Finally, we discuss ongoing studies and future perspectives to render neoadjuvant immunotherapy another arrow in the quiver for the treatment of locally advanced GI tumors.
Collapse
Affiliation(s)
- Lorenzo Gervaso
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO IRCCS, European Institute of Oncology, Milano, Italy
- Molecular Medicine Program, University of Pavia, Pavia, Lombardia, Italy
| | - Davide Ciardiello
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO IRCCS, European Institute of Oncology, Milano, Italy
| | | | - Michele Borghesani
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO IRCCS, European Institute of Oncology, Milano, Italy
| | - Lorenzo Guidi
- Division of New Drugs and Early Drug Development for Innovative Therapies, IEO IRCCS, European Institute of Oncology, Milano, Italy
| | - Lavinia Benini
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO IRCCS, European Institute of Oncology, Milano, Italy
| | - Laura Algeri
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO IRCCS, European Institute of Oncology, Milano, Italy
| | - Francesca Spada
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO IRCCS, European Institute of Oncology, Milano, Italy
| | - Maria Giulia Zampino
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO IRCCS, European Institute of Oncology, Milano, Italy
| | - Chiara Alessandra Cella
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO IRCCS, European Institute of Oncology, Milano, Italy
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO IRCCS, European Institute of Oncology, Milano, Italy
| |
Collapse
|
3
|
Gao Y, Wu R, Pei Z, Ke C, Zeng D, Li X, Zhang Y. Cell cycle associated protein 1 associates with immune infiltration and ferroptosis in gastrointestinal cancer. Heliyon 2024; 10:e28794. [PMID: 38586390 PMCID: PMC10998105 DOI: 10.1016/j.heliyon.2024.e28794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Background Cell Cycle-Associated Protein 1 (CAPRIN1) play an important role in cell proliferation, oxidative stress, and inflammatory response. Nonetheless, its role in tumor immunity and ferroptosis is largely unknown in gastrointestinal cancer patients. Methods Through comprehensive bioinformatics, we investigate CAPRIN1 expression patterns and its role in diagnosis, functional signaling pathways, tumor immune infiltration and ferroptosis of different gastrointestinal cancer subtypes. Besides, immunohistochemistry (IHC) and immune blot were used to validate our esophagus cancer clinical data. The ferroptotic features of CAPRIN1 in vitro were assessed through knockdown assays in esophagus cancer cells. Results CAPRIN1 expression was significantly upregulated, correlated with poor prognosis, and served as an independent risk factor for most gastrointestinal cancer. Moreover, CAPRIN1 overexpression positively correlated with gene markers of most infiltrating immune cells, and immune checkpoints. CAPRIN1 knockdown significantly decreased the protein level of major histocompatibility complex class I molecules. We also identified a link between CAPRIN1 and ferroptosis-related genes in gastrointestinal cancer. Knockdown of CAPRIN1 significantly increased the production of lipid reactive oxygen species and malondialdehyde. Inhibition of CAPRIN1 expression promoted ferroptotic cell death induced by RAS-selective lethal 3 and erastin in human esophagus cancer cells. Conclusion Collectively, our results demonstrate that CAPRIN1 is aberrantly expressed in gastrointestinal cancer, is associated with poor prognosis, and could potentially influence immune infiltration and ferroptosis.
Collapse
Affiliation(s)
- Yan Gao
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Ruimin Wu
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhijun Pei
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Changbin Ke
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Daobing Zeng
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaohui Li
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
4
|
Xiang Y, Liu X, Wang Y, Zheng D, Meng Q, Jiang L, Yang S, Zhang S, Zhang X, Liu Y, Wang B. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges. Front Immunol 2024; 15:1366260. [PMID: 38655260 PMCID: PMC11035781 DOI: 10.3389/fimmu.2024.1366260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Resistance to targeted therapy and immunotherapy in non-small cell lung cancer (NSCLC) is a significant challenge in the treatment of this disease. The mechanisms of resistance are multifactorial and include molecular target alterations and activation of alternative pathways, tumor heterogeneity and tumor microenvironment change, immune evasion, and immunosuppression. Promising strategies for overcoming resistance include the development of combination therapies, understanding the resistance mechanisms to better use novel drug targets, the identification of biomarkers, the modulation of the tumor microenvironment and so on. Ongoing research into the mechanisms of resistance and the development of new therapeutic approaches hold great promise for improving outcomes for patients with NSCLC. Here, we summarize diverse mechanisms driving resistance to targeted therapy and immunotherapy in NSCLC and the latest potential and promising strategies to overcome the resistance to help patients who suffer from NSCLC.
Collapse
Affiliation(s)
- Yuchu Xiang
- West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Xudong Liu
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Dawei Zheng
- The College of Life Science, Sichuan University, Chengdu, China
| | - Qiuxing Meng
- Department of Laboratory Medicine, Liuzhou People’s Hospital, Liuzhou, China
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People’s Hospital), Liuzhou, China
| | - Lingling Jiang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sha Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Zhongshan Hospital of Fudan University, Xiamen, Fujian, China
| | - Yan Liu
- Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Wang
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Chick RC, Ruff SM, Pawlik TM. Neoadjuvant systemic therapy for hepatocellular carcinoma. Front Immunol 2024; 15:1355812. [PMID: 38495884 PMCID: PMC10940409 DOI: 10.3389/fimmu.2024.1355812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Surgical resection and liver transplant remain the only curative therapies for most patients with hepatocellular carcinoma (HCC). Systemic therapy options have typically been ineffective, but recent advances, such as the combination of immune checkpoint inhibitors and targeted therapies, have shown great promise. Neoadjuvant systemic therapy in resectable or locally advanced HCC is under active investigation with encouraging results in small, early-phase trials. Many of these completed and ongoing trials include combinations of systemic therapy (e.g. immune checkpoint inhibitors, tyrosine kinase inhibitors), transarterial therapies, and radiation. Despite early successes, larger trials with evaluation of long-term oncologic outcomes are needed to determine the role of neoadjuvant systemic therapy in patients with HCC who may be eligible for curative intent surgery or transplant.
Collapse
Affiliation(s)
| | | | - Timothy M. Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
6
|
Feng Y, Guo K, Jin H, Jiang J, Wang M, Lin S. Efficacy and safety of neoadjuvant combination immunotherapy in surgically resectable malignant solid tumors: a systematic review and meta-analysis. Expert Rev Anticancer Ther 2024; 24:169-181. [PMID: 38436076 DOI: 10.1080/14737140.2024.2325404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVES Neoadjuvant immunotherapy has emerged as a prominent research focus recently. For potentially operable patients, neoadjuvant therapy serves as a primary method to reduce tumor load and facilitate surgical interventions. METHODS We retrieved articles from PubMed, Embase, Cochrane Library, American Society of Clinical Oncology, and European Society of Medical Oncology websites from inception to December 2023. Statistical analyses were performed using the R software. Primary outcomes assessed included major pathological response (MPR), pathological complete response (pCR), and treatment-related adverse events (trAEs). RESULTS 29 studies encompassing 1163 patients were included. The MPR rate of neoadjuvant combination immunotherapy was 38% (95% confidence interval [CI]: 25%-52%), and the pCR rate was 33% (95%CI: 25%-42%). These values were significantly higher than those obtained with single agent immunotherapy (p < 0.001). The pooled incidence of overall trAEs was 83% (95%CI: 73%-92%), and grade (G) 3-4 trAEs was 22% (95%CI: 15%-29%), both significantly higher than those observed with single agent immunotherapy (p < 0.05). CONCLUSION This study demonstrated the efficacy of neoadjuvant combination immunotherapy. Given that the majority of the included trials were phase II with small sample sizes, further multicenter phase III randomized controlled trials should be conducted to validate the findings of the review.
Collapse
Affiliation(s)
- Yuqian Feng
- Hangzhou School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kaibo Guo
- Department of Oncology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huimin Jin
- Department of Oncology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jing Jiang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Menglei Wang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shengyou Lin
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Cui H, Liang W, Cui J, Song L, Yuan Z, Chen L, Wei B. Safety and feasibility of minimally invasive gastrectomy after neoadjuvant immunotherapy for locally advanced gastric cancer: a propensity score-matched analysis in China. Gastroenterol Rep (Oxf) 2024; 12:goae005. [PMID: 38425656 PMCID: PMC10902683 DOI: 10.1093/gastro/goae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/12/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Background The effect of neoadjuvant immunotherapy on minimally invasive gastrectomy (MIG) for locally advanced gastric cancer (LAGC) remains controversial. This study aimed to compare short-term outcomes between MIG after neoadjuvant chemo-immunotherapy (NICT-MIG) and MIG after neoadjuvant chemotherapy alone (NCT-MIG), and determine risk factors for post-operative complications (POCs). Methods This retrospective study included clinicopathologic data from 193 patients who underwent NCT-MIG or NICT-MIG between January 2020 and February 2023 in the Department of General Surgery, Chinese People's Liberation Army General Hospital First Medical Center (Beijing, China). Propensity score-matched analysis at a ratio of 1:2 was performed to reduce bias from confounding patient-related variables and short-term outcomes were compared between the two groups. Results The baseline characteristics were comparable between 49 patients in the NICT-MIG group and 86 patients in the NCT-MIG group after propensity score matching. Objective and pathologic complete response rates were significantly higher in the NICT-MIG group than in the NCT-MIG group (P < 0.05). The overall incidence of treat-related adverse events, intraoperative bleeding, operation time, number of retrieved lymph nodes, time to the first flatus, post-operative duration of hospitalization, overall morbidity, and severe morbidity were comparable between the NCT-MIG and NICT-MIG groups (P > 0.05). By multivariate logistic analysis, estimated blood loss of >200 mL (P = 0.010) and prognostic nutritional index (PNI) score of <45 (P = 0.003) were independent risk factors for POCs after MIG following neoadjuvant therapy. Conclusions Safety and feasibility of NICT were comparable to those of NCT in patients undergoing MIG for LAGC. Patients with an estimated blood loss of >200 mL or a PNI score of <45 should be carefully evaluated for increased POCs risk.
Collapse
Affiliation(s)
- Hao Cui
- School of Medicine, Nankai University, Tianjin, P. R. China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, P. R. China
| | - Wenquan Liang
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, P. R. China
| | - Jianxin Cui
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, P. R. China
| | - Liqiang Song
- School of Medicine, Nankai University, Tianjin, P. R. China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, P. R. China
| | - Zhen Yuan
- School of Medicine, Nankai University, Tianjin, P. R. China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, P. R. China
| | - Lin Chen
- School of Medicine, Nankai University, Tianjin, P. R. China
| | - Bo Wei
- School of Medicine, Nankai University, Tianjin, P. R. China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, P. R. China
| |
Collapse
|
8
|
Meng X, Wang D, Sun X, Yuan J, Han J. Mapping the immunological battlefield in gastric cancer: prognostic implications of an immune gene expression signature. Discov Oncol 2023; 14:212. [PMID: 37999824 PMCID: PMC10673795 DOI: 10.1007/s12672-023-00834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a heterogeneous malignancy with variable clinical outcomes. The immune system has been implicated in GC development and progression, highlighting the importance of immune-related gene expression patterns and their prognostic significance. OBJECTIVE This study aimed to identify differentially expressed immune-related genes (DEIRGs) and establish a prognostic index for GC patients using comprehensive bioinformatic analyses. METHODS We integrated RNA sequencing data from multiple databases and identified DEIRGs by overlapping differentially expressed genes with immune-related genes. Functional enrichment analysis was performed to uncover the biological processes and signaling pathways associated with DEIRGs. We conducted a Weighted Gene Co-expression Network Analysis (WGCNA) to identify key gene modules related to with GC. Cox regression analysis was conducted to determine independent prognostic DEIRGs for overall survival prediction. Based on these findings, we developed an immune-related gene prognostic index (IRGPI) based on these findings. The prognostic value of the IRGPI was validated using survival analysis and an independent validation cohort. Functional enrichment analysis, gene mutation analysis, and immune cell profiling were performed to gain insights into the biological functions and immune characteristics associated with the IRGPI-based subgroups. RESULTS We identified 493 DEIRGs significantly enriched in immune-related biological processes and signaling pathways associated with GC. WGCNA analysis revealed a significant module (turquoise module) associated with GC, revealing potential therapeutic targets. Cox regression analysis identified RNASE2, CGB5, CTLA4, and DUSP1 as independent prognostic DEIRGs. The IRGPI, incorporating the expression levels of these genes, demonstrated significant prognostic value in predicting overall survival. The IRGPI-based subgroups exhibited distinct biological functions, genetic alterations, and immune cell compositions. CONCLUSION Our study identified DEIRGs and established a prognostic index (IRGPI) for GC patients. The IRGPI exhibited promising prognostic potential and provided insights into GC tumor biology and immune characteristics. These findings have implications for guiding therapeutic strategies.
Collapse
Affiliation(s)
- Xianhong Meng
- The Fourth Affiliated Hospital of Harbin Medical University, Yiyuan Street No. 37, Harbin, Heilongjiang Province, 150001, China
| | - Daxiu Wang
- The Fourth Affiliated Hospital of Harbin Medical University, Yiyuan Street No. 37, Harbin, Heilongjiang Province, 150001, China
| | - Xueying Sun
- The Fourth Affiliated Hospital of Harbin Medical University, Yiyuan Street No. 37, Harbin, Heilongjiang Province, 150001, China
| | - Jiangfeng Yuan
- The Fourth Affiliated Hospital of Harbin Medical University, Yiyuan Street No. 37, Harbin, Heilongjiang Province, 150001, China
| | - Jiwu Han
- The Fourth Affiliated Hospital of Harbin Medical University, Yiyuan Street No. 37, Harbin, Heilongjiang Province, 150001, China.
| |
Collapse
|
9
|
Mou P, Ge QH, Sheng R, Zhu TF, Liu Y, Ding K. Research progress on the immune microenvironment and immunotherapy in gastric cancer. Front Immunol 2023; 14:1291117. [PMID: 38077373 PMCID: PMC10701536 DOI: 10.3389/fimmu.2023.1291117] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
The tumor microenvironment, particularly the immune microenvironment, plays an indispensable role in the malignant progression and metastasis of gastric cancer (GC). As our understanding of the GC microenvironment continues to evolve, we are gaining deeper insights into the biological mechanisms at the single-cell level. This, in turn, has offered fresh perspectives on GC therapy. Encouragingly, there are various monotherapy and combination therapies in use, such as immune checkpoint inhibitors, adoptive cell transfer therapy, chimeric antigen receptor T cell therapy, antibody-drug conjugates, and cancer vaccines. In this paper, we review the current research progress regarding the GC microenvironment and summarize promising immunotherapy research and targeted therapies.
Collapse
Affiliation(s)
- Pei Mou
- Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Qing-hua Ge
- Department of Otolaryngology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Rong Sheng
- Department of Outpatient, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Teng-fei Zhu
- Department of Anesthesiology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Ye Liu
- Department of Blood Transfusion, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Kai Ding
- Department of Gastroenterology, Changzheng Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
Wang X, Zhou L, Wang H, Chen W, Jiang L, Ming G, Wang J. Metabolic reprogramming, autophagy, and ferroptosis: Novel arsenals to overcome immunotherapy resistance in gastrointestinal cancer. Cancer Med 2023; 12:20573-20589. [PMID: 37860928 PMCID: PMC10660574 DOI: 10.1002/cam4.6623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Gastrointestinal cancer poses a serious health threat owing to its high morbidity and mortality. Although immune checkpoint blockade (ICB) therapies have achieved meaningful success in most solid tumors, the improvement in survival in gastrointestinal cancers is modest, owing to sparse immune response and widespread resistance. Metabolic reprogramming, autophagy, and ferroptosis are key regulators of tumor progression. METHODS A literature review was conducted to investigate the role of the metabolic reprogramming, autophagy, and ferroptosis in immunotherapy resistance of gastrointestinal cancer. RESULTS Metabolic reprogramming, autophagy, and ferroptosis play pivotal roles in regulating the survival, differentiation, and function of immune cells within the tumor microenvironment. These processes redefine the nutrient allocation blueprint between cancer cells and immune cells, facilitating tumor immune evasion, which critically impacts the therapeutic efficacy of immunotherapy for gastrointestinal cancers. Additionally, there exists profound crosstalk among metabolic reprogramming, autophagy, and ferroptosis. These interactions are paramount in anti-tumor immunity, further promoting the formation of an immunosuppressive microenvironment and resistance to immunotherapy. CONCLUSIONS Consequently, it is imperative to conduct comprehensive research on the roles of metabolic reprogramming, autophagy, and ferroptosis in the resistance of gastrointestinal tumor immunotherapy. This understanding will illuminate the clinical potential of targeting these pathways and their regulatory mechanisms to overcome immunotherapy resistance in gastrointestinal cancers.
Collapse
Affiliation(s)
- Xiangwen Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Liwen Zhou
- Department of StomatologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Hongpeng Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Wei Chen
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Lei Jiang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Guangtao Ming
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Jun Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
11
|
Srivastava SK, Kim SH. Special issue: Modulation of immune checkpoint proteins and their networks in cancer progression. Semin Cancer Biol 2023; 93:1-2. [PMID: 37031897 DOI: 10.1016/j.semcancer.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Affiliation(s)
- Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, Texas 79601, United States.
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyunghee University, Hoegi-dong, Dongdaemun-ku, Seoul 131-701, South Korea.
| |
Collapse
|
12
|
Wang Z, Liu Y, Niu X. Application of artificial intelligence for improving early detection and prediction of therapeutic outcomes for gastric cancer in the era of precision oncology. Semin Cancer Biol 2023; 93:83-96. [PMID: 37116818 DOI: 10.1016/j.semcancer.2023.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
Gastric cancer is a leading contributor to cancer incidence and mortality globally. Recently, artificial intelligence approaches, particularly machine learning and deep learning, are rapidly reshaping the full spectrum of clinical management for gastric cancer. Machine learning is formed from computers running repeated iterative models for progressively improving performance on a particular task. Deep learning is a subtype of machine learning on the basis of multilayered neural networks inspired by the human brain. This review summarizes the application of artificial intelligence algorithms to multi-dimensional data including clinical and follow-up information, conventional images (endoscope, histopathology, and computed tomography (CT)), molecular biomarkers, etc. to improve the risk surveillance of gastric cancer with established risk factors; the accuracy of diagnosis, and survival prediction among established gastric cancer patients; and the prediction of treatment outcomes for assisting clinical decision making. Therefore, artificial intelligence makes a profound impact on almost all aspects of gastric cancer from improving diagnosis to precision medicine. Despite this, most established artificial intelligence-based models are in a research-based format and often have limited value in real-world clinical practice. With the increasing adoption of artificial intelligence in clinical use, we anticipate the arrival of artificial intelligence-powered gastric cancer care.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, Liaoning, China
| | - Yang Liu
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, Liaoning, China.
| | - Xing Niu
- China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
13
|
Saúde-Conde R, Nguyen D, Hendlisz A. Immunotherapies in non-metastatic gastrointestinal cancers. Curr Opin Oncol 2023; 35:334-346. [PMID: 37222204 DOI: 10.1097/cco.0000000000000956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
PURPOSE Over the last decade, immune checkpoint inhibitors (ICI) have emerged as cornerstone in the treatment of many metastatic tumour types, including gastrointestinal cancers. In many solid tumours, the effective therapies in the metastatic field are progressively brought into the curative setting. Consequently, earlier tumoural settings have become a field of experiment for immunotherapies. In melanoma, lung, and bladder cancers, excellent results were recorded, possibly explained by differences in the tumour microenvironment between metastatic and non-metastatic settings. In gastrointestinal (GI) Oncology, nivolumab is the first immune checkpoint inhibitor to become a standard-of-care adjuvant treatment after curative surgery for oesophagal or gastroesophageal junction cancer. RECENT FINDINGS We herein discuss the results of a selection of the most relevant studies presented/published over the last 18 months testing immunotherapies in non-metastatic GI cancers. Among immunotherapies, ICI have been investigated in pre-, peri- and postoperative setting across tumour types, alone or in combination with chemo- and/or radiotherapy. Vaccines are also a new field of investigation. SUMMARY Promising results from two studies (NCT04165772 and NICHE-2 study) demonstrating never-seen-before responses to neoadjuvant immunotherapy in MMR deficient (dMMR) colorectal cancers raise hope for improving the patients' outcome and developing organ-sparing strategies in this situation.
Collapse
Affiliation(s)
| | - Dan Nguyen
- Department of Medical Oncology, Institut Jules Bordet, The Brussels University Hospital (HUB)
| | - Alain Hendlisz
- Department of Digestive Oncology
- Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
14
|
Lucarini V, Nardozi D, Angiolini V, Benvenuto M, Focaccetti C, Carrano R, Besharat ZM, Bei R, Masuelli L. Tumor Microenvironment Remodeling in Gastrointestinal Cancer: Role of miRNAs as Biomarkers of Tumor Invasion. Biomedicines 2023; 11:1761. [PMID: 37371856 DOI: 10.3390/biomedicines11061761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Gastrointestinal (GI) cancers are the most frequent neoplasm, responsible for half of all cancer-related deaths. Metastasis is the leading cause of death from GI cancer; thus, studying the processes that regulate cancer cell migration is of paramount importance for the development of new therapeutic strategies. In this review, we summarize the mechanisms adopted by cancer cells to promote cell migration and the subsequent metastasis formation by highlighting the key role that tumor microenvironment components play in deregulating cellular pathways involved in these processes. We, therefore, provide an overview of the role of different microRNAs in promoting tumor metastasis and their role as potential biomarkers for the prognosis, monitoring, and diagnosis of GI cancer patients. Finally, we relate the possible use of nutraceuticals as a new strategy for targeting numerous microRNAs and different pathways involved in GI tumor invasiveness.
Collapse
Affiliation(s)
- Valeria Lucarini
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Daniela Nardozi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Valentina Angiolini
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Zein Mersini Besharat
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
15
|
Wang J, Qiu Q, Zheng Q, Zhao Y, Xu Y, Zhang T, Wang S, Wang Q, Jin Q, Ye Y, Li P, Xie J, Lin J, Lu J, Chen Q, Cao L, Yang Y, Zheng C, Huang C. Tumor Immunophenotyping-Derived Signature Identifies Prognosis and Neoadjuvant Immunotherapeutic Responsiveness in Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207417. [PMID: 36998102 PMCID: PMC10214263 DOI: 10.1002/advs.202207417] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Indexed: 05/27/2023]
Abstract
The effectiveness of neoadjuvant immune checkpoint inhibitor (ICI) therapy is confirmed in clinical trials; however, the patients suitable for receiving this therapy remain unspecified. Previous studies have demonstrated that the tumor microenvironment (TME) dominates immunotherapy; therefore, an effective TME classification strategy is required. In this study, five crucial immunophenotype-related molecules (WARS, UBE2L6, GZMB, BATF2, and LAG-3) in the TME are determined in five public gastric cancer (GC) datasets (n = 1426) and an in-house sequencing dataset (n = 79). Based on this, a GC immunophenotypic score (IPS) is constructed using the least absolute shrinkage and selection operator (LASSO) Cox, and randomSurvivalForest. IPSLow is characterized as immune-activated, and IPSHigh is immune-silenced. Data from seven centers (n = 1144) indicate that the IPS is a robust and independent biomarker for GC and superior to the AJCC stage. Furthermore, patients with an IPSLow and a combined positive score of ≥5 are likely to benefit from neoadjuvant anti-PD-1 therapy. In summary, the IPS can be a useful quantitative tool for immunophenotyping to improve clinical outcomes and provide a practical reference for implementing neoadjuvant ICI therapy for patients with GC.
Collapse
|
16
|
Wu B, Fu L, Guo X, Hu H, Li Y, Shi Y, Zhang Y, Han S, Lv C, Tian Y. Multi-omics profiling and digital image analysis reveal the potential prognostic and immunotherapeutic properties of CD93 in stomach adenocarcinoma. Front Immunol 2023; 14:984816. [PMID: 36761750 PMCID: PMC9905807 DOI: 10.3389/fimmu.2023.984816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Background Recent evidence highlights the fact that immunotherapy has significantly improved patient outcomes. CD93, as a type I transmembrane glycoprotein, was correlated with tumor-associated angiogenesis; however, how CD93 correlates with immunotherapy in stomach adenocarcinoma (STAD) remains unclear. Methods TCGA, GTEx, GEO, TIMER2.0, HPA, TISIDB, TCIA, cBioPortal, LinkedOmics, and ImmuCellAI public databases were used to elucidate CD93 in STAD. Visualization and statistical analysis of data were performed by R (Version 4.1.3), GraphPad (Version 8.0.1), and QuPath (Version 0.3.2). Results CD93 was highly expressed in STAD compared with adjacent normal tissues. The overexpression of CD93 was significantly correlated with a poor prognosis in STAD. There was a negative correlation between CD93 expression levels with CD93 mutation and methylation in STAD. Our results revealed that CD93 expression was positively associated with most immunosuppressive genes (including PD-1, PD-L1, CTLA-4, and LAG3), immunostimulatory genes, HLA, chemokine, and chemokine receptor proteins in STAD. Furthermore, in STAD, CD93 was noticeably associated with the abundance of multiple immune cell infiltration levels. Functional HALLMARK and KEGG term enhancement analysis of CD93 through Gene Set Enrichment Analysis was correlated with the process of the angiogenesis pathway. Subsequently, digital image analysis results by QuPath revealed that the properties of CD93+ cells were statistically significant in different regions of stomach cancer and normal stomach tissue. Finally, we utilized external databases, including GEO, TISIDB, ImmuCellAI, and TCIA, to validate that CD93 plays a key role in the immunotherapy of STAD. Conclusion Our study reveals that CD93 is a potential oncogene and is an indicative biomarker of a worse prognosis and exerts its immunomodulatory properties and potential possibilities for immunotherapy in STAD.
Collapse
|