1
|
Peterson SK, Ahmad ST. A Brief Overview of Ethanol Tolerance and Its Potential Association with Circadian Rhythm in Drosophila. Int J Mol Sci 2024; 25:12605. [PMID: 39684317 DOI: 10.3390/ijms252312605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Alcohol consumption and addiction remain global health concerns, with significant loss of productivity, morbidity, and mortality. Drosophila melanogaster, a widely used model organism, offers valuable insights into the genetic and neuronal mechanisms underlying ethanol-induced behaviors (EIBs) such as sedation, recovery, and tolerance. This narrative review focuses on studies in the Drosophila model system suggesting an association between circadian rhythm genes as modulators of ethanol tolerance. Mutations in these genes disrupt both the circadian cycle and tolerance, underscoring the interplay between circadian rhythm and ethanol processing although the exact mechanisms remain largely unknown. Additionally, genes involved in stress response, gene expression regulation, neurotransmission, and synaptic activity were implicated in ethanol tolerance modulation. At the neuronal level, recent studies have highlighted the involvement of corazonin (CRZ) and neuropeptide F (NPF) neurons in modulating EIBs. Understanding the temporal dynamics of tolerance development is crucial for describing the molecular basis of ethanol tolerance. Ultimately, insights gained from Drosophila studies hold promise for elucidating the neurobiological underpinnings of alcohol use disorders and addiction, contributing to more effective interventions and treatments.
Collapse
Affiliation(s)
| | - S Tariq Ahmad
- Department of Biology, Colby College, Waterville, ME 04901, USA
| |
Collapse
|
2
|
Invertebrate neurons as a simple model to study the hyperexcitable state of epileptic disorders in single cells, monosynaptic connections, and polysynaptic circuits. Biophys Rev 2022; 14:553-568. [PMID: 35528035 PMCID: PMC9043075 DOI: 10.1007/s12551-022-00942-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is a neurological disorder characterized by a hyperexcitable state in neurons from different brain regions. Much is unknown about epilepsy and seizures development, depicting a growing field of research. Animal models have provided important clues about the underlying mechanisms of seizure-generating neuronal circuits. Mammalian complexity still makes it difficult to define some principles of nervous system function, and non-mammalian models have played pivotal roles depending on the research question at hand. Mollusks and the Helix land snail have been used to study epileptic-like behavior in neurons. Neurons from these organisms confer advantages as single-cell identification, isolation, and culture, either as single cells or as physiological relevant monosynaptic or polysynaptic circuits, together with amenability to different protocols and treatments. This review's purpose consists in presenting relevant papers in order to gain a better understanding of Helix neurons, their characteristics, uses, and capabilities for studying the fundamental mechanisms of epileptic disorders and their treatment, to facilitate their more expansive use in epilepsy research.
Collapse
|
3
|
Gregor KM, Becker SC, Hellhammer F, Baumgärtner W, Puff C. Immunohistochemical Characterization of the Nervous System of Culex pipiens (Diptera, Culicidae). BIOLOGY 2022; 11:57. [PMID: 35053056 PMCID: PMC8772823 DOI: 10.3390/biology11010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022]
Abstract
Arthropod-borne diseases represent one of the greatest infection-related threats as a result of climate change and globalization. Repeatedly, arbovirus-infected mosquitoes show behavioral changes whose underlying mechanisms are still largely unknown, but might help to develop control strategies. However, in contrast to well-characterized insects such as fruit flies, little is known about neuroanatomy and neurotransmission in mosquitoes. To overcome this limitation, the study focuses on the immunohistochemical characterization of the nervous system of Culex pipiens biotype molestus in comparison to Drosophila melanogaster using 13 antibodies labeling nervous tissue, neurotransmitters or neurotransmitter-related enzymes. Antibodies directed against γ-aminobutyric acid, serotonin, tyrosine-hydroxylase and glutamine synthetase were suitable for investigations in Culex pipiens and Drosophila melanogaster, albeit species-specific spatial differences were observed. Likewise, similar staining results were achieved for neuronal glycoproteins, axons, dendrites and synaptic zones in both species. Interestingly, anti-phosphosynapsin and anti-gephyrin appear to represent novel markers for synapses and glial cells, respectively. In contrast, antibodies directed against acetylcholine, choline acetyltransferase, elav and repo failed to produce a signal in Culex pipiens comparable to that in Drosophila melanogaster. In summary, present results enable a detailed investigation of the nervous system of mosquitoes, facilitating further studies of behavioral mechanisms associated with arboviruses in the course of vector research.
Collapse
Affiliation(s)
- Katharina M. Gregor
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (K.M.G.); (C.P.)
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (S.C.B.); (F.H.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany
| | - Fanny Hellhammer
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (S.C.B.); (F.H.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (K.M.G.); (C.P.)
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (K.M.G.); (C.P.)
| |
Collapse
|
4
|
Roat TC, Santos-Pinto JRAD, Miotelo L, de Souza CL, Palma MS, Malaspina O. Using a toxicoproteomic approach to investigate the effects of thiamethoxam into the brain of Apis mellifera. CHEMOSPHERE 2020; 258:127362. [PMID: 32947664 DOI: 10.1016/j.chemosphere.2020.127362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Neonicotinoids have been described as toxic to bees. In this context, the A. mellifera foragers were exposed to a sublethal concentration of thiamethoxam (LC50/100: 0,0227 ng de thiamethoxam/μL-1 diet), a neurotoxic insecticide, for 8 days; and it was decided to investigate the insecticide effect on the brain by a shotgun proteomic approach followed by label-free quantitative-based proteomics. A total of 401 proteins were identified in the control group (CG); and a total of 350 proteins in the thiamethoxam exposed group (TMX). Quantitative proteomics data showed up 251 proteins with significant quantitative values in the TMX group. These findings demonstrated the occurrence of shared and unique proteins with altered expression in the TMX group, such as ATP synthase subunit beta, heat shock protein cognate 4, spectrin beta chain-like, mushroom body large-type Kenyon cell-specific protein 1-like, tubulin alpha-1 chain-like, arginine kinase, epidermal growth factor receptor, odorant receptor, glutamine synthetase, glutamate receptor, and cytochrome P450 4c3. Meanwhile, the proteins that were expressed uniquely in the TMX group are involved mainly in the phosphorylation, cellular protein modification, and cell surface receptor signalling processes. Interaction network results showed that identified proteins are present in five different metabolic pathways - oxidative stress, cytoskeleton control, visual process, olfactory memory, and glutamate metabolism. Our scientific outcomes demonstrated that a sublethal concentration of thiamethoxam can impair biological processes and important metabolic pathways, causing damage to the nervous system of bees, and in the long term, can compromise the nutrition and physiology of individuals from the colony.
Collapse
Affiliation(s)
- Thaisa C Roat
- Center for the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of Sao Paulo State (UNESP), Rio Claro, São Paulo, Brazil
| | - José Roberto Aparecido Dos Santos-Pinto
- Center for the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of Sao Paulo State (UNESP), Rio Claro, São Paulo, Brazil.
| | - Lucas Miotelo
- Center for the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of Sao Paulo State (UNESP), Rio Claro, São Paulo, Brazil
| | - Caroline Lacerra de Souza
- Center for the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of Sao Paulo State (UNESP), Rio Claro, São Paulo, Brazil
| | - Mario Sergio Palma
- Center for the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of Sao Paulo State (UNESP), Rio Claro, São Paulo, Brazil
| | - Osmar Malaspina
- Center for the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of Sao Paulo State (UNESP), Rio Claro, São Paulo, Brazil
| |
Collapse
|
5
|
Maiole F, Tedeschi G, Candiani S, Maragliano L, Benfenati F, Zullo L. Synapsins are expressed at neuronal and non-neuronal locations in Octopus vulgaris. Sci Rep 2019; 9:15430. [PMID: 31659209 PMCID: PMC6817820 DOI: 10.1038/s41598-019-51899-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Synapsins are a family of phosphoproteins fundamental to the regulation of neurotransmitter release. They are typically neuron-specific, although recent evidence pointed to their expression in non-neuronal cells where they play a role in exocytosis and vesicle trafficking. In this work, we characterized synapsin transcripts in the invertebrate mollusk Octopus vulgaris and present evidence of their expression not only in the brain but also in male and female reproductive organs. We identified three synapsin isoforms phylogenetically correlated to that of other invertebrates and with a modular structure characteristic of mammalian synapsins with a central, highly conserved C domain, important for the protein functions, and less conserved A, B and E domains. Our molecular modeling analysis further provided a solid background for predicting synapsin functional binding to ATP, actin filaments and secretory vesicles. Interestingly, we found that synapsin expression in ovary and testis increased during sexual maturation in cells with a known secretory role, potentially matching the occurrence of a secretion process. This might indicate that its secretory role has evolved across animals according to cell activity in spite of cell identity. We believe that this study may yield insights into the convergent evolution of ubiquitously expressed proteins between vertebrates and invertebrates.
Collapse
Affiliation(s)
- Federica Maiole
- Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genova, Italy.,Department of Experimental Medicine, University of Genova, viale Benedetto XV, 3, 16132, Genova, Italy
| | - Giulia Tedeschi
- Department of Experimental Medicine, University of Genova, viale Benedetto XV, 3, 16132, Genova, Italy.,Department of Biomedical Engineering, Laboratory for Fluorescence Dynamics, University of California, Irvine, 92697, CA, USA
| | - Simona Candiani
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genoa, Viale Benedetto XV 5, 16132, Genoa, Italy.
| | - Luca Maragliano
- Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genova, Italy.,IRCSS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Fabio Benfenati
- Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genova, Italy.,IRCSS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Letizia Zullo
- Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genova, Italy. .,IRCSS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| |
Collapse
|
6
|
Dorgans K, Demais V, Bailly Y, Poulain B, Isope P, Doussau F. Short-term plasticity at cerebellar granule cell to molecular layer interneuron synapses expands information processing. eLife 2019; 8:41586. [PMID: 31081751 PMCID: PMC6533085 DOI: 10.7554/elife.41586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/11/2019] [Indexed: 12/14/2022] Open
Abstract
Information processing by cerebellar molecular layer interneurons (MLIs) plays a crucial role in motor behavior. MLI recruitment is tightly controlled by the profile of short-term plasticity (STP) at granule cell (GC)-MLI synapses. While GCs are the most numerous neurons in the brain, STP diversity at GC-MLI synapses is poorly documented. Here, we studied how single MLIs are recruited by their distinct GC inputs during burst firing. Using slice recordings at individual GC-MLI synapses of mice, we revealed four classes of connections segregated by their STP profile. Each class differentially drives MLI recruitment. We show that GC synaptic diversity is underlain by heterogeneous expression of synapsin II, a key actor of STP and that GC terminals devoid of synapsin II are associated with slow MLI recruitment. Our study reveals that molecular, structural and functional diversity across GC terminals provides a mechanism to expand the coding range of MLIs.
Collapse
Affiliation(s)
- Kevin Dorgans
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France
| | - Valérie Demais
- Plateforme Imagerie in vitro, CNRS UPS 3156, Strasbourg, France
| | - Yannick Bailly
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France.,Plateforme Imagerie in vitro, CNRS UPS 3156, Strasbourg, France
| | - Bernard Poulain
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France
| | - Frédéric Doussau
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Tavares DA, Roat TC, Silva-Zacarin ECM, Nocelli RCF, Malaspina O. Exposure to thiamethoxam during the larval phase affects synapsin levels in the brain of the honey bee. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:523-528. [PMID: 30476814 DOI: 10.1016/j.ecoenv.2018.11.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
Thiamethoxam (TMX) is a neurotoxic insecticide widely used for insect pest control. TMX and other neonicotinoids are reported to be potential causes of honey bee decline. Due to its systematic action, TMX may be recovered in pollen, bee bread, nectar, and honey, which make bees likely to be exposed to contaminated diet. In this study, we used immunolabeling to demonstrate that sublethal concentrations of TMX decrease the protein levels of synapsin in the mushroom bodies (MBs) and the antennal lobes (ALs) of pupae and newly emerged worker bees that were exposed through the food to TMX during the larval phase. A decrease in the synapsin level was observed in the MBs of pupae previously exposed to 0.001 and 1.44 ng/µL and in newly emerged bees previously exposed to 1.44 ng/µL and no changes were observed in the optical lobes (OLs). In the ALs, the decrease was observed in pupae and newly emerged bees exposed to 1.44 ng/µL. Because the MBs and ALs are brain structures involved in stimuli reception, learning, and memory consolidation and because synapsin is important for the regulation of neurotransmitter release, we hypothesize that exposure to sublethal concentrations of TMX during the larval stage may cause neurophysiological disorders in honey bees.
Collapse
Affiliation(s)
- Daiana Antonia Tavares
- Universidade Estadual Paulista (UNESP), Centro de Estudos de Insetos Sociais (CEIS), Instituto de Biociências, Campus Rio Claro, SP, Brazil.
| | - Thaisa Cristina Roat
- Universidade Estadual Paulista (UNESP), Centro de Estudos de Insetos Sociais (CEIS), Instituto de Biociências, Campus Rio Claro, SP, Brazil
| | - Elaine Cristina Mathias Silva-Zacarin
- Universidade Federal de São Carlos (UFSCar), Departamento de Biologia, Laboratório de Ecotoxicologia e Biomarcadores em Animais (LEBA), Campus Sorocaba, SP, Brazil
| | - Roberta Cornélio Ferreira Nocelli
- Universidade Federal de São Carlos (UFSCar), Departamento de Ciências da Natureza Matemática e Educação, Centro de Ciências Agrárias Campus Araras, SP, Brazil
| | - Osmar Malaspina
- Universidade Estadual Paulista (UNESP), Centro de Estudos de Insetos Sociais (CEIS), Instituto de Biociências, Campus Rio Claro, SP, Brazil
| |
Collapse
|
8
|
Catae AF, da Silva Menegasso AR, Pratavieira M, Palma MS, Malaspina O, Roat TC. MALDI-imaging analyses of honeybee brains exposed to a neonicotinoid insecticide. PEST MANAGEMENT SCIENCE 2019; 75:607-615. [PMID: 30393944 DOI: 10.1002/ps.5226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/27/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Toxicological studies evaluating the possible harmful effects of pesticides on bees are important and allow the emergence of protection and pollinator conservation strategies. This study aimed to evaluate the effects of exposure to a sublethal concentration of imidacloprid (LC50/100 : 0.014651 ng imidacloprid µL-1 diet) on the distribution of certain proteins identified in the brain of Apis mellifera worker bees using a MALDI-imaging approach. This technique enables proteomic analysis of tissues in situ by monitoring the spatiotemporal dynamics of the biochemical processes occurring at a specific time in specific brain neuropils. For this purpose, foraging bees were exposed to an 8-day diet containing a sublethal concentration of imidacloprid corresponding to the LC50/100 . Bees were collected on day 8 of exposure, and their brains analyzed using protein density maps. RESULTS The results showed that exposure to imidacloprid led to a series of biochemical changes, including alterations in synapse regulation, apoptosis regulation and oxidative stress, which may adversely impair the physiology of these colony bees. CONCLUSION Worker bee contact with even tiny amounts of imidacloprid had potent effects leading to the overexpression of a series of proteins related to important cellular processes that were possibly damaged by the insecticide. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aline F Catae
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Anally R da Silva Menegasso
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Marcel Pratavieira
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Mario S Palma
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Osmar Malaspina
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Thaisa C Roat
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
9
|
Francisco A, Nunes PH, Nocelli RCF, Fontanetti CS. Changes in Synapsin Levels in the Millipede Gymnostreptus olivaceus Schubart, 1944 Exposed to Different Concentrations of Deltamethrin. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:48-54. [PMID: 26743594 DOI: 10.1017/s1431927615015627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Millipedes are ecologically important soil organisms and may also be an economically threatening species in rural and urban areas when population outbreaks occur. In order to control infestations commercial formulations of deltamethrin have been commonly applied, even though there are few studies about the effects of such insecticide on millipedes. This paper describes the effects of this insecticide on millipedes showing neurotoxic effects assessed by synapsin labeling and confocal microscopy. Deltamethrin concentrations related to the DL50 of the active ingredient and a field concentration were applied topically in the diplopod Gymnostreptus olivaceus to evaluate the behavior, mortality rate, and synapsin levels in the brain 12, 24, and 48h after contact with deltamethin. The insecticide caused mortality at the higher concentrations employed, in which no change was observed in neurotransmission in the survivors. In contrast, at field concentrations, deltamethrin did not cause any deaths, but triggered significant changes in synapsin levels. The results obtained form the synapsin labeling provide several interpretations suggesting that the isolated application of this tool must be associated with additional tools in order to evaluate biologically induced effects of deltamethrin in an accurate way. In addition, the feasibility of chemical control of millipedes with deltamethrin is questioned.
Collapse
Affiliation(s)
- Annelise Francisco
- 1Departamento de Biologia,Instituto de Biociências de Rio Claro,Universidade Estadual Paulista (UNESP),Bela Vista,13.500-900,Rio Claro,São Paulo,Brazil
| | - Pablo H Nunes
- 2Centro Interdisciplinar de Ciências da Vida e da Natureza (CICV),Instituto Latino-Americano de Ciências da vida e da Natureza (ILACVN),Universidade Federal da Integração Latino-Americana (UNILA),Avenida Silvio Américo Sasdelli,1842, 85.866-000,Foz do Iguaçu,Paraná,Brazil
| | - Roberta C F Nocelli
- 3Departamento de Ciências da Natureza,Matemática e Educação,Centro de Ciências Agrárias,Universidade Federal de São Carlos (UFSCar),Via Anhanguera,Km 174,13.600-970,Araras,São Paulo,Brazil
| | - Carmem S Fontanetti
- 1Departamento de Biologia,Instituto de Biociências de Rio Claro,Universidade Estadual Paulista (UNESP),Bela Vista,13.500-900,Rio Claro,São Paulo,Brazil
| |
Collapse
|
10
|
Synapsin regulates activity-dependent outgrowth of synaptic boutons at the Drosophila neuromuscular junction. J Neurosci 2014; 34:10554-63. [PMID: 25100589 DOI: 10.1523/jneurosci.5074-13.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Patterned depolarization of Drosophila motor neurons can rapidly induce the outgrowth of new synaptic boutons at the larval neuromuscular junction (NMJ), providing a model system to investigate mechanisms underlying acute structural plasticity. Correlative light and electron microscopy analysis revealed that new boutons typically form near the edge of postsynaptic reticulums of presynaptic boutons. Unlike mature boutons, new varicosities have synaptic vesicles which are distributed uniformly throughout the bouton and undeveloped postsynaptic specializations. To characterize the presynaptic mechanisms mediating new synaptic growth induced by patterned activity, we investigated the formation of new boutons in NMJs lacking synapsin [Syn(-)], a synaptic protein important for vesicle clustering, neurodevelopment, and plasticity. We found that budding of new boutons at Syn(-) NMJs was significantly diminished, and that new boutons in Syn(-) preparations were smaller and had reduced synaptic vesicle density. Since synapsin is a target of protein kinase A (PKA), we assayed whether activity-dependent synaptic growth is regulated via a cAMP/PKA/synapsin pathway. We pretreated preparations with forskolin to raise cAMP levels and found this manipulation significantly enhanced activity-dependent synaptic growth in control but not Syn(-) preparations. To examine the trafficking of synapsin during synaptic growth, we generated transgenic animals expressing fluorescently tagged synapsin. Fluorescence recovery after photobleaching analysis revealed that patterned depolarization promoted synapsin movement between boutons. During new synaptic bouton formation, synapsin redistributed upon stimulation toward the sites of varicosity outgrowth. These findings support a model whereby synapsin accumulates at sites of synaptic growth and facilitates budding of new boutons via a cAMP/PKA-dependent pathway.
Collapse
|
11
|
Clayton DF, London SE. Advancing avian behavioral neuroendocrinology through genomics. Front Neuroendocrinol 2014; 35:58-71. [PMID: 24113222 DOI: 10.1016/j.yfrne.2013.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 12/14/2022]
Abstract
Genome technologies are transforming all areas of biology, including the study of hormones, brain and behavior. Annotated reference genome assemblies are rapidly being produced for many avian species. Here we briefly review the basic concepts and tools used in genomics. We then consider how these are informing the study of avian behavioral neuroendocrinology, focusing in particular on lessons from the study of songbirds. We discuss the impact of having a complete "parts list" for an organism; the transformational potential of studying large sets of genes at once instead one gene at a time; the growing recognition that environmental and behavioral signals trigger massive shifts in gene expression in the brain; and the prospects for using comparative genomics to uncover the genetic roots of behavioral variation. Throughout, we identify promising new directions for bolstering the application of genomic information to further advance the study of avian brain and behavior.
Collapse
Affiliation(s)
- David F Clayton
- Biological & Experimental Psychology Division, School of Biological & Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| | - Sarah E London
- Department of Psychology, Institute for Mind and Biology, Committee on Neurobiology, University of Chicago, 940 E 57th Street, Chicago, IL, USA.
| |
Collapse
|
12
|
Molecular characterisation of TNF, AIF, dermatopontin and VAMP genes of the flat oyster Ostrea edulis and analysis of their modulation by diseases. Gene 2013; 533:208-17. [PMID: 24095775 DOI: 10.1016/j.gene.2013.09.085] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 09/23/2013] [Accepted: 09/23/2013] [Indexed: 12/21/2022]
Abstract
Bonamiosis and disseminated neoplasia (DN) are the most important diseases affecting cultured flat oysters (Ostrea edulis) in Galicia (NW Spain). Previous research of the response of O. edulis against bonamiosis by suppression subtractive hybridisation yielded a partial expressed sequence tag of tumour necrosis factor (TNF) and allograft inflammatory factor (AIF), as well as the whole open reading frame for dermatopontin and vesicle-associated membrane (VAMP). Herein, the complete open reading frames of TNF and AIF genes were determined by the rapid amplification of cDNA, and the deduced amino acid sequences of the four genes were characterised. Phylogenetic relationships for each gene were studied using maximum likelihood parameters. Quantitative-PCR assays were also performed in order to analyse the modulation of the expression of these genes by bonamiosis and disseminated neoplasia. Gene expression profiles were studied in haemolymph cells and in various organs (gill, gonad, mantle and digestive gland) of oysters affected by bonamiosis, DN, and both diseases with regard to non-affected oysters (control). TNF expression in haemolymph cells was up-regulated at heavy stage of bonamiosis but its expression was not affected by DN. AIF expression was up-regulated at heavy stage of bonamiosis in haemolymph cells and mantle, which is associated with heavy inflammatory response, and in haemolymph cells of oysters affected by DN. AIF expression was, however, down-regulated in other organs as gills and gonads. Dermatopontin expression was down-regulated in haemolymph cells and digestive gland of oysters affected by bonamiosis, but DN had no significant effect on its expression. Gills and gonads showed up-regulation of dermatopontin expression associated with bonamiosis. There were significant differences in the expression of TNF and VAMP depending on the bonamiosis intensity stage whereas no significant differences were detected between light and heavy severity degrees of DN for the studied genes. VAMP expression showed also differences among haemolymph cells and the organs studied. The occurrence of both diseases in oysters involved haemolymph cell gene expression patterns different from those associated to each disease separately: no significant effect was observed in TNF expression, dermatopontin was up-regulated and marked up-regulation of AIF and VAMP was recorded, which suggests a multiplier effect of the combination of both diseases for the latter two genes.
Collapse
|
13
|
Nelson JC, Stavoe AKH, Colón-Ramos DA. The actin cytoskeleton in presynaptic assembly. Cell Adh Migr 2013; 7:379-87. [PMID: 23628914 DOI: 10.4161/cam.24803] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dramatic morphogenetic processes underpin nearly every step of nervous system development, from initial neuronal migration and axon guidance to synaptogenesis. Underlying this morphogenesis are dynamic rearrangements of cytoskeletal architecture. Here we discuss the roles of the actin cytoskeleton in the development of presynaptic terminals, from the elaboration of terminal arbors to the recruitment of presynaptic vesicles and active zone components. The studies discussed here underscore the importance of actin regulation at every step in neuronal circuit assembly.
Collapse
Affiliation(s)
- Jessica C Nelson
- Program in Cellular Neuroscience, Neurodegeneration and Repair; Department of Cell Biology; Yale University; New Haven, CT USA
| | | | | |
Collapse
|
14
|
Synaptic functions of invertebrate varicosities: what molecular mechanisms lie beneath. Neural Plast 2012; 2012:670821. [PMID: 22655209 PMCID: PMC3359714 DOI: 10.1155/2012/670821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/27/2012] [Indexed: 11/26/2022] Open
Abstract
In mammalian brain, the cellular and molecular events occurring in both synapse formation and plasticity are difficult to study due to the large number of factors involved in these processes and because the contribution of each component is not well defined. Invertebrates, such as Drosophila, Aplysia, Helix, Lymnaea, and Helisoma, have proven to be useful models for studying synaptic assembly and elementary forms of learning. Simple nervous system, cellular accessibility, and genetic simplicity are some examples of the invertebrate advantages that allowed to improve our knowledge about evolutionary neuronal conserved mechanisms. In this paper, we present an overview of progresses that elucidates cellular and molecular mechanisms underlying synaptogenesis and synapse plasticity in invertebrate varicosities and their validation in vertebrates. In particular, the role of invertebrate synapsin in the formation of presynaptic terminals and the cell-to-cell interactions that induce specific structural and functional changes in their respective targets will be analyzed.
Collapse
|
15
|
Inoue D, Kimura I, Wakabayashi M, Tsumoto H, Ozawa K, Hara T, Takei Y, Hirasawa A, Ishihama Y, Tsujimoto G. Short-chain fatty acid receptor GPR41-mediated activation of sympathetic neurons involves synapsin 2b phosphorylation. FEBS Lett 2012; 586:1547-54. [PMID: 22673524 DOI: 10.1016/j.febslet.2012.04.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 01/03/2023]
Abstract
Synapsins are neuronal phosphoproteins that coat synaptic vesicles and are believed to function in the regulation of neurotransmitter release. The signaling mechanism for short-chain free fatty acid (SCFA)-stimulated NE release was examined using primary-cultured mouse sympathetic cervical ganglion neurons. Pharmacological and knockdown experiments showed that activation of sympathetic neurons by SCFA propionate involves SCFA receptor GPR41 linking to G??-PLC?3-ERK1/2-synapsin 2 signaling. Further, synapsin 2b directly interacts with activated ERK1/2 and can be phosphorylated on serine when SCFA activates sympathetic neurons.
Collapse
Affiliation(s)
- Daisuke Inoue
- Department of Genomic Drug Discovery Science, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Editorial: models of invertebrate neurons in culture. J Mol Histol 2012; 43:379-81. [PMID: 22526511 DOI: 10.1007/s10735-012-9416-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
|