1
|
Jiang J, Lu Y, Zheng X, Xie M, Jauković A, Gao M, Zheng H. Engineering probiotic biohydrogen micro-factories to initiate reductive stress for boosting tumor vulnerability. Biomaterials 2025; 314:122892. [PMID: 39426122 DOI: 10.1016/j.biomaterials.2024.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Disruption of redox homeostasis profoundly affects cellular metabolism and activities. While oxidative stress is extensively studied in cancer therapies, research on reductive stress remains in its infancy. Molecular hydrogen (H2), a well-known antioxidant, holds significant potential to induce reductive stress due to its strong antioxidative properties, making it a promising candidate for cancer therapy. However, it remains a major challenge to develop a sustainable H2 delivery system in vivo. Herein, we designed a micro-factory by engineering a gel-based microcapsule that encapsulates Enterobacter aerogenes, a.k.a. probiotic biohydrogen microcapsules (PBMCs), enabling the sustained H2 generation within tumor microenvironment. Notably, PBMCs effectively suppressed the proliferation of eight tumor cell lines as well as drug-resistant cancer cells. The prolonged H2 release from PBMCs induced reductive stress, as evidenced by a significant increase in the GSH/GSSG ratio in 4T1 cells. Moreover, PBMCs displayed significant antitumor effects in breast, melanoma and liver cancer models. The inhibition of PI3K-AKT pathway and the activation of MAPK pathway were identified as key mechanisms responsible for inducing tumor cell cycle arrest and apoptosis. The PBMCs also exhibited synergistic effects in combination with chemotherapeutics, resulting in robust inhibitions of preinvasive carcinoma growth and commonly associated pulmonary metastasis. Overall, our study introduces an innovative strategy to manipulate reductive stress in the tumor microenvironment through in situ H2 generation, thereby enhancing tumor vulnerability.
Collapse
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yuhao Lu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Xinyi Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Maomao Xie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade, 11000, Serbia
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Zhang S, Gong L, Sun Y, Zhang F, Gao W. An ultra-long-acting L-asparaginase synergizes with an immune checkpoint inhibitor in starvation-immunotherapy of metastatic solid tumors. Biomaterials 2025; 312:122740. [PMID: 39096839 DOI: 10.1016/j.biomaterials.2024.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Metastasis stands as the primary contributor to mortality associated with tumors. Chemotherapy and immunotherapy are frequently utilized in the management of metastatic solid tumors. Nevertheless, these therapeutic modalities are linked to serious adverse effects and limited effectiveness in preventing metastasis. Here, we report a novel therapeutic strategy named starvation-immunotherapy, wherein an immune checkpoint inhibitor is combined with an ultra-long-acting L-asparaginase that is a fusion protein comprising L-asparaginase (ASNase) and an elastin-like polypeptide (ELP), termed ASNase-ELP. ASNase-ELP's thermosensitivity enables it to generate an in-situ depot following an intratumoral injection, yielding increased dose tolerance, improved pharmacokinetics, sustained release, optimized biodistribution, and augmented tumor retention compared to free ASNase. As a result, in murine models of oral cancer, melanoma, and cervical cancer, the antitumor efficacy of ASNase-ELP by selectively and sustainably depleting L-asparagine essential for tumor cell survival was substantially superior to that of ASNase or Cisplatin, a first-line anti-solid tumor medicine, without any observable adverse effects. Furthermore, the combination of ASNase-ELP and an immune checkpoint inhibitor was more effective than either therapy alone in impeding melanoma metastasis. Overall, the synergistic strategy of starvation-immunotherapy holds excellent promise in reshaping the therapeutic landscape of refractory metastatic tumors and offering a new alternative for next-generation oncology treatments.
Collapse
Affiliation(s)
- Sanke Zhang
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China; Peking University International Cancer Institute, Beijing, 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Like Gong
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China; Peking University International Cancer Institute, Beijing, 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Yuanzi Sun
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China; Peking University International Cancer Institute, Beijing, 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Fan Zhang
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China; Peking University International Cancer Institute, Beijing, 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Weiping Gao
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China; Peking University International Cancer Institute, Beijing, 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China; Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Niu Q, Ye S, Zhao L, Qian Y, Liu F. The role of liver cancer stem cells in hepatocellular carcinoma metastasis. Cancer Biol Ther 2024; 25:2321768. [PMID: 38393655 PMCID: PMC10896152 DOI: 10.1080/15384047.2024.2321768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
Metastasis accounts for the vast majority of cancer deaths; however, this complex process has yet to be fully explained. To form metastases, cancer cells must undergo a series of steps, known as the "Metastatic cascade", each of which requires a specific functional transformation. Cancer stem cells (CSCs) play a vital role in tumor metastasis, but their dynamic behavior and regulatory mechanisms have not been fully elucidated. Based on the "Metastatic cascade" theory, this review summarizes the effect of liver CSCs on the metastatic biological programs that underlie the dissemination and metastatic growth of cancer cells. Liver CSCs have the capacity to initiate distant organ metastasis via EMT, and the microenvironment transformation that supports the ability of these cells to disseminate, evade immune surveillance, dormancy, and regenerate metastasis. Understanding the heterogeneity and traits of liver CSCs in these processes is critical for developing strategies to prevent and treat metastasis of advanced hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Qinghui Niu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Susu Ye
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liu Zhao
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanzhi Qian
- School Hospital, Qingdao University of Science and Technology, Qingdao, China
| | - Fengchao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Zheng Z, Ke L, Ye S, Shi P, Yao H. Pharmacological Mechanisms of Cryptotanshinone: Recent Advances in Cardiovascular, Cancer, and Neurological Disease Applications. Drug Des Devel Ther 2024; 18:6031-6060. [PMID: 39703195 PMCID: PMC11658958 DOI: 10.2147/dddt.s494555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Cryptotanshinone (CTS) is an important active ingredient of Salvia miltiorrhiza Bge. In recent years, its remarkable pharmacological effects have triggered extensive and in-depth studies. The aim of this study is to retrieve the latest research progress on CTS and provide prospects for future research. The selection of literature for inclusion, data extraction and methodological quality assessment were discussed. Studies included (1) physicochemical and ADME/Tox properties, (2) pharmacological effects and mechanism, (3) conclusion and bioinformatics analysis. A total of 915 titles and abstracts were screened, resulting in 184 papers used in this review; CTS has shown therapeutic effects on a variety of diseases by modulating multiple molecular pathways. For example, CTS primarily targets NF-κB pathway and MAPK pathway to have a therapeutic role in cardiovascular diseases; in cancer, CTS shows superior efficacy through the PI3K/Akt/mTOR pathway and the JAK/STAT pathway; CTS act on the Nrf2/HO-1 pathway to combat neurological diseases. In addition, key targets of CTS were predicted by bioinformatics analysis, referring to disease ontology (DO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis, with R Studio; AKT1, MAPK1, STAT3, P53 and EGFR are predicted to be the key targets of CTS against diseases. The key proteins were then docked by Autodock software to preliminarily assess their binding activities. This review provided new insights into research of CTS and its potential applications in the future, and especially the targets and directly binding modes for CTS are waiting to be investigated.
Collapse
Affiliation(s)
- Ziyao Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Shumin Ye
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
5
|
Taghizadeh-Hesary F. Is Chronic Ice Water Ingestion a Risk Factor for Gastric Cancer Development? An Evidence-Based Hypothesis Focusing on East Asian Populations. Oncol Ther 2024; 12:629-646. [PMID: 39231856 PMCID: PMC11573998 DOI: 10.1007/s40487-024-00299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
This article introduces a novel risk factor for gastric cancer (GC) by analyzing available epidemiological data from East Asian populations. A significantly higher age-standardized GC rate was observed in Japanese and Korean populations than in Chinese populations, despite nearly identical ethnicity, food habits, obesity rates, and alcohol consumption. Given the pivotal role of environmental factors in GC development, particularly for the intestinal type, a thorough evaluation of the lifestyles of these three populations was conducted to identify commonalities and disparities. It was observed that Japanese and Korean individuals prefer consuming ice water, while Chinese individuals tend to drink warm water, potentially influenced by traditional Chinese medicine disciplines. Considering the key features of GC development, a literature review was conducted to investigate the mechanisms through which the consumption of ice water might contribute to GC initiation and progression. Mechanistically, exposing gastric cells to hypothermia can increase the risk of carcinogenesis through multiple pathways. This includes the promotion of Helicobacter pylori colonization, prolonged gastric inflammation, and mitochondrial dysfunction in gastric cells. Furthermore, drinking ice water can enhance the survival, proliferation, and invasion of GC cells by releasing cold shock proteins, increasing gastric acid secretion, and delaying gastric emptying. Additionally, hypothermia can boost the immune evasion of cancer cells by weakening the antitumor immune system and activating different components of the tumor microenvironment. This paper also explores the association between exposure of GC cells to hypothermia and current insights into cancer hallmarks. These findings may partially elucidate the higher incidence of GC in Japanese and Korean populations and provide a clue for future experimental studies.Graphical abstract available for this article.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Radiation Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Zhang W, Ran Y, Yang M, Hu Y, Wang Z, Cao Y, Ran H. An Oxidative Stress Nano-Amplifier for Improved Tumor Elimination and Combined Immunotherapy. Adv Healthc Mater 2024; 13:e2402349. [PMID: 39221686 DOI: 10.1002/adhm.202402349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Amplifying oxidative stress to disrupt intracellular redox homeostasis can accelerate tumor cell death. In this work, an oxidative stress amplifier (PP@T) is prepared for enhanced tumor oxidation therapy to reduce tumor growth and metastases. The nano-amplifier has been successfully constructed by embedding MTH1 inhibitor (TH588) in the PDA-coated porphyrin metal-organic framework PCN-224. The controllable-released TH588 is demonstrated from pores can hinder MTH1-mediated damage-repairing process by preventing the hydrolysis of 8-oxo-dG, thereby amplifying oxidative stress and exacerbating the oxidative DNA damage induced by the sonodynamic therapy of PP@T under ultrasound irradiation. Furthermore, PP@T can effectively induce immunogenic cell death to trigger systemic anti-tumor immune response. When administered in combination with immune checkpoint blockade, PP@T not only impedes the progression of the primary tumor but also achieves obvious antimetastasis in breast cancer murine models, including orthotopic and artificial whole-body metastasis models. Furthermore, the nanoplatform also provides photoacoustic imaging for in vivo treatment guidance. In conclusion, by amplifying oxidative stress and reactive oxygen species sensitized immunotherapy, this image-guided nanosystem shows potential for highly specific, effective combined therapy against tumor cells with negligible side-effects to normal cells which will provide a new insight for precise tumor treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Yijun Ran
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Mi Yang
- Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Yaqin Hu
- Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Zhigang Wang
- Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Yang Cao
- Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| | - Haitao Ran
- Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, China
| |
Collapse
|
7
|
Feng T, Hu J, Wen J, Qian Z, Che G, Zhou Q, Zhu L. Personalized nanovaccines for treating solid cancer metastases. J Hematol Oncol 2024; 17:115. [PMID: 39609851 PMCID: PMC11603676 DOI: 10.1186/s13045-024-01628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Cancer vaccines have garnered attention as a potential treatment for cancer metastases. Nevertheless, the clinical response rate to vaccines remains < 30%. Nanoparticles stabilize vaccines and improve antigen recognition and presentation, resulting in high tumor penetration or accumulation, effective co-distribution of drugs to the secondary lymphatic system, and adaptable antigen or adjuvant administration. Such vaccine-like nanomedicines have the ability to eradicate the primary tumors as well as to prevent or eliminate metastases. This review examines state-of-the-art nanocarriers developed to deliver tumor vaccines to metastases, including synthetic, semi-biogenic, and biogenic nanosystems. Moreover, it highlights the physical and pharmacological properties that enhance their anti-metastasis efficiency. This review also addresses the combination of nanovaccines with cancer immunotherapy to target various steps in the metastatic cascade, drawing insights from preclinical and clinical studies. The review concludes with a critical analysis of the challenges and frameworks linked to the clinical translation of cancer nanovaccines.
Collapse
Affiliation(s)
- Tang Feng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jia Hu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jirui Wen
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guowei Che
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qinghua Zhou
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Shannar A, Sarwar MS, Dave PD, Chou PJ, Peter RM, Xu J, Pan Y, Rossi F, Kong AN. Cyproheptadine inhibits in vitro and in vivo lung metastasis and drives metabolic rewiring. Mol Biol Rep 2024; 51:1139. [PMID: 39522095 PMCID: PMC11551078 DOI: 10.1007/s11033-024-10033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for 81% of lung cancer cases, among which over 47% presented with distant metastasis at the time of diagnosis. Despite the introduction of targeted therapy and immunotherapy, enhancing the survival rate and overcoming the development of resistance remain a big challenge. Thus, it is crucial to find potential new therapeutics and targets that can mitigate lung metastasis and investigate its effects on biomarkers, such as cellular metabolomics. In the current study, we investigated the role of cyproheptadine (CPH), an FDA-approved anti-histamine drug in lung metastasis in vitro and in vivo. METHODS AND RESULTS CPH showed potent cytotoxicity on different lung cancer cell lines in vitro. Moreover, CPH decreased invasion and migration of LLC1 and A549 cells in Matrigel invasion transwell and plate scratch assays. The in vivo LLC1 syngeneic lung cancer model found decreased number of metastatic nodules on the surface of lungs of Setd7 KO mice compared to SETD7 WT. CPH treatment resulted in decreased growth of LLC1 subcutaneous tumors compared to untreated SETD7 WT. Finally, metabolomic study of tumor tissues showed rewiring of metabolomic pathways and downregulation of amino acids, such as arginine, serine, and glycine) in Setd7 KO and WT treated with CPH compared to untreated Setd7 WT mice. CONCLUSION These findings identify CPH as a potential therapeutic agent to block metastasis in advanced NSCLC and suggest SETD7 as a potential target for the prevention of lung metastasis.
Collapse
Affiliation(s)
- Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Parv Dushyant Dave
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - PoChung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Rebecca Mary Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jiawei Xu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yuxin Pan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Fabio Rossi
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
9
|
Park JY, Park KM. Recent discovery of natural substances with cathepsin L-inhibitory activity for cancer metastasis suppression. Eur J Med Chem 2024; 277:116754. [PMID: 39128327 DOI: 10.1016/j.ejmech.2024.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Cathepsin L (CTSL), a cysteine cathepsin protease of the papain superfamily, plays a crucial role in cancer progression and metastasis. Dysregulation of CTSL is frequently observed in tumor malignancies, leading to the degradation of extracellular matrix and facilitating epithelial-mesenchymal transition (EMT), a key process in malignant cancer metastasis. This review mainly provides a comprehensive information about recent findings on natural inhibitors targeting CTSL and their anticancer effects, which have emerged as potent anticancer therapeutic agents or metastasis-suppressive adjuvants. Specifically, inhibitors are categorized into small-molecule and macromolecule inhibitors, with a particular emphasis on cathepsin propeptide-type macromolecules. Additionally, the article explores the molecular mechanisms of CTSL involvement in cancer metastasis, highlighting its regulation at transcriptional, translational, post-translational, and epigenetic levels. This work underscores the importance of understanding natural CTSL inhibitors and provides researchers with practical insights to advance the relevant fields and discover novel CTSL-targeting inhibitors from natural sources.
Collapse
Affiliation(s)
- Jun-Young Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Min Park
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
10
|
Sun Q, Lei X, Yang X. CircRNAs as upstream regulators of miRNA//HMGA2 axis in human cancer. Pharmacol Ther 2024; 263:108711. [PMID: 39222752 DOI: 10.1016/j.pharmthera.2024.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
High mobility group protein A2 (HMGA2) is widely recognized as a chromatin-binding protein, whose overexpression is observed in nearly all human cancers. It exerts its oncogenic effects by influencing various cellular processes such as the epithelial-mesenchymal transition, cell differentiation, and DNA damage repair. MicroRNA (miRNA) serves as a pivotal gene expression regulator, concurrently modulating multiple genes implicated in cancer progression, including HMGA2. It also serves as a significant biomarker for cancer. Circular RNA (circRNA) plays a crucial role in gene regulation primarily by sequestering miRNAs and impeding their ability to enhance the expression of other genes, including HMGA2. Increasingly, studies have underscored the vital role of miRNA/HMGA2 interactions in cancer. Given the significance of circRNA as an upstream regulatory mediator and the complexity of regulatory mechanisms, we hereby present a comprehensive overview of the pivotal role of circRNAs as upstream regulators of the miRNA//HMGA2 axis in human cancers. This insight may herald a novel direction for future cancer research.
Collapse
Affiliation(s)
- Qiqi Sun
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China.
| |
Collapse
|
11
|
Shalannandia WA, Chou Y, Bashari MH, Khairani AF. Intermediate Filaments in Breast Cancer Progression, and Potential Biomarker for Cancer Therapy: A Narrative Review. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:689-704. [PMID: 39430570 PMCID: PMC11488350 DOI: 10.2147/bctt.s489953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Intermediate filaments are one of the three components of the cytoskeletons, along with actin and microtubules. The intermediate filaments consist of extensive variations of structurally related proteins with specific expression patterns in cell types. The expression pattern alteration of intermediate filaments is frequently correlated with cancer progression, specifically with the epithelial-to-mesenchymal transition process closely related to increasing cellular migration and invasion. This review will discuss the involvement of cytoplasmic intermediate filaments, specifically vimentin, nestin, and cytokeratin (CK5/CK6, CK7, CK8/CK18, CK17, CK19, CK20, CSK1), in breast cancer progression and as prognostic or diagnostic biomarkers. The potential for drug development targeting intermediate filaments in cancer will be reviewed.
Collapse
Affiliation(s)
- Widad Aghnia Shalannandia
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Yoan Chou
- Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Muhammad Hasan Bashari
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Astrid Feinisa Khairani
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| |
Collapse
|
12
|
Shu C, Wang X, Li C, Huang J, Xie X, Li H, Zhao J, Wang Z, He Y, Zhou Y. Revisiting the association between pretreatment thrombocytosis and cancer survival outcomes: an umbrella review of meta-analyses. BMC Cancer 2024; 24:1246. [PMID: 39385116 PMCID: PMC11462685 DOI: 10.1186/s12885-024-13027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/04/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Although associations have been reported linking pretreatment thrombocytosis to cancer survival outcomes, the validity and strength of existing observational evidence have been contested. This study aimed to conduct an umbrella review to comprehensively appraise the strength, validity and credibility of these reported associations. METHODS We searched Medline, Embase and Cochrane Database of Systematic Reviews from inception to 8 April 2023 to retrieve meta-analyses of observational studies. Meta-analyses were re-performed using a random-effect model and the strength of evidence was graded as convincing, highly suggestive, suggestive and weak according to seven pre-defined quantitative criteria reflecting statistical significance, amount of data, heterogeneity, and evidence of bias. The quality of review was appraised using the AMSTAR2 checklist. The umbrella review was reported adhering to the PRISMA guideline and was registered on PROSPERO (CRD42023455391). RESULTS A total of 21 unique meta-analyses investigating ten cancer subtypes were included. All meta-analyses reported inferior survival outcome in cancer patients with pretreatment thrombocytosis, and 18 of them (85.7%) yielded statistically significant results (P < 0.05). Consistent effects were observed across meta-analyses that adopted different cut-off values (i.e. platelet count > 300 or 400 × 109 /L) to define thrombocytosis. Although evidence appraisal did not identify convincing evidence (Class I), the associations of thrombocytosis with inferior overall survival of lung, gastric, colorectal cancer and malignant mesothelioma were classified as highly suggestive evidence (Class II). According to AMSTAR2 ratings, no meta-analysis was identified with high or moderate quality. CONCLUSIONS Our findings consolidated the association between pretreatment thrombocytosis and poor survival outcomes in various cancers. Nonetheless, the absence of convincing associations indicates a need for further large-scale, high-quality evidence to confirm whether platelets can serve as a prognostic predictor or a therapeutic target.
Collapse
Affiliation(s)
- Chi Shu
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Oncology/Department of Epidemiology and Medical Statistics, School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, West China, China
| | - Xiran Wang
- Graduate School of Life Sciences, Utrecht University, Utrecht, The Netherlands
| | - Changtao Li
- Department of Oncology/Department of Epidemiology and Medical Statistics, School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, West China, China
| | - Jun Huang
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Xuan Xie
- Department of Oncology/Department of Epidemiology and Medical Statistics, School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, West China, China
| | - Hong Li
- Department of Oncology/Department of Epidemiology and Medical Statistics, School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, West China, China
| | - Jichun Zhao
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqiang Wang
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yazhou He
- Department of Oncology/Department of Epidemiology and Medical Statistics, School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, West China, China
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Yanhong Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Wang Y, Ding G, Chu C, Cheng XD, Qin JJ. Genomic biology and therapeutic strategies of liver metastasis from gastric cancer. Crit Rev Oncol Hematol 2024; 202:104470. [PMID: 39111457 DOI: 10.1016/j.critrevonc.2024.104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The liver is a frequent site of metastasis in advanced gastric cancer (GC). Despite significant advancements in diagnostic and therapeutic techniques, the overall survival rate for patients afflicted with gastric cancer liver metastasis (GCLM) remains dismally low. Precision oncology has made significant progress in identifying therapeutic targets and enhancing our understanding of metastasis mechanisms through genome sequencing and molecular characterization. Therefore, it is crucial to have a comprehensive understanding of the various molecular processes involved in GCLM and the fundamental principles of systemic therapy to develop new treatment approaches. This paper aims to review recent findings on the diagnosis, potential biomarkers, and therapies targeting the multiple molecular processes of GCLM, with the goal of improving treatment strategies for patients with GCLM.
Collapse
Affiliation(s)
- Yichao Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 313200, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Guangyu Ding
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 313200, China
| | - Xiang-Dong Cheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
14
|
Niazi F, Parker KA, Mason SJ, Singh S, Schiemann WP, Valadkhan S. Induction of Invasive Basal Phenotype in Triple-Negative Breast Cancers by Long Noncoding RNA BORG. Cancers (Basel) 2024; 16:3241. [PMID: 39335212 PMCID: PMC11430157 DOI: 10.3390/cancers16183241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Long noncoding RNAs (lncRNAs) are known to play key roles in breast cancers; however, detailed mechanistic studies of lncRNA function have not been conducted in large cohorts of breast cancer tumors, nor has inter-donor and inter-subtype variability been taken into consideration for these analyses. Here we provide the first identification and annotation of the human BORG lncRNA gene. METHODS/RESULTS Using multiple tumor cohorts of human breast cancers, we show that while BORG expression is strongly induced in breast tumors as compared to normal breast tissues, the extent of BORG induction varies widely between breast cancer subtypes and even between different tumors within the same subtype. Elevated levels of BORG in breast tumors are associated with the acquisition of core cancer aggression pathways, including those associated with basal tumor and pluripotency phenotypes and with epithelial-mesenchymal transition (EMT) programs. While a subset of BORG-associated pathways was present in high BORG-expressing tumors across all breast cancer subtypes, many were specific to tumors categorized as triple-negative breast cancers. Finally, we show that genes induced by heterologous expression of BORG in murine models of TNBC both in vitro and in vivo strongly overlap with those associated with high BORG expression levels in human TNBC tumors. CONCLUSION Our findings implicate human BORG as a novel driver of the highly aggressive basal TNBC tumor phenotype.
Collapse
Affiliation(s)
- Farshad Niazi
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA; (F.N.); (S.J.M.)
| | - Kimberly A. Parker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Sara J. Mason
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA; (F.N.); (S.J.M.)
| | - Salendra Singh
- Center for Immunotherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - William P. Schiemann
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA; (F.N.); (S.J.M.)
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| |
Collapse
|
15
|
Andryszkiewicz W, Misiąg P, Karwowska A, Resler Z, Wojno A, Kulbacka J, Szewczyk A, Rembiałkowska N. Cancer Metastases to the Liver: Mechanisms of Tumor Cell Colonization. Pharmaceuticals (Basel) 2024; 17:1251. [PMID: 39338413 PMCID: PMC11434846 DOI: 10.3390/ph17091251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The liver is one of the most common sites for metastasis, which involves the spread from primary tumors to surrounding organs and tissues in the human body. There are a few steps in cancer expansion: invasion, inflammatory processes allowing the hepatic niche to be created, adhesions to ECM, neovascularization, and secretion of enzymes. The spread of tumor cells depends on the microenvironment created by the contribution of many biomolecules, including proteolytic enzymes, cytokines, growth factors, and cell adhesion molecules that enable tumor cells to interact with the microenvironment. Moreover, the microenvironment plays a significant role in tumor growth and expansion. The secreted enzymes help cancer cells facilitate newly formed hepatic niches and promote migration and invasion. Our study discusses pharmacological methods used to prevent liver metastasis by targeting the tumor microenvironment and cancer cell colonization in the liver. We examine randomized studies focusing on median survival duration and median overall survival in patients administered placebo compared with those treated with bevacizumab, ramucirumab, regorafenib, and ziv-aflibercept in addition to current chemotherapy. We also include research on mice and their responses to these medications, which may suppress metastasis progression. Finally, we discuss the significance of non-pharmacological methods, including surgical procedures, radiotherapy, cryotherapy, radiofrequency ablation (RFA), and transarterial embolization (TAE). In conclusion, the given methods can successfully prevent metastases to the liver and prolong the median survival duration and median overall survival in patients suffering from cancer.
Collapse
Affiliation(s)
- Wiktoria Andryszkiewicz
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Piotr Misiąg
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Anna Karwowska
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Zofia Resler
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Aleksandra Wojno
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
16
|
Suurmond CE, Leeuwenburgh SCG, van den Beucken JJJP. Modelling bone metastasis in spheroids to study cancer progression and screen cisplatin efficacy. Cell Prolif 2024; 57:e13693. [PMID: 38899562 PMCID: PMC11503253 DOI: 10.1111/cpr.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Most bone metastases are caused by primary breast or prostate cancer cells settling in the bone microenvironment, affecting normal bone physiology and function and reducing 5-year survival rates to 10% and 6%, respectively. To expedite clinical availability of novel and effective bone metastases treatments, reliable and predictive in vitro models are urgently required to screen for novel therapies as current in vitro 2D planar mono-culture models do not accurately predict the clinical efficacy. We herein engineered a novel human in vitro 3D co-culture model based on spheroids to study dynamic cellular quantities of (breast or prostate) cancer cells and human bone marrow stromal cells and screen chemotherapeutic efficacy and specificity of the common anticancer drug cisplatin. Bone metastatic spheroids (BMSs) were formed rapidly within 24 h, while the morphology of breast versus prostate cancer BMS differed in terms of size and circularity upon prolonged culture periods. Prestaining cell types prior to BMS formation enabled confocal imaging and quantitative image analysis of in-spheroid cellular dynamics for up to 7 days of BMS culture. We found that cancer cells in BMS proliferated faster and were less susceptible to cisplatin treatment compared to 2D control cultures. Based on these findings and the versatility of our methodology, BMS represent a feasible 3D in vitro model for screening of new bone cancer metastases therapies.
Collapse
|
17
|
Vignesh A, Amal TC, Vasanth K. Food contaminants: Impact of food processing, challenges and mitigation strategies for food security. Food Res Int 2024; 191:114739. [PMID: 39059927 DOI: 10.1016/j.foodres.2024.114739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Food preparation involves the blending of various food ingredients to make more convenient processed food products. It is a long chain process, where each stage posing a risk of accumulating hazardous contaminants in these food systems. Protecting the public health from contaminated foods has become a demanding task in ensuring food safety. This review focused on the causes, types, and health risks of contaminants or hazardous chemicals during food processing. The impact of cooking such as frying, grilling, roasting, and baking, which may lead to the formation of hazardous by-products, including polycyclic aromatic hydrocarbons (PAHs), heterocyclic amines (HCAs), acrylamide, advanced glycation end products (AGEs), furan, acrolein, nitrosamines, 5-hydroxymethylfurfural (HMF) and trans-fatty acids (TFAs). Potential health risks such as carcinogenicity, genotoxicity, neurotoxicity, and cardiovascular effects are emerging as a major problem in the modern lifestyle era due to the increased uptakes of contaminants. Effects of curing, smoking, and fermentation of the meat products led to affect the sensory and nutritional characteristics of meat products. Selecting appropriate cooking methods include temperature, time and the consumption of the food are major key factors that should be considered to avoid the excess level intake of hazardous contaminants. Overall, this study underscores the importance of understanding the risks associated with food preparation methods, strategies for minimizing the formation of harmful compounds during food processing and highlights the need for healthy dietary choices to mitigate potential health hazards.
Collapse
Affiliation(s)
- Arumugam Vignesh
- Department of Botany, Nallamuthu Gounder Mahalingam College (Autonomous), Pollachi 642 001, Tamil Nadu, India.
| | - Thomas Cheeran Amal
- ICAR - Central Institute for Cotton Research, RS, Coimbatore 641 003, Tamil Nadu, India
| | - Krishnan Vasanth
- Department of Botany, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| |
Collapse
|
18
|
Taghizadeh-Hesary F, Ghadyani M, Kashanchi F, Behnam B. Exploring TSGA10 Function: A Crosstalk or Controlling Mechanism in the Signaling Pathway of Carcinogenesis? Cancers (Basel) 2024; 16:3044. [PMID: 39272902 PMCID: PMC11393850 DOI: 10.3390/cancers16173044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer-specific antigens have been a significant area of focus in cancer treatment since their discovery in the mid-twentieth century. Cancer germline antigens are a class of antigens specifically overexpressed in germline tissues and cancer cells. Among these, TSGA10 (testis-specific gene antigen 10) is of great interest because of its crucial impact on cancer progression. Early studies explored TSGA10 expression in a variety of cancer types. More recent studies revealed that TSGA10 can suppress tumor progression by blocking cancer cell metabolism, angiogenesis, and metastasis. An open question regarding the TSGA10 is why cancer cells must express a protein that prevents their progression. To answer this question, we conducted a comprehensive review to engage the TSGA10 in the context of the current understanding of "malignant transformation". This review demonstrated that TSGA10 expression level in cancer cells depends on the cancer stage across malignant transformation. In addition, we evaluated how TSGA10 expression can prevent the "cancer hallmarks". Given this information, TSGA10 can be of great interest in developing effective targeted anti-cancer therapies.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Mobina Ghadyani
- Chester Medical School, University of Chester, Chester CH2 1BR, UK
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Babak Behnam
- Avicenna Biotech Research, Germantown, MD 20871, USA
| |
Collapse
|
19
|
Li L, Chen Y, Zhang M, Li S, Feng S, He YQ, Zhang N, Liu Z, Liu M, Wang Q. A hydroxychloroquine platinum(IV) conjugate displaying potent antimetastatic activities by suppressing autophagy to improve the tumor microenvironment. Dalton Trans 2024; 53:13890-13905. [PMID: 39092626 DOI: 10.1039/d4dt01794c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Protective autophagy is a promising target for antitumor drug exploration. A hydroxychloroquine (HCQ) platinum(IV) complex with autophagy suppressing potency was developed, which displayed potent antitumor activities with a TGI rate of 44.2% against 4T1 tumors in vivo and exhibited a rather lower toxicity than cisplatin. Notably, it exhibited satisfactory antimetastatic activities toward lung pulmonary metastasis models with an inhibition rate of 49.6% and was obviously more potent than CDDP, which has an inhibition rate of 21.6%. Mechanism detection revealed that it caused serious DNA damage and upregulated the expression of γ-H2AX and p53. More importantly, the incorporation of an autophagy inhibitor HCQ endowed the platinum(IV) complex with potent autophagy impairing properties by perturbing the lysosomal function in tumor cells, which promoted apoptosis synergistically with DNA injury. Then, the impaired autophagy further led to the suppression of hypoxia and inflammation in the tumor microenvironment by downregulating ERK1/2, HIF-1α, iNOS, caspase1 and COX-2. Adaptive immune response was improved by inhibiting the immune checkpoint PD-L1 and further increasing CD4+ and CD8+ T cells in tumors. Then, tumor metastasis was effectively inhibited by restraining angiogenesis through inhibiting VEGFA, MMP-9, and CD34.
Collapse
Affiliation(s)
- Linming Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Yan Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Ming Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Suying Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Shuaiqi Feng
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Yan-Qin He
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Meifeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.
| |
Collapse
|
20
|
Ren F, Wang L, Wang Y, Wang J, Wang Y, Song X, Zhang G, Nie F, Lin S. Single-cell transcriptome profiles the heterogeneity of tumor cells and microenvironments for different pathological endometrial cancer and identifies specific sensitive drugs. Cell Death Dis 2024; 15:571. [PMID: 39112478 PMCID: PMC11306564 DOI: 10.1038/s41419-024-06960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Endometrial cancer (EC) is a highly heterogeneous malignancy characterized by varied pathology and prognoses, and the heterogeneity of its cancer cells and the tumor microenvironment (TME) remains poorly understood. We conducted single-cell RNA sequencing (scRNA-seq) on 18 EC samples, encompassing various pathological types to delineate their specific unique transcriptional landscapes. Cancer cells from diverse pathological sources displayed distinct hallmarks labeled as immune-modulating, proliferation-modulating, and metabolism-modulating cancer cells in uterine clear cell carcinomas (UCCC), well-differentiated endometrioid endometrial carcinomas (EEC-I), and uterine serous carcinomas (USC), respectively. Cancer cells from the UCCC exhibited the greatest heterogeneity. We also identified potential effective drugs and confirmed their effectiveness using patient-derived EC organoids for each pathological group. Regarding the TME, we observed that prognostically favorable CD8+ Tcyto and NK cells were prominent in normal endometrium, whereas CD4+ Treg, CD4+ Tex, and CD8+ Tex cells dominated the tumors. CXCL3+ macrophages associated with M2 signature and angiogenesis were exclusively found in tumors. Prognostically relevant epithelium-specific cancer-associated fibroblasts (eCAFs) and SOD2+ inflammatory CAFs (iCAFs) predominated in EEC-I and UCCC groups, respectively. We also validated the oncogenic effects of SOD2+ iCAFs in vitro. Our comprehensive study has yielded deeper insights into the pathogenesis of EC, potentially facilitating personalized treatments for its varied pathological types.
Collapse
Affiliation(s)
- Fang Ren
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Lingfang Wang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyouye Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaxuan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanpei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaole Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Gong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fangfang Nie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shitong Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
| |
Collapse
|
21
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
22
|
Ge X, Du G, Zhou Q, Yan B, Yue G. TNNT1 accelerates migration, invasion and EMT progression in lung cancer cells. Thorac Cancer 2024; 15:1749-1756. [PMID: 38973201 PMCID: PMC11320084 DOI: 10.1111/1759-7714.15400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Clinically, most patients with lung cancer (LC) die from tumor spread and metastasis. Specific metastasis-related molecules can provide reference for clinical prediction of efficacy, evaluation of prognosis, and search for the best treatment plan. Troponin T1 (TNNT1) is highly expressed in various cancer tissues, which affects malignant behavior of tumor cells and is related to patients' survival and prognosis. However, the role and molecular mechanism of TNNT1 in LC invasion and metastasis have not yet been investigated. METHODS Gene expression profiling interactive analysis (GEPIA) online analysis was used to analyze TNNT1 expression in LC tissues. Quantitative real-time-polymerase chain reaction (qRT-PCR) or western blot were performed to measure TNNT1 or epithelial-to-mesenchymal transition (EMT)-related and Wnt/β-catenin pathway-related protein expression in LC cells. After TNNT1 knockdown, cell scratch healing and transwell assays were introduced to assess cell migration and invasion, respectively. RESULTS TNNT1 expression in LC tissues and cells was increased. TNNT1 knockdown notably impaired LC cell migration, invasion and EMT. TNNT1 knockdown inhibited Wnt/β-catenin pathway of LC cells. Lithium chloride (LiCl) addition partially restored the inhibition of TNNT1 knockdown on migration, invasion, EMT and Wnt/β-catenin of LC cells. CONCLUSION TNNT1 knockdown attenuated LC migration, invasion and EMT, possibly through Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xiaobin Ge
- Department of Acupuncture‐Moxibustion and TuinaQilu Hospital of Shandong UniversityJinanChina
| | - Guangzhong Du
- Department of Acupuncture‐Moxibustion and TuinaQilu Hospital of Shandong UniversityJinanChina
| | - Qingchen Zhou
- Department of Acupuncture‐Moxibustion and TuinaQilu Hospital of Shandong UniversityJinanChina
| | - Bing Yan
- Ankang Hospital of JinanJinanChina
| | - Gonglei Yue
- Department of Acupuncture‐Moxibustion and TuinaQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
23
|
Hu D, Zhao T, Xu C, Pan X, Zhou Z, Wang S. Epigenetic Modifiers in Cancer Metastasis. Biomolecules 2024; 14:916. [PMID: 39199304 PMCID: PMC11352731 DOI: 10.3390/biom14080916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Metastasis is the primary cause of cancer-related death, with the dissemination and colonization of primary tumor cells at the metastatic site facilitated by various molecules and complex pathways. Understanding the biological mechanisms underlying the metastatic process is critical for the development of effective interventions. Several epigenetic modifications have been identified that play critical roles in regulating cancer metastasis. This review aims to provide a comprehensive summary of recent advances in understanding the role of epigenetic modifiers, including histone modifications, DNA methylation, non-coding RNAs, enhancer reprogramming, chromatin accessibility, and N6-methyladenosine, in metastasis-associated processes, such as epithelial-mesenchymal transition (EMT), cancer cell migration, and invasion. In particular, this review provides a detailed and in-depth description of the role of crosstalk between epigenetic regulators in tumor metastasis. Additionally, we explored the potential and limitations of epigenetics-related target molecules in the diagnosis, treatment, and prognosis of cancer metastasis.
Collapse
Affiliation(s)
- Die Hu
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Tianci Zhao
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China;
| | - Chenxing Xu
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Xinyi Pan
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Zhengyu Zhou
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Shengjie Wang
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
24
|
Ma Q, Hao S, Hong W, Tergaonkar V, Sethi G, Tian Y, Duan C. Versatile function of NF-ĸB in inflammation and cancer. Exp Hematol Oncol 2024; 13:68. [PMID: 39014491 PMCID: PMC11251119 DOI: 10.1186/s40164-024-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Nuclear factor-kappaB (NF-ĸB) plays a crucial role in both innate and adaptive immune systems, significantly influencing various physiological processes such as cell proliferation, migration, differentiation, survival, and stemness. The function of NF-ĸB in cancer progression and response to chemotherapy has gained increasing attention. This review highlights the role of NF-ĸB in inflammation control, biological mechanisms, and therapeutic implications in cancer treatment. NF-ĸB is instrumental in altering the release of inflammatory factors such as TNF-α, IL-6, and IL-1β, which are key in the regulation of carcinogenesis. Specifically, in conditions including colitis, NF-ĸB upregulation can intensify inflammation, potentially leading to the development of colorectal cancer. Its pivotal role extends to regulating the tumor microenvironment, impacting components such as macrophages, fibroblasts, T cells, and natural killer cells. This regulation influences tumorigenesis and can dampen anti-tumor immune responses. Additionally, NF-ĸB modulates cell death mechanisms, notably by inhibiting apoptosis and ferroptosis. It also has a dual role in stimulating or suppressing autophagy in various cancers. Beyond these functions, NF-ĸB plays a role in controlling cancer stem cells, fostering angiogenesis, increasing metastatic potential through EMT induction, and reducing tumor cell sensitivity to chemotherapy and radiotherapy. Given its oncogenic capabilities, research has focused on natural products and small molecule compounds that can suppress NF-ĸB, offering promising avenues for cancer therapy.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, P.R. China
| | - Shuai Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, P.R. China
| | - Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, 60532, USA.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China.
| |
Collapse
|
25
|
Zhang J, Miao G, Ta MH, Zhao B, Wang W, Xing Y, Qian H, Huang D, Chen W, Zhong Y. Photothermal-controlled NO-releasing Nanogels reverse epithelial-mesenchymal transition and restore immune surveillance against cancer metastasis. J Control Release 2024; 371:16-28. [PMID: 38763388 DOI: 10.1016/j.jconrel.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Metastasis leads to high mortality among cancer patients. It is a complex, multi-step biological process that involves the dissemination of cancer cells from the primary tumor and their systemic spread throughout the body, primarily through the epithelial-mesenchymal transition (EMT) program and immune evasion mechanisms. It presents a challenge in how to comprehensively treat metastatic cancer cells throughout the entire stage of the metastatic cascade using a simple system. Here, we fabricate a nanogel (HNO-NG) by covalently crosslinking a macromolecular nitric oxide (NO) donor with a photothermal IR780 iodide-containing hyaluronic acid derivative via a click reaction. This enables stable storage and tumor-targeted, photothermia-triggered release of NO to combat tumor metastasis throughout all stages. Upon laser irradiation (HNO-NG+L), the surge in NO production within tumor cells impairs the NF-κB/Snail/RKIP signaling loop that promotes the EMT program through S-nitrosylation, thus inhibiting cell dissemination from the primary tumor. On the other hand, it induces immunogenic cell death (ICD) and thereby augments anti-tumor immunity, which is crucial for killing both the primary tumor and systemically distributed tumor cells. Therefore, HNO-NG+L, by fully leveraging EMT reversal, ICD induction, and the lethal effect of NO, achieved impressive eradication of the primary tumor and significant prevention of lung metastasis in a mouse model of orthotropic 4T1 breast tumor that spontaneously metastasizes to the lungs, extending the NO-based therapeutic approach against tumor metastasis.
Collapse
Affiliation(s)
- Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Guizhi Miao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - My Hanh Ta
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yanran Xing
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
26
|
Merali N, Jessel MD, Arbe-Barnes EH, Ruby Lee WY, Gismondi M, Chouari T, O'Brien JW, Patel B, Osei-Bordom D, Rockall TA, Sivakumar S, Annels N, Frampton AE. Impact of tertiary lymphoid structures on prognosis and therapeutic response in pancreatic ductal adenocarcinoma. HPB (Oxford) 2024; 26:873-894. [PMID: 38729813 DOI: 10.1016/j.hpb.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is known to have a heterogeneous desmoplastic tumour microenvironment (TME) with a large number of immunosuppressive cells. Recently, high B-cell infiltration in PDAC has received growing interest as a potential therapeutic target. METHODS Our literature review summarises the characteristics of tumour-associated tertiary lymphoid structures (TLSs) and highlight the key studies exploring the clinical outcomes of TLSs in PDAC patients and the direct effect on the TME. RESULTS The location, density and maturity stages of TLSs within tumours play a key role in determining the prognosis and is a new emerging target in cancer immunotherapy. DISCUSSION TLS development is imperative to improve the prognosis of PDAC patients. In the future, studying the genetics and immune characteristics of tumour infiltrating B cells and TLSs may lead towards enhancing adaptive immunity in PDAC and designing personalised therapies.
Collapse
Affiliation(s)
- Nabeel Merali
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK
| | - Edward H Arbe-Barnes
- UCL Institute of Immunity and Transplantation, The Pears Building, Pond Street, London, UK
| | - Wing Yu Ruby Lee
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Martha Gismondi
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Tarak Chouari
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - James W O'Brien
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Bhavik Patel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Daniel Osei-Bordom
- Liver and Digestive Health, University College London, Royal Free Hospital, Pond St, London, UK
| | - Timothy A Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham, UK
| | - Nicola Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK
| | - Adam E Frampton
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK.
| |
Collapse
|
27
|
Cai Q, He Y, Zhou Y, Zheng J, Deng J. Nanomaterial-Based Strategies for Preventing Tumor Metastasis by Interrupting the Metastatic Biological Processes. Adv Healthc Mater 2024; 13:e2303543. [PMID: 38411537 DOI: 10.1002/adhm.202303543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/01/2024] [Indexed: 02/28/2024]
Abstract
Tumor metastasis is the primary cause of cancer-related deaths. The prevention of tumor metastasis has garnered notable interest and interrupting metastatic biological processes is considered a potential strategy for preventing tumor metastasis. The tumor microenvironment (TME), circulating tumor cells (CTCs), and premetastatic niche (PMN) play crucial roles in metastatic biological processes. These processes can be interrupted using nanomaterials due to their excellent physicochemical properties. However, most studies have focused on only one aspect of tumor metastasis. Here, the hypothesis that nanomaterials can be used to target metastatic biological processes and explore strategies to prevent tumor metastasis is highlighted. First, the metastatic biological processes and strategies involving nanomaterials acting on the TME, CTCs, and PMN to prevent tumor metastasis are briefly summarized. Further, the current challenges and prospects of nanomaterials in preventing tumor metastasis by interrupting metastatic biological processes are discussed. Nanomaterial-and multifunctional nanomaterial-based strategies for preventing tumor metastasis are advantageous for the long-term fight against tumor metastasis and their continued exploration will facilitate rapid progress in the prevention, diagnosis, and treatment of tumor metastasis. Novel perspectives are outlined for developing more effective strategies to prevent tumor metastasis, thereby improving the outcomes of patients with cancer.
Collapse
Affiliation(s)
- Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Yijia He
- School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Zhou
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
28
|
Li QQ, Guo M, He GH, Xi KH, Zhou MY, Shi RY, Chen GQ. VEGF-induced Nrdp1 deficiency in vascular endothelial cells promotes cancer metastasis by degrading vascular basement membrane. Oncogene 2024; 43:1836-1851. [PMID: 38654108 DOI: 10.1038/s41388-024-03038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Vascular endothelial cells (VECs) are key players in the formation of neovessels and tumor metastasis, the ultimate cause of the majority of cancer-related human death. However, the crosstalk between VECs and metastasis remain greatly elusive. Based on our finding that tumor-associated VECs present significant decrease of Nrdp1 protein which is closely correlated with higher metastatic probability, herein we show that the conditional medium from hypoxia-incubated cancer cells induces extensive Nrdp1 downregulation in human and mouse VECs by vascular endothelial growth factor (VEGF), which activates CHIP, followed by Nrdp1 degradation in ubiquitin-proteasome-dependent way. More importantly, lung metastases of cancer cells significantly increase in conditional VECs Nrdp1 knockout mice. Mechanically, Nrdp1 promotes degradation of Fam20C, a secretory kinase involved in phosphorylating numerous secreted proteins. Reciprocally, deficiency of Nrdp1 in VECs (ecNrdp1) results in increased secretion of Fam20C, which induces degradation of extracellular matrix and disrupts integrity of vascular basement membrane, thus driving tumor metastatic dissemination. In addition, specific overexpression of ecNrdp1 by Nrdp1-carrying adeno-associated virus or chemical Nrdp1 activator ABPN efficiently mitigates tumor metastasis in mice. Collectively, we explore a new mechanism for VEGF to enhance metastasis and role of Nrdp1 in maintaining the integrity of vascular endothelium, suggesting that ecNrdp1-mediated signaling pathways might become potential target for anti-metastatic therapies.
Collapse
Affiliation(s)
- Qing-Qing Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Meng Guo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.
| | - Guang-Huan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Kai-Hua Xi
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Mei-Yi Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Rong-Yi Shi
- Hainan Academy of Medical Sciences and School of Basic Medicine, Hainan Medical University, Hainan, 570000, China.
- Key Laboratory of Pediatric Hematology and Oncology in National Health Commission, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, SJTU-SM, Shanghai, 200127, China.
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.
- Hainan Academy of Medical Sciences and School of Basic Medicine, Hainan Medical University, Hainan, 570000, China.
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer, Research Units of Stress and Tumor (2019RU043), Chinese Academy of Medical Sciences, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
29
|
Urbano-Gámez JD, Guzzi C, Bernal M, Solivera J, Martínez-Zubiaurre I, Caro C, García-Martín ML. Tumor versus Tumor Cell Targeting in Metal-Based Nanoparticles for Cancer Theranostics. Int J Mol Sci 2024; 25:5213. [PMID: 38791253 PMCID: PMC11121233 DOI: 10.3390/ijms25105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The application of metal-based nanoparticles (mNPs) in cancer therapy and diagnostics (theranostics) has been a hot research topic since the early days of nanotechnology, becoming even more relevant in recent years. However, the clinical translation of this technology has been notably poor, with one of the main reasons being a lack of understanding of the disease and conceptual errors in the design of mNPs. Strikingly, throughout the reported studies to date on in vivo experiments, the concepts of "tumor targeting" and "tumor cell targeting" are often intertwined, particularly in the context of active targeting. These misconceptions may lead to design flaws, resulting in failed theranostic strategies. In the context of mNPs, tumor targeting can be described as the process by which mNPs reach the tumor mass (as a tissue), while tumor cell targeting refers to the specific interaction of mNPs with tumor cells once they have reached the tumor tissue. In this review, we conduct a critical analysis of key challenges that must be addressed for the successful targeting of either tumor tissue or cancer cells within the tumor tissue. Additionally, we explore essential features necessary for the smart design of theranostic mNPs, where 'smart design' refers to the process involving advanced consideration of the physicochemical features of the mNPs, targeting motifs, and physiological barriers that must be overcome for successful tumor targeting and/or tumor cell targeting.
Collapse
Affiliation(s)
- Jesús David Urbano-Gámez
- Biomedical Magnetic Resonance Laboratory—BMRL, Andalusian Public Foundation Progress and Health—FPS, 41092 Seville, Spain; (J.D.U.-G.); (C.G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
| | - Cinzia Guzzi
- Biomedical Magnetic Resonance Laboratory—BMRL, Andalusian Public Foundation Progress and Health—FPS, 41092 Seville, Spain; (J.D.U.-G.); (C.G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
| | - Manuel Bernal
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, 29071 Malaga, Spain
| | - Juan Solivera
- Department of Neurosurgery, Reina Sofia University Hospital, 14004 Cordoba, Spain;
| | - Iñigo Martínez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050, Langnes, 9037 Tromsö, Norway;
| | - Carlos Caro
- Biomedical Magnetic Resonance Laboratory—BMRL, Andalusian Public Foundation Progress and Health—FPS, 41092 Seville, Spain; (J.D.U.-G.); (C.G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
| | - María Luisa García-Martín
- Biomedical Magnetic Resonance Laboratory—BMRL, Andalusian Public Foundation Progress and Health—FPS, 41092 Seville, Spain; (J.D.U.-G.); (C.G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
30
|
Zhu S, Dai L, Zhong X, Lin W. A highly selective probe engineered to detect polarity and distinguish normal cells and tumor cells in tissue sections. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2850-2856. [PMID: 38644726 DOI: 10.1039/d4ay00438h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Early diagnostics and therapies for diseases such as cancer are limited by the fact that the inducing factors for the development of cytopathies are not clear. The stable polarity of lipid droplets is a potential biomarker for tumor cells; however, the complex intracellular biological environment poses great difficulties for specific detection of the polarity. Therefore, to meet this pressing challenge, we designed a highly selective fluorescent probe, DCI-Cou-polar, which used the ICT mechanism to differentiate normal cells and tumor cells in tissue sections by detecting changes in the polarities of intracellular lipid droplets. The introduction of a cyclic amine at the 7-position of coumarin (benzoquinolizine coumarin) reduced its ability to donate electrons compared with the diethylamino group, which increased the probe selectivity while retaining the sensitivity to polarity. With NIR emission and large Stokes shifts, DCI-Cou-polar has high sensitivity to polarity, excellent photostability, and biocompatibility, and it tracks lipid droplets with high fidelity. Therefore, we believe that this polarity-sensitive probe provides information on the connection between the polarity of lipid droplets and tumors while improving the development of highly selective polarity probes.
Collapse
Affiliation(s)
- Sai Zhu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Lixuan Dai
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Xiaoli Zhong
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| |
Collapse
|
31
|
Lambert AW, Zhang Y, Weinberg RA. Cell-intrinsic and microenvironmental determinants of metastatic colonization. Nat Cell Biol 2024; 26:687-697. [PMID: 38714854 DOI: 10.1038/s41556-024-01409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Cancer metastasis is a biologically complex process that remains a major challenge in the oncology clinic, accounting for nearly all of the mortality associated with malignant neoplasms. To establish metastatic growths, carcinoma cells must disseminate from the primary tumour, survive in unfamiliar tissue microenvironments, re-activate programs of proliferation, and escape innate and adaptive immunosurveillance. The entire process is extremely inefficient and can occur over protracted timescales, yielding only a vanishingly small number of carcinoma cells that are able to complete all of the required steps. Here we review both the cancer-cell-intrinsic mechanisms and microenvironmental interactions that enable metastatic colonization. In particular, we highlight recent work on the behaviour of already-disseminated tumour cells, since meaningful progress in treating metastatic disease will clearly require a better understanding of the cells that spawn metastases, which generally have disseminated by the time of initial diagnosis.
Collapse
Affiliation(s)
- Arthur W Lambert
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Translational Medicine, Oncology R&D, AstraZeneca, Waltham, MA, USA
| | - Yun Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- MIT Ludwig Center, Cambridge, MA, USA.
| |
Collapse
|
32
|
Kotsifaki A, Maroulaki S, Armakolas A. Exploring the Immunological Profile in Breast Cancer: Recent Advances in Diagnosis and Prognosis through Circulating Tumor Cells. Int J Mol Sci 2024; 25:4832. [PMID: 38732051 PMCID: PMC11084220 DOI: 10.3390/ijms25094832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This review offers a comprehensive exploration of the intricate immunological landscape of breast cancer (BC), focusing on recent advances in diagnosis and prognosis through the analysis of circulating tumor cells (CTCs). Positioned within the broader context of BC research, it underscores the pivotal role of the immune system in shaping the disease's progression. The primary objective of this investigation is to synthesize current knowledge on the immunological aspects of BC, with a particular emphasis on the diagnostic and prognostic potential offered by CTCs. This review adopts a thorough examination of the relevant literature, incorporating recent breakthroughs in the field. The methodology section succinctly outlines the approach, with a specific focus on CTC analysis and its implications for BC diagnosis and prognosis. Through this review, insights into the dynamic interplay between the immune system and BC are highlighted, with a specific emphasis on the role of CTCs in advancing diagnostic methodologies and refining prognostic assessments. Furthermore, this review presents objective and substantiated results, contributing to a deeper understanding of the immunological complexity in BC. In conclusion, this investigation underscores the significance of exploring the immunological profile of BC patients, providing valuable insights into novel advances in diagnosis and prognosis through the utilization of CTCs. The objective presentation of findings emphasizes the crucial role of the immune system in BC dynamics, thereby opening avenues for enhanced clinical management strategies.
Collapse
Affiliation(s)
| | | | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (S.M.)
| |
Collapse
|
33
|
Yu P, Han Y, Meng L, Tang Z, Jin Z, Zhang Z, Zhou Y, Luo J, Luo J, Han C, Zhang C, Kong L. The incorporation of acetylated LAP-TGF-β1 proteins into exosomes promotes TNBC cell dissemination in lung micro-metastasis. Mol Cancer 2024; 23:82. [PMID: 38664722 PMCID: PMC11044330 DOI: 10.1186/s12943-024-01995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
Triple-negative breast cancer (TNBC) stands as the breast cancer subtype with the highest recurrence and mortality rates, with the lungs being the common site of metastasis. The pulmonary microenvironment plays a pivotal role in the colonization of disseminated tumor cells. Herein, this study highlights the crucial role of exosomal LAP-TGF-β1, the principal form of exosomal TGF-β1, in reshaping the pulmonary vascular niche, thereby facilitating TNBC lung metastasis. Although various strategies have been developed to block TGF-β signaling and have advanced clinically, their significant side effects have limited their therapeutic application. This study demonstrates that in lung metastatic sites, LAP-TGF-β1 within exosomes can remarkably reconfigure the pulmonary vascular niche at lower doses, bolstering the extravasation and colonization of TNBC cells in the lungs. Mechanistically, under the aegis of the acetyltransferase TIP60, a non-canonical KFERQ-like sequence in LAP-TGF-β1 undergoes acetylation at the K304 site, promoting its interaction with HSP90A and subsequent transport into exosomes. Concurrent inhibition of both HSP90A and TIP60 significantly diminishes the exosomal burden of LAP-TGF-β1, presenting a promising therapeutic avenue for TNBC lung metastasis. This study not only offers fresh insights into the molecular underpinnings of TNBC lung metastasis but also lays a foundation for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Pei Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yubao Han
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lulu Meng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zengying Tang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhiwei Jin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhenzhen Zhang
- Institute of Veterinary Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yunjiang Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jun Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianguang Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chao Han
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
34
|
Carrolo M, Miranda JAI, Vilhais G, Quintela A, Sousa MFE, Costa DA, Pinto FR. Metastatic organotropism: a brief overview. Front Oncol 2024; 14:1358786. [PMID: 38725618 PMCID: PMC11079203 DOI: 10.3389/fonc.2024.1358786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Organotropism has been known since 1889, yet this vital component of metastasis has predominantly stayed elusive. This mini-review gives an overview of the current understanding of the underlying mechanisms of organotropism and metastases development by focusing on the formation of the pre-metastatic niche, immune defenses against metastases, and genomic alterations associated with organotropism. The particular case of brain metastases is also addressed, as well as the impact of organotropism in cancer therapy. The limited comprehension of the factors behind organotropism underscores the necessity for efficient strategies and treatments to manage metastases.
Collapse
Affiliation(s)
| | - João A. I. Miranda
- BioISI – Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | | | - António Quintela
- Hematology and Oncology Department, CUF Oncologia, Lisbon, Portugal
| | | | - Diogo Alpuim Costa
- Hematology and Oncology Department, CUF Oncologia, Lisbon, Portugal
- Medical Oncology Department, Hospital de Cascais, Cascais, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, Lisbon, Portugal
| | - Francisco R. Pinto
- BioISI – Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
35
|
Choroba K, Machura B, Erfurt K, Casimiro AR, Cordeiro S, Baptista PV, Fernandes AR. Copper(II) Complexes with 2,2':6',2″-Terpyridine Derivatives Displaying Dimeric Dichloro-μ-Bridged Crystal Structure: Biological Activities from 2D and 3D Tumor Spheroids to In Vivo Models. J Med Chem 2024; 67:5813-5836. [PMID: 38518246 PMCID: PMC11017252 DOI: 10.1021/acs.jmedchem.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Eight 2,2':6',2″-terpyridines, substituted at the 4'-position with aromatic groups featuring variations in π-conjugation, ring size, heteroatoms, and methoxy groups, were employed to enhance the antiproliferative potential of [Cu2Cl2(R-terpy)2](PF6)2. Assessing the cytotoxicity in A2780 (ovarian carcinoma), HCT116 (colorectal carcinoma), and HCT116DoxR (colorectal carcinoma resistant to doxorubicin) and normal primary fibroblasts revealed that Cu(II) complexes with 4-quinolinyl, 4-methoxy-1-naphthyl, 2-furanyl, and 2-pyridynyl substituents showed superior therapeutic potential in HCT116DoxR cells with significantly reduced cytotoxicity in normal fibroblasts (42-129× lower). Besides their cytotoxicity, the Cu(II) complexes are able to increase intracellular ROS and interfere with cell cycle progression, leading to cell death by apoptosis and autophagy. Importantly, they demonstrated antimetastatic and antiangiogenic properties without in vivo toxicity. In accordance with their nuclear accumulation, the Cu(II) complexes are able to cleave pDNA and interact with bovine serum albumin, which is a good indication of their ability for internalization and transport toward tumor cells.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Barbara Machura
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Karol Erfurt
- Department
of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Ana Rita Casimiro
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Sandra Cordeiro
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Pedro V. Baptista
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
36
|
Ali AM, Raza A. scRNAseq and High-Throughput Spatial Analysis of Tumor and Normal Microenvironment in Solid Tumors Reveal a Possible Origin of Circulating Tumor Hybrid Cells. Cancers (Basel) 2024; 16:1444. [PMID: 38611120 PMCID: PMC11010995 DOI: 10.3390/cancers16071444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Metastatic cancer is a leading cause of death in cancer patients worldwide. While circulating hybrid cells (CHCs) are implicated in metastatic spread, studies documenting their tissue origin remain sparse, with limited candidate approaches using one-two markers. Utilizing high-throughput single-cell and spatial transcriptomics, we identified tumor hybrid cells (THCs) co-expressing epithelial and macrophage markers and expressing a distinct transcriptome. Rarely, normal tissue showed these cells (NHCs), but their transcriptome was easily distinguishable from THCs. THCs with unique transcriptomes were observed in breast and colon cancers, suggesting this to be a generalizable phenomenon across cancer types. This study establishes a framework for HC identification in large datasets, providing compelling evidence for their tissue residence and offering comprehensive transcriptomic characterization. Furthermore, it sheds light on their differential function and identifies pathways that could explain their newly acquired invasive capabilities. THCs should be considered as potential therapeutic targets.
Collapse
Affiliation(s)
- Abdullah Mahmood Ali
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Edward P Evans MDS Center, Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
| | - Azra Raza
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Edward P Evans MDS Center, Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
| |
Collapse
|
37
|
Li J, Gao P, Qin M, Wang J, Luo Y, Deng P, Hao R, Zhang L, He M, Chen C, Lu Y, Ma Q, Li M, Tan M, Wang L, Yue Y, Wang H, Tian L, Xie J, Chen M, Yu Z, Zhou Z, Pi H. Long-term cadmium exposure induces epithelial-mesenchymal transition in breast cancer cells by activating CYP1B1-mediated glutamine metabolic reprogramming in BT474 cells and MMTV-Erbb2 mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170773. [PMID: 38336054 DOI: 10.1016/j.scitotenv.2024.170773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Cadmium (Cd) exposure is known to enhance breast cancer (BC) progression. Cd promotes epithelial-mesenchymal transition (EMT) in BC cells, facilitating BC cell aggressiveness and invasion, but the underlying molecular mechanisms are unclear. Hence, transgenic MMTV-Erbb2 mice (6 weeks) were orally administered Cd (3.6 mg/L, approximately equal to 19.64 μΜ) for 23 weeks, and BC cells (BT474 cells) were exposed to Cd (0, 0.1, 1 or 10 μΜ) for 72 h to investigate the effect of Cd exposure on EMT in BC cells. Chronic Cd exposure dramatically expedited tumor metastasis to multiple organs; decreased E-cadherin density; and increased Vimentin, N-cadherin, ZEB1, and Twist density in the tumor tissues of MMTV-Erbb2 mice. Notably, transcriptomic analysis of BC tumors revealed cytochrome P450 1B1 (CYP1B1) as a key factor that regulates EMT progression in Cd-treated MMTV-Erbb2 mice. Moreover, Cd increased CYP1B1 expression in MMTV-Erbb2 mouse BC tumors and in BT474 cells, and CYP1B1 inhibition decreased Cd-induced BC cell malignancy and EMT in BT474 cells. Importantly, the promotion of EMT by CYP1B1 in Cd-treated BC cells was presumably controlled by glutamine metabolism. This study offers novel perspectives into the effect of environmental Cd exposure on driving BC progression and metastasis, and this study provides important guidance for comprehensively assessing the ecological and health risks of Cd.
Collapse
Affiliation(s)
- Jingdian Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Peng Gao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mingke Qin
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Junhua Wang
- Nuclear Medicine Department, General Hospital of Tibet Military Area Command, Lhasa 850000, Xizang, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rongrong Hao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lei Zhang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mindi He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chunhai Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yonghui Lu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qinlong Ma
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Min Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Miduo Tan
- Department of Breast Surgery, Central Hospital of Zhuzhou City, Central South University, Zhuzhou 412000, Hunan, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Yang Yue
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing 100850, China
| | - Hui Wang
- Nuclear Medicine Department, General Hospital of Tibet Military Area Command, Lhasa 850000, Xizang, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China; State key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
38
|
Li YP, Liu H, Zhao XC, Tang XL, Shan P, Zhang H. Rare flavanone-diarylheptanoid hybrids from Typha angustifolia shows anti breast cancer activity via activating TGF-β1/Smad signaling pathway. Eur J Med Chem 2024; 268:116220. [PMID: 38387332 DOI: 10.1016/j.ejmech.2024.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Four new flavanone-diarylheptanoid hetero dimers, typhatifolins A-D (1-4), were separated from the pollen of a widely distributed medicinal plant Typha angustifolia. Structures of these rare hybrids were elucidated by detailed interpretation of spectroscopic data, and their absolute configurations were determined on the basis of Mosher's method and ECD analyses. All the four compounds showed moderate to significant cytotoxicities against a panel of tumor cell lines with IC50 values ranging from 0.67 to 12.48 μM. Further in vitro antitumor evaluation for typhatifolin B (TTB, 2) on two breast cancer cells (4T1 and MDA-MB231) revealed that it could remarkably induce cell apoptosis and G0/G1 cycle arrest, as well as block cell migration and invasion. Mechanistically, TTB could exert its antitumor effect via activating the TGF-β1 (transforming growth factor beta 1) signaling pathway as evidenced by RNA-seq analysis and immunoblotting experiments, which was further corroborated by treating cancer cells with a TGF-β signaling inhibitor. Lastly, the in vivo anti breast cancer activity was demonstrated by applying the mixture of typhatifolins A-D to a preclinical animal model.
Collapse
Affiliation(s)
- Yu-Peng Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hu Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xue-Chun Zhao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xue-Lian Tang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Peipei Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
39
|
Chen Q, Yang M, Duan X, Zhang J, Shi F, Chen R, Li Y. Linker Histone H1.4 Inhibits the Growth, Migration and EMT Process of Non-Small Cell Lung Cancer by Regulating ERK1/2 Expression. Biochem Genet 2024:10.1007/s10528-024-10760-2. [PMID: 38472566 DOI: 10.1007/s10528-024-10760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
H1.4 is one of the 11 variants of linker histone H1, and is associated with tumorigenesis and development of various cancers. However, it is unclear for the role of histone H1.4 in non-small cell lung cancer (NSCLC). In this study, we found that overexpression of H1.4 significantly inhibited the cell viability, migration, invasion and epithelial-mesenchymal transition (EMT) processes, whereas silencing H1.4 by shRNA knockdown promoted these processes in NSCLC cell lines A549 and H1299. We further showed that H1.4 overexpression reduced ERK1/2 expression or its phosphorylation levels, while H1.4 knockdown increased ERK1/2 expression or phosphorylation levels in NSCLC. Furthermore, we demonstrated that H1.4 bound to the promoter of ERK1/2, and acted as a transcriptional suppressor to inhibit ERK1/2 expression in A549 or H1299 cells. Importantly, we found that ERK ecto-expression can largely recovered the inhibitory effects of H1.4 on cell viability, migration, invasion and EMT processes. In summary, our study reveals that the H1.4-ERK pathway is crucial for cell viability, migration, invasion and EMT of NSCLC and could be a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Qian Chen
- School of Life Sciences, Anhui University, Hefei, Anhui Province, 230601, PR China
| | - Mengqi Yang
- School of Life Sciences, Anhui University, Hefei, Anhui Province, 230601, PR China
| | - Xinyue Duan
- School of Life Sciences, Anhui University, Hefei, Anhui Province, 230601, PR China
| | - Jie Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui Province, 230601, PR China
| | - Fan Shi
- School of Life Sciences, Anhui University, Hefei, Anhui Province, 230601, PR China
| | - Rong Chen
- School of Life Sciences, Anhui University, Hefei, Anhui Province, 230601, PR China
| | - Yong Li
- School of Life Sciences, Anhui University, Hefei, Anhui Province, 230601, PR China.
- Center for Stem Cell and Translational Medicine, Anhui University, Hefei, Anhui Province, China.
| |
Collapse
|
40
|
Ma Y, Hua Y, Yin X, Jiao Y, Xu E, Yan T, Yang J, Zhang L. MBIP promotes ESCC metastasis by activating MAPK pathway. Cell Signal 2024; 115:111040. [PMID: 38199596 DOI: 10.1016/j.cellsig.2024.111040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/17/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
MBIP is a component of the Ada2A containing complex (ATAC) and has been identified as a susceptibility gene in several cancers. However, the role and molecular mechanism of MBIP in esophageal squamous cell carcinoma (ESCC) remain unclear. Our finding indicated that the expression level of MBIP in ESCC was higher than that in normal tissue (P < 0.05) based on the data from the Cancer Gene Atlas (TCGA) and Gene Expression Omnibus (GEO). Kaplan-Meier analysis showed that high MBIP expression was closely associated with deeper invasion and worse prognosis. Transwell assay and mouse xenograft assay demonstrated that MBIP overexpression promoted migration and invasion in vitro and in vivo, while MBIP knockdown played the opposite role. Furthermore, the results of RNA-seq, qRT-PCR, western blotting and rescue experiments revealed that MBIP promoted epithelial-mesenchymal transition (EMT) via the phosphorylation JNK/p38 in ESCC. Our study indicates that MBIP plays a significant role in the prognosis and metastasis of ESCC, suggesting that MBIP might serve as an ESCC prognostic biomarker.
Collapse
Affiliation(s)
- Yanchun Ma
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China.
| | - Yuyan Hua
- Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - XiaoJie Yin
- Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ye Jiao
- Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Enwei Xu
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi 030001, China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jian Yang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ling Zhang
- Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
41
|
Behrooz AB, Cordani M, Donadelli M, Ghavami S. Metastatic outgrowth via the two-way interplay of autophagy and metabolism. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166824. [PMID: 37949196 DOI: 10.1016/j.bbadis.2023.166824] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 11/12/2023]
Abstract
Metastasis represents one of the most dangerous issue of cancer progression, characterized by intricate interactions between invading tumor cells, various proteins, and other cells on the way towards target sites. Tumor cells, while undergoing metastasis, engage in dynamic dialogues with stromal cells and undertake epithelial-mesenchymal transition (EMT) phenoconversion. To ensure survival, tumor cells employ several strategies such as restructuring their metabolic needs to adapt to the alterations of the microenvironmental resources via different mechanisms including macroautophagy (autophagy) and to circumvent anoikis-a form of cell death induced upon detachment from the extracellular matrix (ECM). This review focuses on the puzzling connections of autophagy and energetic metabolism within the context of cancer metastasis.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada; Academy of Silesia, Faculty of Medicine, Rolna 43 Street, 40-555 Katowice, Poland; Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
42
|
Guo H, Zhou C, Zheng M, Zhang J, Wu H, He Q, Ding L, Yang B. Insights into the role of derailed endocytic trafficking pathway in cancer: From the perspective of cancer hallmarks. Pharmacol Res 2024; 201:107084. [PMID: 38295915 DOI: 10.1016/j.phrs.2024.107084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
The endocytic trafficking pathway is a highly organized cellular program responsible for the regulation of membrane components and uptake of extracellular substances. Molecules internalized into the cell through endocytosis will be sorted for degradation or recycled back to membrane, which is determined by a series of sorting events. Many receptors, enzymes, and transporters on the membrane are strictly regulated by endocytic trafficking process, and thus the endocytic pathway has a profound effect on cellular homeostasis. However, the endocytic trafficking process is typically dysregulated in cancers, which leads to the aberrant retention of receptor tyrosine kinases and immunosuppressive molecules on cell membrane, the loss of adhesion protein, as well as excessive uptake of nutrients. Therefore, hijacking endocytic trafficking pathway is an important approach for tumor cells to obtain advantages of proliferation and invasion, and to evade immune attack. Here, we summarize how dysregulated endocytic trafficking process triggers tumorigenesis and progression from the perspective of several typical cancer hallmarks. The impact of endocytic trafficking pathway to cancer therapy efficacy is also discussed.
Collapse
Affiliation(s)
- Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou 310015, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China.
| |
Collapse
|
43
|
Li W, Xin H, Gao W, Yuan P, Ni F, Ma J, Sun J, Xiao J, Tian G, Liu L, Zhang G. NIR-IIb fluorescence antiangiogenesis copper nano-reaper for enhanced synergistic cancer therapy. J Nanobiotechnology 2024; 22:73. [PMID: 38374027 PMCID: PMC10877799 DOI: 10.1186/s12951-024-02343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
The formation of blood vessel system under a relatively higher Cu2+ ion level is an indispensable precondition for tumor proliferation and migration, which was assisted in forming the tumor immune microenvironment. Herein, a copper ions nano-reaper (LMDFP) is rationally designed not only for chelating copper ions in tumors, but also for combination with photothermal therapy (PTT) to improve antitumor efficiency. Under 808 nm laser irradiation, the fabricated nano-reaper converts light energy into thermal energy to kill tumor cells and promotes the release of D-penicillamine (DPA) in LMDFP. Photothermal properties of LMDFP can cause tumor ablation in situ, which further induces immunogenic cell death (ICD) to promote systematic antitumor immunity. The released DPA exerts an anti-angiogenesis effect on the tumor through chelating copper ions, and inhibits the expression of programmed death ligand 1 (PD-L1), which synergizes with PTT to enhance antitumor immunity and inhibit tumor metastasis. Meanwhile, the nanoplatform can emit near-infrared-IIb (NIR-IIb) fluorescence under 980 nm excitation, which can be used to track the nano-reaper and determine the optimal time point for PTT. Thus, the fabricated nano-reaper shows powerful potential in inhibiting tumor growth and metastasis, and holds great promise for the application of copper nanochelator in precise tumor treatment.
Collapse
Affiliation(s)
- Wenling Li
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Huan Xin
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Wenjuan Gao
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Pengjun Yuan
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Feixue Ni
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Jingyi Ma
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Jingrui Sun
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Jianmin Xiao
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Geng Tian
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China.
| | - Lu Liu
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China.
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China.
| |
Collapse
|
44
|
Ravi Kiran AVVV, Kumari GK, Krishnamurthy PT, Johnson AP, Kenchegowda M, Osmani RAM, Abu Lila AS, Moin A, Gangadharappa HV, Rizvi SMD. An Update on Emergent Nano-Therapeutic Strategies against Pediatric Brain Tumors. Brain Sci 2024; 14:185. [PMID: 38391759 PMCID: PMC10886772 DOI: 10.3390/brainsci14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Pediatric brain tumors are the major cause of pediatric cancer mortality. They comprise a diverse group of tumors with different developmental origins, genetic profiles, therapeutic options, and outcomes. Despite many technological advancements, the treatment of pediatric brain cancers has remained a challenge. Treatment options for pediatric brain cancers have been ineffective due to non-specificity, inability to cross the blood-brain barrier, and causing off-target side effects. In recent years, nanotechnological advancements in the medical field have proven to be effective in curing challenging cancers like brain tumors. Moreover, nanoparticles have emerged successfully, particularly in carrying larger payloads, as well as their stability, safety, and efficacy monitoring. In the present review, we will emphasize pediatric brain cancers, barriers to treating these cancers, and novel treatment options.
Collapse
Affiliation(s)
- Ammu V V V Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rocklands, Ooty 643001, The Nilgiris, Tamil Nadu, India
| | - G Kusuma Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rocklands, Ooty 643001, The Nilgiris, Tamil Nadu, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rocklands, Ooty 643001, The Nilgiris, Tamil Nadu, India
| | - Asha P Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Madhuchandra Kenchegowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| |
Collapse
|
45
|
Chen L, Liu Q, Tan C, Wu T, Wu M, Tan X, Liu J, Wang J. The Age-Male-Albumin-Bilirubin-Platelets (aMAP) Risk Score Predicts Liver Metastasis Following Surgery for Breast Cancer in Chinese Population: A Retrospective Study. Immunotargets Ther 2024; 13:75-94. [PMID: 38352235 PMCID: PMC10861995 DOI: 10.2147/itt.s446545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Objective The current study is conducted to investigate the potential prognostic value of the age-male-albumin-bilirubin-platelets (aMAP) score in breast cancer patients with liver metastasis after surgery. Methods This is a retrospective study of 178 breast cancer patients who developed liver metastasis after surgery. These patients were treated and followed up from 2000 to 2018 at our hospital. The aMAP risk score was estimated in accordance with the following formula: . The optimal cutoff value of the aMAP was evaluated via X-tile. Kaplan-Meier, Log-rank and Cox proportional hazards regression models were applied to determine the clinical influence of the aMAP score on the survival outcomes. The nomogram models were established by multivariate analyses. The calibration curves and decision curve analysis were applied to evaluate the estimated performance of the nomogram models. Results A total of 178 breast cancer patients were divided into low aMAP score group (<47.6) and high aMAP score group (≥47.6) via X-tile plots. The aMAP score was a potential prognostic factor in multivariate analysis. The median disease free survival (p=0.0013) and overall survival (p=0.0003) in low aMAP score group were longer than in high aMAP score group. The nomograms were constructed to predict the DFS with a C-index of 0.722 (95% CI, 0.673-0.771), and the OS with a C-index of 0.708 (95% CI, 0.661-0.755). The aMAP-based nomograms had good predictive performance. Conclusion The aMAP score is a potential prognostic factor in breast cancer with liver metastasis after surgery. The aMAP score-based nomograms were conducive to discriminate patients at high risks of liver metastasis and develop adjuvant treatment and prevention strategies.
Collapse
Affiliation(s)
- Li Chen
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Qiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Chunlei Tan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Tiangen Wu
- Department of Hepatobiliary&Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Meng Wu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, People’s Republic of China
| | - Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, People’s Republic of China
| | - Jinwen Liu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| |
Collapse
|
46
|
Farhat B, Bordeu I, Jagla B, Ibrahim S, Stefanovic S, Blanc H, Loulier K, Simons BD, Beaurepaire E, Livet J, Pucéat M. Understanding the cell fate and behavior of progenitors at the origin of the mouse cardiac mitral valve. Dev Cell 2024; 59:339-350.e4. [PMID: 38198889 DOI: 10.1016/j.devcel.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/08/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Congenital heart malformations include mitral valve defects, which remain largely unexplained. During embryogenesis, a restricted population of endocardial cells within the atrioventricular canal undergoes an endothelial-to-mesenchymal transition to give rise to mitral valvular cells. However, the identity and fate decisions of these progenitors as well as the behavior and distribution of their derivatives in valve leaflets remain unknown. We used single-cell RNA sequencing (scRNA-seq) of genetically labeled endocardial cells and microdissected mouse embryonic and postnatal mitral valves to characterize the developmental road. We defined the metabolic processes underlying the specification of the progenitors and their contributions to subtypes of valvular cells. Using retrospective multicolor clonal analysis, we describe specific modes of growth and behavior of endocardial cell-derived clones, which build up, in a proper manner, functional valve leaflets. Our data identify how both genetic and metabolic mechanisms specifically drive the fate of a subset of endocardial cells toward their distinct clonal contribution to the formation of the valve.
Collapse
Affiliation(s)
- Batoul Farhat
- INSERM U1251/Aix-Marseille Université, Marseille 13885, France
| | - Ignacio Bordeu
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 9160000, Chile
| | - Bernd Jagla
- Pasteur Institute UtechS CB & Hub de Bioinformatique et Biostatistiques, C3BI, Paris, France
| | - Stéphanie Ibrahim
- C2VN Aix-Marseille Université, INSERM 1263, INRAE 1260, Marseille 13885, France
| | - Sonia Stefanovic
- C2VN Aix-Marseille Université, INSERM 1263, INRAE 1260, Marseille 13885, France
| | - Hugo Blanc
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, Palaiseau 91120, France
| | - Karine Loulier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 A0W, UK
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, Palaiseau 91120, France
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Michel Pucéat
- INSERM U1251/Aix-Marseille Université, Marseille 13885, France.
| |
Collapse
|
47
|
Zhang J, Tang M, Shang J. PPARγ Modulators in Lung Cancer: Molecular Mechanisms, Clinical Prospects, and Challenges. Biomolecules 2024; 14:190. [PMID: 38397426 PMCID: PMC10886696 DOI: 10.3390/biom14020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Lung cancer is one of the most lethal malignancies worldwide. Peroxisome proliferator-activated receptor gamma (PPARγ, NR1C3) is a ligand-activated transcriptional factor that governs the expression of genes involved in glucolipid metabolism, energy homeostasis, cell differentiation, and inflammation. Multiple studies have demonstrated that PPARγ activation exerts anti-tumor effects in lung cancer through regulation of lipid metabolism, induction of apoptosis, and cell cycle arrest, as well as inhibition of invasion and migration. Interestingly, PPARγ activation may have pro-tumor effects on cells of the tumor microenvironment, especially myeloid cells. Recent clinical data has substantiated the potential of PPARγ agonists as therapeutic agents for lung cancer. Additionally, PPARγ agonists also show synergistic effects with traditional chemotherapy and radiotherapy. However, the clinical application of PPARγ agonists remains limited due to the presence of adverse side effects. Thus, further research and clinical trials are necessary to comprehensively explore the actions of PPARγ in both tumor and stromal cells and to evaluate the in vivo toxicity. This review aims to consolidate the molecular mechanism of PPARγ modulators and to discuss their clinical prospects and challenges in tackling lung cancer.
Collapse
Affiliation(s)
- Jiyun Zhang
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 511436, China;
- Guangzhou National Laboratory, Guangzhou 510005, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Miru Tang
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Jinsai Shang
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 511436, China;
- Guangzhou National Laboratory, Guangzhou 510005, China
| |
Collapse
|
48
|
Thiery JP, Sheng G, Shu X, Runyan R. How studies in developmental epithelial-mesenchymal transition and mesenchymal-epithelial transition inspired new research paradigms in biomedicine. Development 2024; 151:dev200128. [PMID: 38300897 DOI: 10.1242/dev.200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Epithelial-mesenchymal transition (EMT) and its reverse mechanism, mesenchymal-epithelial transition (MET), are evolutionarily conserved mechanisms initially identified in studies of early metazoan development. EMT may even have been established in choanoflagellates, the closest unicellular relative of Metazoa. These crucial morphological transitions operate during body plan formation and subsequently in organogenesis. These findings have prompted an increasing number of investigators in biomedicine to assess the importance of such mechanisms that drive epithelial cell plasticity in multiple diseases associated with congenital disabilities and fibrosis, and, most importantly, in the progression of carcinoma. EMT and MET also play crucial roles in regenerative medicine, notably by contributing epigenetic changes in somatic cells to initiate reprogramming into stem cells and their subsequent differentiation into distinct lineages.
Collapse
Affiliation(s)
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Xiaodong Shu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Raymond Runyan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
49
|
Ghosh A, Mitra AK. Metastasis and cancer associated fibroblasts: taking it up a NOTCH. Front Cell Dev Biol 2024; 11:1277076. [PMID: 38269089 PMCID: PMC10806909 DOI: 10.3389/fcell.2023.1277076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Metastasis is the least understood aspect of cancer biology. 90% of cancer related deaths occur due extensive metastatic burden in patients. Apart from metastasizing cancer cells, the pro-tumorigenic and pro-metastatic role of the tumor stroma plays a crucial part in this complex process often leading to disease relapse and therapy resistance. Cellular signaling processes play a crucial role in the process of tumorigenesis and metastasis when aberrantly turned on, not just in the cancer cells, but also in the cells of the tumor microenvironment (TME). One of the most conserved pathways includes the Notch signaling pathway that plays a crucial role in the development and progression of many cancers. In addition to its well documented role in cancer cells, recent evidence suggests crucial involvement of Notch signaling in the stroma as well. This review aims to highlight the current findings focusing on the oncogenic role of notch signaling in cancer cells and the TME, with a specific focus on cancer associated fibroblasts (CAFs), which constitute a major part of the tumor stroma and are important for tumor progression. Recent efforts have focused on the development of anti-cancer and anti-metastatic therapies targeting TME. Understanding the importance of Notch signaling in the TME would help identify important drivers for stromal reprogramming, metastasis and importantly, drive future research in the effort to develop TME-targeted therapies utilizing Notch.
Collapse
Affiliation(s)
- Argha Ghosh
- Indiana University School of Medicine-Bloomington, Bloomington, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Anirban K. Mitra
- Indiana University School of Medicine-Bloomington, Bloomington, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
50
|
Gao Q, Chen N, Li B, Zu M, Ma Y, Xu H, Zhu Z, Reis RL, Kundu SC, Xiao B. Natural lipid nanoparticles extracted from Morus nigra L. leaves for targeted treatment of hepatocellular carcinoma via the oral route. J Nanobiotechnology 2024; 22:4. [PMID: 38169394 PMCID: PMC10763359 DOI: 10.1186/s12951-023-02286-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
The clinical application of conventional medications for hepatocellular carcinoma treatment has been severely restricted by their adverse effects and unsatisfactory therapeutic effectiveness. Inspired by the concept of 'medicine food homology', we extracted and purified natural exosome-like lipid nanoparticles (LNPs) from black mulberry (Morus nigra L.) leaves. The obtained MLNPs possessed a desirable hydrodynamic particle size (162.1 nm), a uniform size distribution (polydispersity index = 0.025), and a negative surface charge (-26.6 mv). These natural LNPs were rich in glycolipids, functional proteins, and active small molecules (e.g., rutin and quercetin 3-O-glucoside). In vitro experiments revealed that MLNPs were preferentially internalized by liver tumor cell lines via galactose receptor-mediated endocytosis, increased intracellular oxidative stress, and triggered mitochondrial damage, resulting in suppressing the viability, migration, and invasion of these cells. Importantly, in vivo investigations suggested that oral MLNPs entered into the circulatory system mainly through the jejunum and colon, and they exhibited negligible adverse effects and superior anti-liver tumor outcomes through direct tumor killing and intestinal microbiota modulation. These findings collectively demonstrate the potential of MLNPs as a natural, safe, and robust nanomedicine for oral treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Qiang Gao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Nanxi Chen
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Baoyi Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Menghang Zu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Ya Ma
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Haiting Xu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Zhenhua Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, AvePark, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, AvePark, Braga, Guimarães, Portugal
| | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|