1
|
Rahman MM, Wu H, Tollefsbol TO. A novel combinatorial approach using sulforaphane- and withaferin A-rich extracts for prevention of estrogen receptor-negative breast cancer through epigenetic and gut microbial mechanisms. Sci Rep 2024; 14:12091. [PMID: 38802425 PMCID: PMC11130158 DOI: 10.1038/s41598-024-62084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Estrogen receptor-negative [ER(-)] mammary cancer is the most aggressive type of breast cancer (BC) with higher rate of metastasis and recurrence. In recent years, dietary prevention of BC with epigenetically active phytochemicals has received increased attention due to its feasibility, effectiveness, and ease of implementation. In this regard, combinatorial phytochemical intervention enables more efficacious BC inhibition by simultaneously targeting multiple tumorigenic pathways. We, therefore, focused on investigation of the effect of sulforaphane (SFN)-rich broccoli sprouts (BSp) and withaferin A (WA)-rich Ashwagandha (Ash) combination on BC prevention in estrogen receptor-negative [ER(-)] mammary cancer using transgenic mice. Our results indicated that combinatorial BSp + Ash treatment significantly reduced tumor incidence and tumor growth (~ 75%) as well as delayed (~ 21%) tumor latency when compared to the control treatment and combinatorial BSp + Ash treatment was statistically more effective in suppressing BC compared to single BSp or Ash intervention. At the molecular level, the BSp and Ash combination upregulated tumor suppressors (p53, p57) along with apoptosis associated proteins (BAX, PUMA) and BAX:BCL-2 ratio. Furthermore, our result indicated an expressional decline of epigenetic machinery HDAC1 and DNMT3A in mammary tumor tissue because of combinatorial treatment. Interestingly, we have reported multiple synergistic interactions between BSp and Ash that have impacted both tumor phenotype and molecular expression due to combinatorial BSp and Ash treatment. Our RNA-seq analysis results also demonstrated a transcriptome-wide expressional reshuffling of genes associated with multiple cell-signaling pathways, transcription factor activity and epigenetic regulations due to combined BSp and Ash administration. In addition, we discovered an alteration of gut microbial composition change because of combinatorial treatment. Overall, combinatorial BSp and Ash supplementation can prevent ER(-) BC through enhanced tumor suppression, apoptosis induction and transcriptome-wide reshuffling of gene expression possibly influencing multiple cell signaling pathways, epigenetic regulation and reshaping gut microbiota.
Collapse
Affiliation(s)
- Mohammad Mijanur Rahman
- Department of Biology, University of Alabama at Birmingham, 902 14th Street South, Birmingham, AL, 35294, USA
| | - Huixin Wu
- Department of Biology, University of Alabama at Birmingham, 902 14th Street South, Birmingham, AL, 35294, USA
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 902 14th Street South, Birmingham, AL, 35294, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL, 35294, USA.
- Integrative Center for Aging Research, University of Alabama at Birmingham, 933 19th Street South, Birmingham, AL, 35294, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL, 35294, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA.
- University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL, USA.
| |
Collapse
|
2
|
Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021; 172:148-182. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The remarkable success of targeted immunotherapies is revolutionizing cancer treatment. However, tumor heterogeneity and low immunogenicity, in addition to several tumor-associated immunosuppression mechanisms are among the major factors that have precluded the success of cancer vaccines as targeted cancer immunotherapies. The exciting outcomes obtained in patients upon the injection of tumor-specific antigens and adjuvants intratumorally, reinvigorated interest in the use of nanotechnology to foster the delivery of vaccines to address cancer unmet needs. Thus, bridging nano-based vaccine platform development and predicted clinical outcomes the selection of the proper preclinical model will be fundamental. Preclinical models have revealed promising outcomes for cancer vaccines. However, only few cases were associated with clinical responses. This review addresses the major challenges related to the translation of cancer nano-based vaccines to the clinic, discussing the requirements for ex vivo and in vivo models of cancer to ensure the translation of preclinical success to patients.
Collapse
|
3
|
Seridi N, Hamidouche M, Belmessabih N, El Kennani S, Gagnon J, Martinez G, Coutton C, Marchal T, Chebloune Y. Immortalization of primary sheep embryo kidney cells. In Vitro Cell Dev Biol Anim 2021; 57:76-85. [PMID: 33415664 DOI: 10.1007/s11626-020-00520-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/13/2020] [Indexed: 10/22/2022]
Abstract
Sheep primary epithelial cells are short-lived in cell culture systems. For long-term in vitro studies, primary cells need to be immortalized. This study aims to establish and characterize T immortalized sheep embryo kidney cells (TISEKC). In this study, we used fetal lamb kidneys to derive primary cultures of epithelial cells. We subsequently immortalized these cells using the large T SV40 antigen to generate crude TISEKC and isolate TISEKC clones. Among numerous clones of immortalized cells, the selected TISEKC-5 maintained active division and cell growth over 20 passages but lacked expression of the oncogenic large T SV40 antigen. Morphologically, TISEKC-5 maintained their epithelial aspect similar to the parental primary epithelial cells. However, their growth properties showed quite different patterns. Crude TISEKC, as well as the clones of TISEKC proliferated highly in culture compared to the parental primary cells. In the early passages, immortalized cells showed heterogeneous polyploidy but in the late passages the karyotype of immortalized cells became progressively stable, identical to that of the primary cells, because the TISEKC-5 cell line has lost the large SV40 T antigen expression, this cell line is a valuable tool for veterinary sciences and biotechnological productions.
Collapse
Affiliation(s)
- N Seridi
- Laboratory of Molecular and Cellular Biology, Unit of Genetics, Faculty of Biological Sciences, University of Sciences and Technology "Houari Boumediene", Algiers, Algeria
| | - M Hamidouche
- Laboratory of Production and Development of Viral Veterinary Vaccines, Pasteur Institute of Algeria, Algiers, Algeria
| | - N Belmessabih
- Laboratory of Production and Development of Viral Veterinary Vaccines, Pasteur Institute of Algeria, Algiers, Algeria
| | - S El Kennani
- INRAE/UGA USC 1450, Pathogenesis and Lentivirus Vaccination Laboratory, PAVAL Lab, Université Grenoble Alpes, 38041, Grenoble Cedex 9, France
| | - J Gagnon
- INRAE/UGA USC 1450, Pathogenesis and Lentivirus Vaccination Laboratory, PAVAL Lab, Université Grenoble Alpes, 38041, Grenoble Cedex 9, France
| | - G Martinez
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France.,INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, 38000, Grenoble, France
| | - C Coutton
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France.,INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, 38000, Grenoble, France
| | - T Marchal
- VetAgro Sup, UPSP ICE 2011.03.101, Laboratoire d'Histopathologie, Université de Lyon, Marcy-l'Etoile, France
| | - Y Chebloune
- INRAE/UGA USC 1450, Pathogenesis and Lentivirus Vaccination Laboratory, PAVAL Lab, Université Grenoble Alpes, 38041, Grenoble Cedex 9, France.
| |
Collapse
|
4
|
Soyluoglu S, Durmus-Altun G. Animal Models for the Evaluation of Theranostic Radiopharmaceuticals. Curr Radiopharm 2020; 14:15-22. [PMID: 32334507 DOI: 10.2174/1874471013666200425223428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/06/2019] [Accepted: 02/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Theranostic is a new field of medicine that combines diagnosis and patient- specific targeted treatment. In the theranostic approach, it is aimed to detect diseased cells by using targeted molecules using disease-specific biological pathways and then destroy them by cellular irradiation without damaging other tissues. Diagnostic tests guide the use of specific therapeutic agents by demonstrating the presence of the receptor/molecule on the target tissue. As the therapeutic agent is administered to patients who have a positive diagnostic test, the efficacy of treatment in these patients is largely guaranteed. As therapeutic efficacy can be predicted by therapeutic agents, it is also possible to monitor the response to treatment. Many diagnostic and therapeutic procedures in nuclear medicine are classified as theranostic. 131I treatment and scintigraphy are the best examples of the theranostic application. Likewise, 177Lu / 90Y octreotate for neuroendocrine tumors, 177Lu PSMA for metastatic or treatment-resistant prostate cancer, 90Y SIRT for metastatic liver cancer, and 223Ra for bone metastasis of prostate cancer are widely used. Moreover, nanoparticles are one of the most rapidly developing subjects of theranostics. Diagnostic and therapeutic agents that show fluorescent, ultrasonic, magnetic, radioactive, contrast, pharmacological drug or antibody properties are loaded into the nanoparticle to provide theranostic use. METHODS This article reviewed general aspects of preclinical models for theranostic research, and presented examples from the literature. CONCLUSION To achieve successful results in rapidly accelerating personalized treatment research of today, the first step is to conduct appropriate preclinical studies.
Collapse
Affiliation(s)
- Selin Soyluoglu
- Department of Nuclear Medicine, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Gulay Durmus-Altun
- Department of Nuclear Medicine, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
5
|
Polyomavirus JCPyV infrequently detectable in adenoid cystic carcinoma of the oral cavity and the airways. Virchows Arch 2019; 475:609-616. [PMID: 31264036 PMCID: PMC6861701 DOI: 10.1007/s00428-019-02617-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 12/28/2022]
Abstract
Our objective was to assess the presence of three polyomaviruses, namely SV40, JCPyV, and BKPyV, and human papillomaviruses (HPV) in adenoid cystic carcinomas (ACC) of the minor salivary glands (MiSG) in the head and neck region. The study comprised 68 MiSG ACC patients operated during 1974–2012 at the Helsinki University Hospital (Helsinki, Finland). Medical records and 68 histological samples were reviewed. Polyomaviruses were detected with quantitative PCR and the DNA-positive samples were further analyzed for the presence of viral tumor T antigen (T-ag) with immunohistochemistry. HPV genotyping was performed with a Multiplex HPV Genotyping Kit. Only JCPyV DNA was found in ACC samples, being present in 7 (10.3%) out of the 68 samples. The viral load of JCPyV was low varying between 1 to 226 copies/μg DNA. The JCPyV-positive samples originated from trachea (two samples), paranasal sinuses (one), and oral cavity (two). Additionally, JCPyV positivity was found in one lung metastasis of a tracheal tumor and one local disease failure of an oral cavity tumor. Three JCPyV DNA-positive samples showed weak nuclear staining for large T-ag. In conclusion, only JCPyV but not SV40, BKPyV, or HPV was found in ACC from the upper and lower airways. JCPyV copy numbers were low which might support its role as a “hit and run agent” in ACC carcinogenesis.
Collapse
|
6
|
Toma-Jonik A, Vydra N, Janus P, Widłak W. Interplay between HSF1 and p53 signaling pathways in cancer initiation and progression: non-oncogene and oncogene addiction. Cell Oncol (Dordr) 2019; 42:579-589. [DOI: 10.1007/s13402-019-00452-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
|
7
|
Park MK, Yao Y, Xia W, Setijono SR, Kim JH, Vila IK, Chiu HH, Wu Y, Billalabeitia EG, Lee MG, Kalb RG, Hung MC, Pandolfi PP, Song SJ, Song MS. PTEN self-regulates through USP11 via the PI3K-FOXO pathway to stabilize tumor suppression. Nat Commun 2019; 10:636. [PMID: 30733438 PMCID: PMC6367354 DOI: 10.1038/s41467-019-08481-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/28/2018] [Indexed: 12/13/2022] Open
Abstract
PTEN is a lipid phosphatase that antagonizes the PI3K/AKT pathway and is recognized as a major dose-dependent tumor suppressor. The cellular mechanisms that control PTEN levels therefore offer potential routes to therapy, but these are as yet poorly defined. Here we demonstrate that PTEN plays an unexpected role in regulating its own stability through the transcriptional upregulation of the deubiquitinase USP11 by the PI3K/FOXO pathway, and further show that this feedforward mechanism is implicated in its tumor-suppressive role, as mice lacking Usp11 display increased susceptibility to PTEN-dependent tumor initiation, growth and metastasis. Notably, USP11 is downregulated in cancer patients, and correlates with PTEN expression and FOXO nuclear localization. Our findings therefore demonstrate that PTEN-PI3K-FOXO-USP11 constitute the regulatory feedforward loop that improves the stability and tumor suppressive activity of PTEN. PTEN is a lipid phosphatase that functions as a dose-dependent tumor suppressor through the PI3K/AKT pathway. Here the authors describe a signaling feedback mechanism where PTEN stability is regulated through transcriptional upregulation of X-linked ubiquitin-specific protease 11 (USP11) via the PI3K/FOXO pathway.
Collapse
Affiliation(s)
- Mi Kyung Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yixin Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Stephanie Rebecca Setijono
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea
| | - Jae Hwan Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Biomedical Sciences, Seoul National University College of Medicine, Houston, Seoul, 03080, Republic of Korea
| | - Isabelle K Vila
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hui-Hsuan Chiu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Enrique González Billalabeitia
- Department of Clinical Oncology, Hospital Universitario Morales Meseguer-IMIB, Universidad Católica San Antonio de Murcia-UCAM, Murcia, 30007, Spain
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robert G Kalb
- Division of Neurology, Department of Pediatrics, Research Institute, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, 404, Taiwan
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Su Jung Song
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Gabbasov R, Xiao F, Howe CG, Bickel LE, O'Brien SW, Benrubi D, Do TV, Zhou Y, Nicolas E, Cai KQ, Litwin S, Seo S, Golemis EA, Connolly DC. NEDD9 promotes oncogenic signaling, a stem/mesenchymal gene signature, and aggressive ovarian cancer growth in mice. Oncogene 2018; 37:4854-4870. [PMID: 29773902 PMCID: PMC6119087 DOI: 10.1038/s41388-018-0296-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 03/23/2018] [Accepted: 04/13/2018] [Indexed: 12/20/2022]
Abstract
Neural precursor cell expressed, developmentally downregulated 9 (NEDD9) supports oncogenic signaling in a number of solid and hematologic tumors. Little is known about the role of NEDD9 in ovarian carcinoma (OC), but available data suggest elevated mRNA and protein expression in advanced stage high-grade cancers. We used a transgenic MISIIR-TAg mouse OC model combined with genetic ablation of Nedd9 to investigate its action in the development and progression of OC. A Nedd9-/- genotype delayed tumor growth rate, reduced incidence of ascites, and reduced expression and activation of signaling proteins including SRC, STAT3, E-cadherin, and AURKA. Cell lines established from MISIIR-TAg;Nedd9-/- and MISIIR-TAg;Nedd9+/+ mice exhibited altered migration and invasion. Growth of these cells in a syngeneic allograft model indicated that systemic Nedd9 loss in the microenvironment had little impact on tumor allograft growth, but in a Nedd9 wild-type background Nedd9-/- allografts exhibited significantly reduced growth, dissemination, and oncogenic signaling compared to Nedd9+/+ allografts. Gene expression analysis revealed that Nedd9+/+ tumors exhibited more mesenchymal "stem-like" transcriptional program, including increased expression of Aldh1a1 and Aldh1a2. Conversely, loss of Nedd9 resulted in increased expression of differentiation genes, including fallopian tube markers Foxj1, Ovgp1, and Pax8. Collectively, these data suggest that tumor cell-intrinsic Nedd9 expression promotes OC development and progression by broad induction of oncogenic protein signaling and stem/mesenchymal gene expression.
Collapse
Affiliation(s)
- Rashid Gabbasov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Russia
| | - Fang Xiao
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Caitlin G Howe
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Laura E Bickel
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shane W O'Brien
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel Benrubi
- Division of Gynecologic Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Thuy-Vy Do
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Samuel Litwin
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sachiko Seo
- Department of Hematology & Oncology, National Cancer Research Center East, Kashiwa, Japan
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Denise C Connolly
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Gelman IH. How the TRAMP Model Revolutionized the Study of Prostate Cancer Progression. Cancer Res 2017; 76:6137-6139. [PMID: 27803100 DOI: 10.1158/0008-5472.can-16-2636] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Irwin H Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York.
| |
Collapse
|
10
|
Santos NP, Colaço AA, Oliveira PA. Animal models as a tool in hepatocellular carcinoma research: A Review. Tumour Biol 2017; 39:1010428317695923. [PMID: 28347231 DOI: 10.1177/1010428317695923] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cancer is the first cause of death in developed countries and the second in developing countries. Concerning the most frequent worldwide-diagnosed cancer, primary liver cancer represents approximately 4% of all new cancer cases diagnosed globally. However, among primary liver cancer, hepatocellular carcinoma is by far the most common histological subtype. Notwithstanding the health promotion and disease prevention campaigns, more than half a million new hepatocellular carcinoma cases are reported yearly, being estimated to growth continuously until 2020. Taking this scenario under consideration and the fact that some aspects concerning hepatocellular carcinoma evolution and metastasize process are still unknown, animal models assume a crucial role to understand this disease. The animal models have also provided the opportunity to screen new therapeutic strategies. The present review was supported on research and review papers aiming the complexity and often neglected chemically induced animal models in hepatocarcinogenesis research. Despite the ongoing debate, chemically induced animal models, namely, mice and rat, can provide unique valuable information on the biotransformation mechanisms against xenobiotics and apprehend the deleterious effects on DNA and cell proteins leading to carcinogenic development. In addition, taking under consideration that no model achieves all hepatocellular carcinoma research purposes, criteria to define the " ideal" animal model, depending on the researchers' approach, are also discussed in this review.
Collapse
Affiliation(s)
- Nuno Paula Santos
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,2 Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Aura Antunes Colaço
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Paula Alexandra Oliveira
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,2 Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
11
|
Abstract
The SV40 viral oncogene has been used since the 1970s as a reliable and reproducible method to generate transgenic mouse models. This seminal discovery has taught us an immense amount about how tumorigenesis occurs, and its success has led to the evolution of many mouse models of cancer. Despite the development of more modern and targeted approaches for developing genetically engineered mouse models of cancer, SV40-induced mouse models still remain frequently used today. This review discusses a number of cancer types in which SV40 mouse models of cancer have been developed and highlights their relevance and importance to preclinical research.
Collapse
Affiliation(s)
- Amanda L Hudson
- Amanda L. Hudson, PhD, is a Sydney Neuro-Oncology Group postdoctoral fellow at the Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, NSW, Australia. Emily K. Colvin is a Cancer Institute NSW postdoctoral fellow at the Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, NSW, Australia
| | - Emily K Colvin
- Amanda L. Hudson, PhD, is a Sydney Neuro-Oncology Group postdoctoral fellow at the Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, NSW, Australia. Emily K. Colvin is a Cancer Institute NSW postdoctoral fellow at the Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, NSW, Australia
| |
Collapse
|
12
|
Thymic and Postthymic Regulation of Naïve CD4(+) T-Cell Lineage Fates in Humans and Mice Models. Mediators Inflamm 2016; 2016:9523628. [PMID: 27313405 PMCID: PMC4904118 DOI: 10.1155/2016/9523628] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022] Open
Abstract
Our understanding of how thymocytes differentiate into many subtypes has been increased progressively in its complexity. At early life, the thymus provides a suitable microenvironment with specific combination of stromal cells, growth factors, cytokines, and chemokines to induce the bone marrow lymphoid progenitor T-cell precursors into single-positive CD4+ and CD8+ T effectors and CD4+CD25+ T-regulatory cells (Tregs). At postthymic compartments, the CD4+ T-cells acquire distinct phenotypes which include the classical T-helper 1 (Th1), T-helper 2 (Th2), T-helper 9 (Th9), T-helper 17 (Th17), follicular helper T-cell (Tfh), and induced T-regulatory cells (iTregs), such as the regulatory type 1 cells (Tr1) and transforming growth factor-β- (TGF-β-) producing CD4+ T-cells (Th3). Tregs represent only a small fraction, 5–10% in mice and 1-2% in humans, of the overall CD4+ T-cells in lymphoid tissues but are essential for immunoregulatory circuits mediating the inhibition and expansion of all lineages of T-cells. In this paper, we first provide an overview of the major cell-intrinsic developmental programs that regulate T-cell lineage fates in thymus and periphery. Next, we introduce the SV40 immortomouse as a relevant mice model for implementation of new approaches to investigate thymus organogenesis, CD4 and CD8 development, and thymus cells tumorogenesis.
Collapse
|
13
|
Basham KJ, Hung HA, Lerario AM, Hammer GD. Mouse models of adrenocortical tumors. Mol Cell Endocrinol 2016; 421:82-97. [PMID: 26678830 PMCID: PMC4720156 DOI: 10.1016/j.mce.2015.11.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/17/2022]
Abstract
The molecular basis of the organogenesis, homeostasis, and tumorigenesis of the adrenal cortex has been the subject of intense study for many decades. Specifically, characterization of tumor predisposition syndromes with adrenocortical manifestations and molecular profiling of sporadic adrenocortical tumors have led to the discovery of key molecular pathways that promote pathological adrenal growth. However, given the observational nature of such studies, several important questions regarding the molecular pathogenesis of adrenocortical tumors have remained. This review will summarize naturally occurring and genetically engineered mouse models that have provided novel tools to explore the molecular and cellular underpinnings of adrenocortical tumors. New paradigms of cancer initiation, maintenance, and progression that have emerged from this work will be discussed.
Collapse
Affiliation(s)
- Kaitlin J Basham
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Holly A Hung
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Leccia F, Batisse-Lignier M, Sahut-Barnola I, Val P, Lefrançois-Martinez AM, Martinez A. Mouse Models Recapitulating Human Adrenocortical Tumors: What Is Lacking? Front Endocrinol (Lausanne) 2016; 7:93. [PMID: 27471492 PMCID: PMC4945639 DOI: 10.3389/fendo.2016.00093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/04/2016] [Indexed: 12/31/2022] Open
Abstract
Adrenal cortex tumors are divided into benign forms, such as primary hyperplasias and adrenocortical adenomas (ACAs), and malignant forms or adrenocortical carcinomas (ACCs). Primary hyperplasias are rare causes of adrenocorticotropin hormone-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely "functional," i.e., producing steroids. When functional, adenomas result in endocrine disorders, such as Cushing's syndrome (hypercortisolism) or Conn's syndrome (hyperaldosteronism). By contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors (ACTs) led to the identification of potentially causative genes, most of them being involved in protein kinase A (PKA), Wnt/β-catenin, and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders, and in fine to provide in vivo tools for therapeutic screens. In this article, we will provide an overview on the existing mouse models (xenografted and genetically engineered) of ACTs by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases.
Collapse
Affiliation(s)
- Felicia Leccia
- UMR6293, GReD, INSERM U1103, CNRS, Clermont Université, Clermont-Ferrand, France
| | - Marie Batisse-Lignier
- UMR6293, GReD, INSERM U1103, CNRS, Clermont Université, Clermont-Ferrand, France
- Endocrinology, Diabetology and Metabolic Diseases Department, Centre Hospitalier Universitaire, School of Medicine, Clermont-Ferrand, France
| | | | - Pierre Val
- UMR6293, GReD, INSERM U1103, CNRS, Clermont Université, Clermont-Ferrand, France
| | | | - Antoine Martinez
- UMR6293, GReD, INSERM U1103, CNRS, Clermont Université, Clermont-Ferrand, France
- *Correspondence: Antoine Martinez,
| |
Collapse
|
15
|
Robinson C, Dick IM, Wise MJ, Holloway A, Diyagama D, Robinson BWS, Creaney J, Lake RA. Consistent gene expression profiles in MexTAg transgenic mouse and wild type mouse asbestos-induced mesothelioma. BMC Cancer 2015; 15:983. [PMID: 26680231 PMCID: PMC4683914 DOI: 10.1186/s12885-015-1953-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/23/2015] [Indexed: 02/08/2023] Open
Abstract
Background The MexTAg transgenic mouse model of mesothelioma replicates many aspects of human mesothelioma, including induction by asbestos, pathogenicity and response to cytotoxic chemotherapy, despite high levels of the SV40 large T Antigen (TAg) in the mesothelial compartment. This model enables analysis of the molecular events associated with asbestos induced mesothelioma and is utilised here to investigate the molecular dynamics of tumours induced in these mice, using gene expression patterns as a read out. Methods Gene expression of MexTAg mesothelioma cell lines bearing a high or low number of copies of the TAg transgene were compared to wild type mouse mesotheliomas and normal mouse mesothelial cells using Affymetrix microarray. These data were then compared to a similar published human microarray study using the same platform. Results The main expression differences between transgenic mouse and wild type mouse mesotheliomas occurred for genes involved in cell cycle regulation and DNA replication, as would be expected from overexpression of the TAg oncogene. Quantitative PCR confirmed that E2F and E2F regulated genes were significantly more upregulated in MexTAg mesotheliomas and MexTAg mesothelial cells compared to wild type mesotheliomas. Like human mesothelioma, both MexTAg and wild type mesotheliomas had more genes underexpressed than overexpressed compared to normal mouse mesothelial cells. Most notably, the cdkn2 locus was deleted in the wild type mouse mesotheliomas, consistent with 80 % human mesotheliomas, however, this region was not deleted in MexTAg mesotheliomas. Regardless of the presence of TAg, all mouse mesotheliomas had a highly concordant set of deregulated genes compared to normal mesothelial cells that overlapped with the deregulated genes between human mesotheliomas and mesothelial cells. Conclusions This investigation demonstrates that the MexTAg mesotheliomas are comparable with wild type mouse mesotheliomas in their representation of human mesothelioma at the molecular level, with some key gene expression differences that are attributable to the TAg transgene expression. Of particular note, MexTAg mesothelioma development was not dependent on cdkn2 deletion. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1953-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cleo Robinson
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, M503, Harry Perkins Institute for Medical Research, QQ Block, QEII Medical Centre, Nedlands, Perth, 6009, Western Australia, Australia. .,Anatomical Pathology, PathWest Laboratory Medicine, J Block, QEII Medical Centre, Hospital Ave, Nedlands, Perth, 6009, Western Australia, Australia. .,Present address: Anatomical Pathology, PathWest Laboratory Medicine, J Block, QEII Medical Centre, Hospital Ave, Nedlands, Perth, 6009, Western Australia, Australia.
| | - Ian M Dick
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, M503, Harry Perkins Institute for Medical Research, QQ Block, QEII Medical Centre, Nedlands, Perth, 6009, Western Australia, Australia.
| | - Michael J Wise
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Perth, 6008, Western Australia, Australia.
| | - Andrew Holloway
- Peter MacCallum Institute for Cancer Research, St. Andrew's Place, Melbourne, 3002, Victoria, Australia.
| | - Dileepa Diyagama
- Peter MacCallum Institute for Cancer Research, St. Andrew's Place, Melbourne, 3002, Victoria, Australia.
| | - Bruce W S Robinson
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, M503, Harry Perkins Institute for Medical Research, QQ Block, QEII Medical Centre, Nedlands, Perth, 6009, Western Australia, Australia.
| | - Jenette Creaney
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, M503, Harry Perkins Institute for Medical Research, QQ Block, QEII Medical Centre, Nedlands, Perth, 6009, Western Australia, Australia.
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, M503, Harry Perkins Institute for Medical Research, QQ Block, QEII Medical Centre, Nedlands, Perth, 6009, Western Australia, Australia.
| |
Collapse
|
16
|
Jiang Q, Zhang Z, Li S, Wang Z, Ma Y, Hu Y. Defective heat shock factor 1 inhibits the growth of fibrosarcoma derived from simian virus 40/T antigen‑transformed MEF cells. Mol Med Rep 2015; 12:6517-26. [PMID: 26352782 PMCID: PMC4626195 DOI: 10.3892/mmr.2015.4300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/17/2015] [Indexed: 11/06/2022] Open
Abstract
Heat shock factor 1 (Hsf1) serves an important role in regulating the proliferation of human tumor cell lines in vitro and tissue specific tumorigenesis in certain mouse models. However, its role in viral‑oncogenesis remains to be fully elucidated. In the current study, the role of Hsf1 in fibroblastoma derived from simian virus 40/T antigen (SV40/TAG)‑transformed mouse embryonic fibroblast (MEF) cell lines was investigated. Knockout of Hsf1 inhibited MEF cell proliferation in vitro and fibroblastoma growth and metastasis to the lungs in vivo in nude mice. Knockout of Hsf1 increased the protein expression levels of p53 and phosphorylated retinoblastoma protein (pRb), however reduced the expression of heat shock protein 25 (Hsp25) in addition to the expression of the angiogenesis markers vascular endothelial growth factor, cluster of differentiation 34 and factor VIII related antigen. Furthermore, immunoprecipitation indicated that knockout of Hsf1 inhibited the association between SV40/TAG and p53 or pRb. These data suggest that Hsf1 is involved in the regulation of SV40/TAG‑derived fibroblastoma growth and metastasis by modulating the association between SV40/TAG and tumor suppressor p53 and pRb. The current study provides further evidence that Hsf1 may be a novel therapeutic target in the treatment of cancer.
Collapse
Affiliation(s)
- Qiying Jiang
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International Union Laboratory of Antibody Medicine and Chaperone, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| | - Zhi Zhang
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International Union Laboratory of Antibody Medicine and Chaperone, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| | - Shulian Li
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International Union Laboratory of Antibody Medicine and Chaperone, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| | - Zhaoyang Wang
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International Union Laboratory of Antibody Medicine and Chaperone, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| | - Yuanfang Ma
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International Union Laboratory of Antibody Medicine and Chaperone, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| | - Yanzhong Hu
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International Union Laboratory of Antibody Medicine and Chaperone, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
17
|
Burger-Calderon R, Webster-Cyriaque J. Human BK Polyomavirus-The Potential for Head and Neck Malignancy and Disease. Cancers (Basel) 2015; 7:1244-70. [PMID: 26184314 PMCID: PMC4586768 DOI: 10.3390/cancers7030835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 12/22/2022] Open
Abstract
Members of the human Polyomaviridae family are ubiquitous and pathogenic among immune-compromised individuals. While only Merkel cell polyomavirus (MCPyV) has conclusively been linked to human cancer, all members of the polyomavirus (PyV) family encode the oncoprotein T antigen and may be potentially carcinogenic. Studies focusing on PyV pathogenesis in humans have become more abundant as the number of PyV family members and the list of associated diseases has expanded. BK polyomavirus (BKPyV) in particular has emerged as a new opportunistic pathogen among HIV positive individuals, carrying harmful implications. Increasing evidence links BKPyV to HIV-associated salivary gland disease (HIVSGD). HIVSGD is associated with elevated risk of lymphoma formation and its prevalence has increased among HIV/AIDS patients. Determining the relationship between BKPyV, disease and tumorigenesis among immunosuppressed individuals is necessary and will allow for expanding effective anti-viral treatment and prevention options in the future.
Collapse
Affiliation(s)
- Raquel Burger-Calderon
- Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jennifer Webster-Cyriaque
- Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
18
|
You LL, Cao DH, Jiang J, Hou Z, Suo YE, Wang SD, Cao XY. Transgenic mouse models of gastric cancer: Pathological characteristic and applications. Shijie Huaren Xiaohua Zazhi 2015; 23:2754-2760. [DOI: 10.11569/wcjd.v23.i17.2754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transgenic animal models of gastric cancer have high specificity and similar tumor characteristics to human gastric cancer. Current research and application of transgenic animal models of gastric cancer are wide, and several models have been developed. In transgenic animal models of gastric cancer, primary gastric carcinoma can develop spontaneously. These transgenic animal models have been widely used to study the mechanism of gastric cancer development, and have great significance for clinical diagnosis and treatment of gastric cancer. This paper systematically summarizes several different kinds of transgenic animal models and describes the molecular pathogenic mechanisms and pathological characteristics of gastric mucosal lesions in these models as well as their applications.
Collapse
|
19
|
Howell VM. Mice and men working together for over 100 years in the fight against cancer. Semin Cell Dev Biol 2014; 27:52-3. [PMID: 24704434 DOI: 10.1016/j.semcdb.2014.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Viive M Howell
- University of Sydney, Kolling Institute of Medical Research, Bill Walsh Translational Cancer Research Laboratory, Level 8, Kolling Building, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
| |
Collapse
|
20
|
Genetically engineered mouse models for epithelial ovarian cancer: are we there yet? Semin Cell Dev Biol 2014; 27:106-17. [PMID: 24685617 DOI: 10.1016/j.semcdb.2014.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 03/18/2014] [Indexed: 12/12/2022]
Abstract
The development of preclinical spontaneous genetically engineered mouse models (GEMMs) requires an understanding of the genetic basis of the human disease. Such robust models have proven invaluable for increasing understanding of human malignancies as well as identifying new biomarkers and testing new therapies for these diseases. While GEMMs have been reported for ovarian cancer, the majority have proven disappointing overall in their recapitulation of paired genetic and histological features especially for serous ovarian epithelial cancer. This review describes GEMMs for ovarian cancer, in particular, high grade serous ovarian cancer and assesses these in light of recent changes in our understanding of the human malignancy.
Collapse
|