1
|
Cheng J, Zhang K, Qu C, Peng J, Yang L. Non-Coding RNAs Derived from Extracellular Vesicles Promote Pre-Metastatic Niche Formation and Tumor Distant Metastasis. Cancers (Basel) 2023; 15:cancers15072158. [PMID: 37046819 PMCID: PMC10093357 DOI: 10.3390/cancers15072158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Metastasis is a critical stage of tumor progression, a crucial challenge of clinical therapy, and a major cause of tumor patient death. Numerous studies have confirmed that distant tumor metastasis is dependent on the formation of pre-metastatic niche (PMN). Recent studies have shown that extracellular vesicles (EVs) play an important role in PMN formation. The non-coding RNAs (ncRNAs) derived from EVs mediate PMN formation and tumor-distant metastasis by promoting an inflammatory environment, inhibiting anti-tumor immune response, inducing angiogenesis and permeability, and by microenvironmental reprogramming. Given the stability and high abundance of ncRNAs carried by EVs in body fluids, they have great potential for application in tumor diagnosis as well as targeted interventions. This review focuses on the mechanism of ncRNAs derived from EVs promoting tumor PMN formation and distant metastasis to provide a theoretical reference for strategies to control tumor metastasis.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Kun Zhang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Chunhui Qu
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410078, China
- Department of Pathology, Xiangya Changde Hospital, Changde 415000, China
| | - Lifang Yang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| |
Collapse
|
2
|
Anti-Cancer Role and Therapeutic Potential of Extracellular Vesicles. Cancers (Basel) 2021; 13:cancers13246303. [PMID: 34944923 PMCID: PMC8699603 DOI: 10.3390/cancers13246303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-cell communication is an important mechanism in biological processes. Extracellular vesicles (EVs), also referred to as exosomes, microvesicles, and prostasomes, are microvesicles secreted by a variety of cells. EVs are nanometer-scale vesicles composed of a lipid bilayer and contain biological functional molecules, such as microRNAs (miRNAs), mRNAs, and proteins. In this review, "EVs" is used as a comprehensive term for vesicles that are secreted from cells. EV research has been developing over the last four decades. Many studies have suggested that EVs play a crucial role in cell-cell communication. Importantly, EVs contribute to cancer malignancy mechanisms such as carcinogenesis, proliferation, angiogenesis, metastasis, and escape from the immune system. EVs derived from cancer cells and their microenvironments are diverse, change in nature depending on the condition. As EVs are thought to be secreted into body fluids, they have the potential to serve as diagnostic markers for liquid biopsy. In addition, cells can encapsulate functional molecules in EVs. Hence, the characteristics of EVs make them suitable for use in drug delivery systems and novel cancer treatments. In this review, the potential of EVs as anti-cancer therapeutics is discussed.
Collapse
|
3
|
Wen J, Yang T, Mallouk N, Zhang Y, Li H, Lambert C, Li G. Urinary Exosomal CA9 mRNA as a Novel Liquid Biopsy for Molecular Diagnosis of Bladder Cancer. Int J Nanomedicine 2021; 16:4805-4811. [PMID: 34285483 PMCID: PMC8286733 DOI: 10.2147/ijn.s312322] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The objective of this study was to assess the possibility of using urinary exosomal CA9 mRNA as a novel liquid biopsy for the molecular diagnosis of bladder cancer. Patients and Methods A total of 168 bladder cancer patients and 90 control subjects were included in the study. An isolation kit was used to isolate urinary exosomes. Transmission electron microscopy (TEM) was used to examine the presence of exosomes. Flow cytometry was used to examine the exosomal marker CD63. The expression level of exosomal CA9 mRNA was detected by RT-qPCR. The diagnostic performance of urinary urinary exosomal CA9 mRNA was evaluated. Results TEM confirmed the enriched exosomes from urinary bladder patients. Flow cytometry indicated a strong positive expression of exosome marker CD63. Successful extraction of RNA was performed from exosome samples. The level of urinary exosomal CA9 mRNA was significantly higher in bladder cancer group than in control group (p<0.001). The area under the ROC curve was 0.837 (95% CI: 0.743–0.859) with a sensitivity of 85.18% and a specificity of 83.15% for the diagnosis of bladder cancer. Conclusion We found that the urinary exosomes were abundant in the urine of bladder cancer patients. CA9 mRNA could be detectable in urinary exosomes. The urinary exosomal CA9 mRNA may present a new liquid biopsy for the diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Jin Wen
- Department of Urology, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Tingkai Yang
- Department of Urology, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Nora Mallouk
- Center of Electronic Microscopy, CMES, Faculty of Medicine, University Jean Monnet, Saint-Etienne, France
| | - Yang Zhang
- Department of Molecular Biology, Guangzhou HopeTech Biological Technology Co, LTD, Guangzhou, People's Republic of China
| | - Hanzhong Li
- Department of Urology, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Claude Lambert
- Unit of Flow Cytometry, Immunology Laboratory, North Hospital, CHU Saint-Etienne, Saint-Etienne, France
| | - Guorong Li
- Department of Urology, North Hospital, CHU Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
4
|
Kuriyama N, Yoshioka Y, Kikuchi S, Azuma N, Ochiya T. Extracellular Vesicles Are Key Regulators of Tumor Neovasculature. Front Cell Dev Biol 2020; 8:611039. [PMID: 33363175 PMCID: PMC7755723 DOI: 10.3389/fcell.2020.611039] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor progression involves a series of biologically important steps in which the crosstalk between cancer cells and the surrounding environment is an important issue. Angiogenesis is a key tumorigenic phenomenon for cancer progression. Tumor-related extracellular vesicles (EVs) modulate the tumor microenvironment (TME) through cell-to-cell communication. Tumor cells in a hypoxic TME release more EVs than cells in a normoxic environment due to uncontrollable tumor proliferation. Tumor-derived EVs in the TME influence endothelial cells (ECs), which then play multiple roles, contributing to tumor angiogenesis, loss of the endothelial vascular barrier by binding to ECs, and subsequent endothelial-to-mesenchymal transition. In contrast, they also indirectly induce tumor angiogenesis through the phenotype switching of various cells into cancer-associated fibroblasts, the activation of tumor-associated ECs and platelets, and remodeling of the extracellular matrix. Here, we review current knowledge regarding the involvement of EVs in tumor vascular-related cancer progression.
Collapse
Affiliation(s)
- Naoya Kuriyama
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.,Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shinsuke Kikuchi
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Nobuyoshi Azuma
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
5
|
Lacerda JZ, Ferreira LC, Lopes BC, Aristizábal-Pachón AF, Bajgelman MC, Borin TF, Zuccari DAPDC. Therapeutic Potential of Melatonin in the Regulation of MiR-148a-3p and Angiogenic Factors in Breast Cancer. Microrna 2020; 8:237-247. [PMID: 30806335 DOI: 10.2174/2211536608666190219095426] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 02/06/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND The high mortality rate of breast cancer is related to the occurrence of metastasis, a process that is promoted by tumor angiogenesis. MicroRNAs are small molecules of noncoding mRNA that play a key role in gene regulation and are directly involved in the progression and angiogenesis of various tumor types, including breast cancer. Several miRNAs have been described as promoters or suppressors angiogenesis and may be associated with tumor growth and metastasis. Melatonin is an oncostatic agent with a capacity of modifying the expression of innumerable genes and miRNAs related to cancer. OBJECTIVE The aim of this study was to evaluate the role of melatonin and the tumor suppressor miR- 148a-3p on angiogenesis of breast cancer. METHOD MDA-MB-231 cells were treated with melatonin and modified with the overexpression of miR-148a-3p. The relative quantification in real-time of miR-148a-3p, IGF-IR and VEGF was performed by real-time PCR. The protein expression of these targets was performed by immunocytochemistry and immunohistochemistry. Survival, migration and invasion rates of tumor cells were evaluated. Finally, the xenograft model of breast cancer was performed to confirm the role of melatonin in the tumor. RESULTS The melatonin was able to increase the gene level of miR-148a-3p and decreased the gene and protein expression of IGF-1R and VEGF, both in vitro and in vivo. In addition, it also had an inhibitory effect on the survival, migration and invasion of breast tumor cells. CONCLUSION Our results confirm the role of melatonin in the regulation of miR-148a-3p and decrease of angiogenic factors.
Collapse
Affiliation(s)
- Jéssica Zani Lacerda
- Sao Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Sao Jose do Rio Preto (SP), Brazil.,Laboratory of Molecular Research in Cancer (LIMC), Medical School of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto (SP), Brazil
| | - Lívia Carvalho Ferreira
- Laboratory of Molecular Research in Cancer (LIMC), Medical School of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto (SP), Brazil
| | - Beatriz Camargo Lopes
- Sao Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Sao Jose do Rio Preto (SP), Brazil.,Laboratory of Molecular Research in Cancer (LIMC), Medical School of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto (SP), Brazil
| | - Andrés Felipe Aristizábal-Pachón
- Laboratory of Molecular Genetics and Bioinformatics (LGMB), Faculty of Medicine of Ribeirao Preto, University of Sao Paulo (FMRP/USP), Ribeirao Preto (SP), Brazil
| | - Marcio Chaim Bajgelman
- Laboratory of Biosciences of the National Center of Research in Energy and Materials (LNBio/CNPEM), Campinas (SP), Brazil
| | - Thaiz Ferraz Borin
- Georgia Cancer Center, Augusta University, 1120 15th Street, Augusta, GA 30912, United States
| | - Debora Aparecida Pires de Campos Zuccari
- Sao Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Sao Jose do Rio Preto (SP), Brazil.,Laboratory of Molecular Research in Cancer (LIMC), Medical School of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto (SP), Brazil
| |
Collapse
|
6
|
Solé C, Lawrie CH. MicroRNAs and Metastasis. Cancers (Basel) 2019; 12:cancers12010096. [PMID: 31906022 PMCID: PMC7016783 DOI: 10.3390/cancers12010096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Metastasis, the development of secondary malignant growths at a distance from the primary site of a cancer, is associated with almost 90% of all cancer deaths, and half of all cancer patients present with some form of metastasis at the time of diagnosis. Consequently, there is a clear clinical need for a better understanding of metastasis. The role of miRNAs in the metastatic process is beginning to be explored. However, much is still to be understood. In this review, we present the accumulating evidence for the importance of miRNAs in metastasis as key regulators of this hallmark of cancer.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastián, Spain;
| | - Charles H. Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastián, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Correspondence: or ; Tel.: +34-943-006138
| |
Collapse
|
7
|
Extracellular Vesicles from Human Advanced-Stage Prostate Cancer Cells Modify the Inflammatory Response of Microenvironment-Residing Cells. Cancers (Basel) 2019; 11:cancers11091276. [PMID: 31480312 PMCID: PMC6769894 DOI: 10.3390/cancers11091276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) progression is strictly associated with microenvironmental conditions, which can be modified by cancer-released extracellular vesicles (EVs), important mediators of cell-cell communication. However, the role of EVs in the inflammatory cross-talk between cancer cells and microenvironment-residing cells remains largely unknown. To evaluate the role of EVs in the tumour microenvironment, we treated the non-cancerous prostate cell line PNT2 with EVs isolated from advanced-stage prostate cancer PC3 (PC3-EVs). Caspase-1-mediated IL-1β maturation was evaluated after 24 h incubation with EVs. Moreover, the effect of PC3-EVs on differentiated macrophagic THP-1 cells was assessed by analyzing cytokine expression and PC3 cells migration and proliferation profiles. We illustrated that PC3 cells contain active NLRP3-inflammasome cascade and secrete IL-1β. PC3-EVs affect the PNT2 inflammatory response, inducing caspase-1-mediated IL-1β maturation via ERK1/2-mediated lysosomal destabilization and cathepsin B activation. We also verified that PC3-EVs induce a functional TAM-like polarization in differentiated THP-1 cells. Our results demonstrated that cancer-derived EVs induce an inflammatory response in non-cancerous prostate cells, while inducing an immunomodulatory phenotype in immune cells. These apparently contradictory effects are both committed to strengthening the tumour-promoting microenvironment
Collapse
|
8
|
Kogure A, Kosaka N, Ochiya T. Cross-talk between cancer cells and their neighbors via miRNA in extracellular vesicles: an emerging player in cancer metastasis. J Biomed Sci 2019; 26:7. [PMID: 30634952 PMCID: PMC6330499 DOI: 10.1186/s12929-019-0500-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/08/2019] [Indexed: 01/20/2023] Open
Abstract
Cancer metastasis is the major cause of mortality in cancer cases and is responsible for cancer deaths. It is known that cancer cells communicate with surrounding microenvironmental cells, such as fibroblast cells, immune cells, and endothelial cells, to create a cancer microenvironment for their progression. Extracellular vesicles (EVs) are small vesicles that can be secreted by most types of cells and play an important role in cell-to-cell communications via transferring bioactive cargos, including variable RNAs, such as microRNAs (miRNAs), to recipient cells. miRNAs are a class of small noncoding RNAs that posttranscriptionally regulate gene expression. The transfer of them to recipient cells influences the metastatic process of primary tumors. In this review, we summarize the function of miRNAs packaged in EVs in cancer metastasis and discuss the clinical utility of miRNAs in EVs.
Collapse
Affiliation(s)
- Akiko Kogure
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
- Department of Translational Research for Extracellular Vesicles, Tokyo Medical University, 6-7-1 Shinjuku, Shinjuku-ku, Tokyo, 160-0023 Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
- Institute of Medical Science, Tokyo Medical University, 6-7-1 Shinjuku, Shinjuku-ku, Tokyo, 160-0023 Japan
| |
Collapse
|
9
|
Bao X, Shi J, Xie F, Liu Z, Yu J, Chen W, Zhang Z, Xu Q. Proteolytic Release of the p75NTR Intracellular Domain by ADAM10 Promotes Metastasis and Resistance to Anoikis. Cancer Res 2018; 78:2262-2276. [DOI: 10.1158/0008-5472.can-17-2789] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/22/2017] [Accepted: 01/30/2018] [Indexed: 11/16/2022]
|
10
|
Identification of extracellular vesicle-borne periostin as a feature of muscle-invasive bladder cancer. Oncotarget 2018; 7:23335-45. [PMID: 26981774 PMCID: PMC5029630 DOI: 10.18632/oncotarget.8024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/25/2016] [Indexed: 12/26/2022] Open
Abstract
Muscle-invasive bladder cancer (MIBC) is an aggressive malignancy with high mortality, and heterogeneity in MIBC results in variable clinical outcomes, posing challenges for clinical management. Extracellular vesicles (EVs) derived from MIBC have been shown to promote cancer progression. EVs derived from bladder cell lines were subjected to proteomic analysis, and periostin was chosen for further characterization due to its stage-specific gene expression profile. Knockdown of periostin by RNA interference reduces invasiveness in vitro and produces a rounder morphology. Importantly, treating low grade BC cells with periostin-rich EVs promotes cell aggressiveness and activates ERK oncogenic signals, and periostin suppression reverses these effects. These data suggest that MIBC might transfer periostin in an EV-mediated paracrine manner to promote the disease. To determine the potential of periostin as a bladder cancer indicator, patient urinary EVs were examined and found to have markedly higher levels of periostin than controls. In addition, immunohistochemical staining of a bladder cancer tissue microarray revealed that the presence of periostin in MIBC cells is correlated with worse prognosis. In conclusion, periostin is a component of bladder cancer cells associated with poor clinical outcome, and EVs can transfer oncogenic molecules such as periostin to affect the tumor environment and promote cancer progression.
Collapse
|
11
|
Silvers CR, Miyamoto H, Messing EM, Netto GJ, Lee YF. Characterization of urinary extracellular vesicle proteins in muscle-invasive bladder cancer. Oncotarget 2017; 8:91199-91208. [PMID: 29207636 PMCID: PMC5710916 DOI: 10.18632/oncotarget.20043] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
The mechanisms of bladder cancer progression are unknown, and new treatments and biomarkers are needed. Patient urinary extracellular vesicles (EVs) derive in part from bladder cancer cells and contain a specific protein cargo which may provide information about the disease. We conducted a proteomics study comparing EVs from the muscle-invasive bladder cancer (MIBC) cell line TCCSUP to EVs from normal urothelial line SVHUC. GO term analysis showed that TCCSUP EVs are enriched in proteins associated with the cell membrane, extracellular matrix, and inflammation and angiogenesis signaling pathways. Proteins characteristic of cancer EVs were further screened at the mRNA level in bladder cancer cell lines. In Western blots, three of six proteins examined showed greater than fifteenfold enrichment in patient urinary EVs compared to healthy volunteers (n = 6). Finally, we performed immunohistochemical staining of bladder tissue microarrays for three proteins of interest. One of them, transaldolase (TALDO1), is a nearly ubiquitous enzyme and normally thought to reside in the cytoplasm. To our surprise, nuclei were stained for transaldolase in 94% of MIBC tissue samples (n = 51). While cytoplasmic transaldolase was found in 89–90% of both normal urothelium (n = 79) and non-muscle-invasive samples (n = 71), the rate falls to 39% in MIBC samples (P < 0.001), and negative cytoplasmic staining was correlated with worse cancer-specific survival in MIBC patients (P = 0.008). The differential EV proteomics strategy reported here successfully identified a number of proteins associated with bladder cancer and points the way to future investigation.
Collapse
Affiliation(s)
| | - Hiroshi Miyamoto
- Department of Urology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward M Messing
- Department of Urology, University of Rochester Medical Center, Rochester, NY, USA
| | - George J Netto
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi-Fen Lee
- Department of Urology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
12
|
Wang Z, Tan Y, Yu W, Zheng S, Zhang S, Sun L, Ding K. Small role with big impact: miRNAs as communicators in the cross-talk between cancer-associated fibroblasts and cancer cells. Int J Biol Sci 2017; 13:339-348. [PMID: 28367098 PMCID: PMC5370441 DOI: 10.7150/ijbs.17680] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/09/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer microenvironment is composed of numerous components that can support cancer cell proliferation, promote cancer progression and contribute to cancer treatment resistance. The major components of caner microenvironment are fibroblasts, endothelial cells, immune cells as well as cytokines, chemokines, and extracellular matrix (ECM) all of which surround tumor cells as the core and cross talk with each other. Among them, cancer-associated fibroblasts (CAFs) play an important role in promoting cancer progression by secreting various pro-inflammatory factors. MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate protein expression both in cancer cell and normal stromal cells. Changes of miRNAs expression in cancer-associated fibroblasts can be induced both by cancer cells and other stromal cells. This change can arise through direct interaction or by secreted paracrine factors or even by secreted miRNAs. The desregulated miRNAs in cancer-associated fibroblasts then enhance the CAFs phenotype and assist their cancer promotion ability. Explore the regulatory function of miRNAs in the complex communication between cancer cells and cancer microenvironment is important to understand the process of tumor progression and may help to develop new therapeutic strategies. This review provides an updated content of latest research advances about the relevance of miRNAs in the interaction between cancer cells and the CAFs. We will describe miRNAs which are differential expressed by NFs and CAFs, their function in regulating fibroblasts activation as well as miRNAs expressed in CAFs as prognostic factors in cancer stroma in recent studies. We will also discuss miRNA as an important player in CAFs mediated regulation of cancer progression and metastasis, cancer metabolism, cancer stem cell property and chemoresistance.
Collapse
Affiliation(s)
- Zhanhuai Wang
- Department of Surgical Oncology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China.; The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China
| | - Yinuo Tan
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China
| | - Wei Yu
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China
| | - Shu Zheng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China
| | - Lifeng Sun
- Department of Surgical Oncology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China.; The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China
| | - Kefeng Ding
- Department of Surgical Oncology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China.; The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Jiefang Road 88, Hangzhou, Zhejiang Province, 310009, China
| |
Collapse
|
13
|
Fujita Y, Yoshioka Y, Ochiya T. Extracellular vesicle transfer of cancer pathogenic components. Cancer Sci 2016; 107:385-90. [PMID: 26797692 PMCID: PMC4832849 DOI: 10.1111/cas.12896] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/12/2016] [Accepted: 01/18/2016] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EV), known as exosomes and microvesicles, serve as versatile intercellular communication vehicles. Increasing evidence has shown that cancer cell-derived EV carry pathogenic components, such as proteins, messenger RNA (mRNA), microRNA (miRNA), DNA, lipids and transcriptional factors, that can mediate paracrine signaling in the tumor microenvironment. These data suggest that EV transfer of cancer pathogenic components enable long-distance crosstalk between cancer cells and distant organs, resulting in the promotion of the initial steps for pre-metastatic niche formation. Understanding the metastatic mechanisms through EV transfer may open up a new avenue for cancer therapeutic strategies. Furthermore, the circulating EV have also been of interest as a source for liquid biopsies. EV in body fluids provide a reliable source of miRNA and proteins for cancer biomarkers. The tumor-specific components in EV effectively provide various messages on the physiological and pathological status of cancer patients. Although many researchers are searching for EV biomarkers using miRNA microarrays and proteome analyses, the detection technology for circulating EV in body fluids has not yet reached the point of clinical application. In this review, we summarize recent findings regarding EV function, specifically in metastasis through the transfer of cancer pathogenic components. Furthermore, we highlight the potential of using circulating EV for cancer diagnosis.
Collapse
Affiliation(s)
- Yu Fujita
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
14
|
A novel platform for cancer therapy using extracellular vesicles. Adv Drug Deliv Rev 2015; 95:50-5. [PMID: 26482189 DOI: 10.1016/j.addr.2015.10.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/24/2015] [Accepted: 10/09/2015] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are nanometer-sized membranous vesicles and are involved in cell-to-cell communication. EVs contain several types of functional molecules, such as proteins, mRNAs, and microRNAs (miRNAs). Over the past several years, EVs have emerged as potential tools for a drug delivery system (DDS) that can target organs or cells. EVs have a function of organ tropism and are naturally occurring from cells. Therefore, EVs have expected as naturally DDSs, which have the organ tropism and a low side effect. Actually, some reports showed that EVs delivered drugs to specific organ. However, despite observed the organ tropism, the mechanisms of organ tropism of EVs are still unclear. Moreover, preservation and efficient collection of EVs are desired to be investigated. Here, we provide an overview of the methods for using EVs as DDSs.
Collapse
|