1
|
Danti L, Lundin K, Sepponen K, Yohannes DA, Kere J, Tuuri T, Tapanainen JS. CRISPR/Cas9-mediated activation of NR5A1 steers female human embryonic stem cell-derived bipotential gonadal-like cells towards a steroidogenic cell fate. J Ovarian Res 2023; 16:194. [PMID: 37726790 PMCID: PMC10510196 DOI: 10.1186/s13048-023-01264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
The nuclear receptor subfamily 5 group A member 1 (NR5A1), encoding steroidogenic factor 1 (SF-1), has been identified as a critical factor in gonadal development in animal studies. A previous study of ours suggested that upregulation of NR5A1 during early gonadal differentiation in male (46,XY) human pluripotent stem cells steers the cells into a more mature gonadal cell type. However, the detailed role of NR5A1 in female gonadal differentiation has yet to be determined. In this study, by combining the processes of gonadal differentiation and conditional gene activation, we show that NR5A1 induction predominantly upregulates the female gonadal marker inhibin subunit α (INHA) and steroidogenic markers steroidogenic acute regulatory protein (STAR), cytochrome P450 family 11 subfamily A member 1 (CYP11A1), cytochrome P450 family 17 subfamily A member 1 (CYP17A1), hydroxy-delta-5-steroid dehydrogenase (HSD3B2) and hydroxysteroid 17-beta dehydrogenase 1 (HSD17B1). In contrast, NR5A1 induction did not seem to affect the bipotential gonadal markers gata binding protein 4 (GATA4) and Wilms' tumour suppressor 1 (WT1) nor the female gonadal markers r-spondin 1 (RSPO1) and wnt family member 4 (WNT4). Differentially expressed genes were highly associated with adrenal and ovarian steroidogenesis pathways. Moreover, time-series analysis revealed different dynamic changes between male and female induced samples, where continuously upregulated genes in female gonadal differentiation were mostly associated with adrenal steroidogenesis. Thus, in contrast to male gonadal differentiation, NR5A1 is necessary but not sufficient to steer human embryonic stem cell (hESC)-derived bipotential gonadal-like cells towards a more mature somatic, female cell fate. Instead, it seems to direct bipotential gonadal-like cells more towards a steroidogenic-like cell population. The information obtained in this study helps in elucidating the role of NR5A1 in gonadal differentiation of a female stem cell line.
Collapse
Affiliation(s)
- Laura Danti
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, 00290, Finland
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, 00290, Finland
| | - Kirsi Sepponen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, 00290, Finland
| | - Dawit A Yohannes
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, 00290, Finland
- Research Programs Unit, Translational Immunology & Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00290, Finland
| | - Juha Kere
- Folkhälsan Research Centre, Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, 00290, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14183, Sweden
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, 00290, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, 00290, Finland.
- Department of Obstetrics and Gynecology, HFR - Cantonal Hospital of Fribourg and University of Fribourg, Fribourg, 1708, Switzerland.
| |
Collapse
|
2
|
Segarra I, Menárguez M, Roqué MV. Women's health, hormonal balance, and personal autonomy. Front Med (Lausanne) 2023; 10:1167504. [PMID: 37457571 PMCID: PMC10347535 DOI: 10.3389/fmed.2023.1167504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Hormone-based contraception disrupts hormonal balance, creating artificial states of anovulation and threatening women's health. We reviewed its main adverse effects and mechanisms on accelerated ovarian aging, mental health (emotional disruptions, depression, and suicide), sexuality (reduced libido), cardiovascular (brain stroke, myocardial infarction, hypertension, and thrombosis), and oncological (breast, cervical, and endometrial cancers). Other "collateral damage" includes negative effects on communication, scientific mistrust, poor physician-patient relationships, increased patient burden, economic drain on the healthcare system, and environmental pollution. Hormone-sensitive tumors present a dilemma owing to their potential dual effects: preventing some cancers vs. higher risk for others remains controversial, with denial or dismissal as non-relevant adverse effects, information avoidance, and modification of scientific criteria. This lack of clinical assessment poses challenges to women's health and their right to autonomy. Overcoming these challenges requires an anthropological integration of sexuality, as the focus on genital bodily union alone fails to encompass the intimate relational expression of individuals, complete sexual satisfaction, and the intertwined feelings of trust, safety, tenderness, and endorsement of women's femininity.
Collapse
Affiliation(s)
- Ignacio Segarra
- Department of Pharmacy, Faculty of Pharmacy and Nutrition, Catholic University of Murcia (UCAM), Murcia, Spain
- “Pharmacokinetics, Patient Care and Translational Bioethics” Research Group, Faculty of Pharmacy and Nutrition, Catholic University of Murcia (UCAM), Murcia, Spain
| | - Micaela Menárguez
- Bioethics Chair, Faculty of Medicine, Catholic University of Murcia (UCAM), Murcia, Spain
| | - María Victoria Roqué
- “Pharmacokinetics, Patient Care and Translational Bioethics” Research Group, Faculty of Pharmacy and Nutrition, Catholic University of Murcia (UCAM), Murcia, Spain
- Bioethics Chair, Faculty of Medicine, Catholic University of Murcia (UCAM), Murcia, Spain
| |
Collapse
|
3
|
Salazar-Petres E, Pereira-Carvalho D, Lopez-Tello J, Sferruzzi-Perri AN. Maternal and Intrauterine Influences on Feto-Placental Growth Are Accompanied by Sexually Dimorphic Changes in Placental Mitochondrial Respiration, and Metabolic Signalling Pathways. Cells 2023; 12:797. [PMID: 36899933 PMCID: PMC10000946 DOI: 10.3390/cells12050797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Adverse maternal environments such as small size, malnutrition, and metabolic conditions are known to influence fetal growth outcomes. Similarly, fetal growth and metabolic alterations may alter the intrauterine environment and affect all fetuses in multiple gestation/litter-bearing species. The placenta is the site of convergence between signals derived from the mother and the developing fetus/es. Its functions are fuelled by energy generated by mitochondrial oxidative phosphorylation (OXPHOS). The aim of this study was to delineate the role of an altered maternal and/or fetal/intrauterine environment in feto-placental growth and placental mitochondrial energetic capacity. To address this, in mice, we used disruptions of the gene encoding phosphoinositol 3-kinase (PI3K) p110α, a growth and metabolic regulator to perturb the maternal and/or fetal/intrauterine environment and study the impact on wildtype conceptuses. We found that feto-placental growth was modified by a perturbed maternal and intrauterine environment, and effects were most evident for wildtype males compared to females. However, placental mitochondrial complex I+II OXPHOS and total electron transport system (ETS) capacity were similarly reduced for both fetal sexes, yet reserve capacity was additionally decreased in males in response to the maternal and intrauterine perturbations. These were also sex-dependent differences in the placental abundance of mitochondrial-related proteins (e.g., citrate synthase and ETS complexes), and activity of growth/metabolic signalling pathways (AKT and MAPK) with maternal and intrauterine alterations. Our findings thus identify that the mother and the intrauterine environment provided by littermates modulate feto-placental growth, placental bioenergetics, and metabolic signalling in a manner dependent on fetal sex. This may have relevance for understanding the pathways leading to reduced fetal growth, particularly in the context of suboptimal maternal environments and multiple gestation/litter-bearing species.
Collapse
Affiliation(s)
- Esteban Salazar-Petres
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Valdivia 5090000, Chile
| | - Daniela Pereira-Carvalho
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Jorge Lopez-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
4
|
Bunce C, Barske L, Zhang G, Capel B. Biased precursor ingression underlies the center-to-pole pattern of male sex determination in mouse. Development 2023; 150:297121. [PMID: 36912416 PMCID: PMC10112898 DOI: 10.1242/dev.201060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/15/2023] [Indexed: 03/14/2023]
Abstract
During mammalian development, gonadal sex determination results from the commitment of bipotential supporting cells to Sertoli or granulosa cell fates. Typically, this decision is coordinated across the gonad to ensure commitment to a single organ fate. When unified commitment fails in an XY mouse, an ovotestis forms in which supporting cells in the center of the gonad typically develop as Sertoli cells, while supporting cells in the poles develop as granulosa cells. This central bias for Sertoli cell fate was thought to result from the initial expression of the drivers of Sertoli cell fate, SRY and/or SOX9, in the central domain, followed by paracrine expansion to the poles. However, we show here that the earliest cells expressing SRY and SOX9 are widely distributed across the gonad. In addition, Sertoli cell fate does not spread among supporting cells through paracrine relay. Instead, we uncover a center-biased pattern of supporting cell precursor ingression that occurs in both sexes and results in increased supporting cell density in the central domain. Our findings prompt a new model of gonad patterning in which a density-dependent organizing principle dominates Sertoli cell fate stabilization.
Collapse
Affiliation(s)
- Corey Bunce
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lindsey Barske
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gloria Zhang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
5
|
Hart D, Rodríguez Gutiérrez D, Biason-Lauber A. CBX2 in DSD: The Quirky Kid on the Block. Sex Dev 2022; 16:162-170. [PMID: 35263754 DOI: 10.1159/000522164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/21/2022] [Indexed: 11/19/2022] Open
Abstract
Sex development is an intricate and crucial process in all vertebrates that ensures the continued propagation of genetic diversity within a species, and ultimately their survival. Perturbations in this process can manifest as disorders/differences of sex development (DSD). Various transcriptional networks have been linked to development of the gonad into either male or female, which is actively driven by a set of genes that function in a juxtaposed manner and is maintained through the developmental stages to preserve the final sexual identity. One such identified gene is Chromobox homolog 2 (CBX2), an important ortholog of the Polycomb group (PcG) proteins, that functions as both chromatin modifier and highly dynamic transactivator. CBX2 was shown to be an essential factor for gonadal development in mammals, as genetic variants or loss-of-function of CBX2 can cause sex reversal in mice and humans. Here we will provide an overview of CBX2, its biological functions at molecular level, and the CBX2-dependent transcriptional landscape in gonadal development and DSD.
Collapse
Affiliation(s)
- Dirk Hart
- Endocrinology Division, Department of Endocrinology, Metabolism and Cardiovascular System, Section of Medicine, University of Fribourg, Fribourg, Switzerland,
| | - Daniel Rodríguez Gutiérrez
- Endocrinology Division, Department of Endocrinology, Metabolism and Cardiovascular System, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Anna Biason-Lauber
- Endocrinology Division, Department of Endocrinology, Metabolism and Cardiovascular System, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
McElreavey K, Bashamboo A. Monogenic forms of DSD: An update. Horm Res Paediatr 2021; 96:144-168. [PMID: 34963118 DOI: 10.1159/000521381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
DSD encompasses a wide range of pathologies that impact gonad formation, development and function in both 46,XX and 46,XY individuals. The majority of these conditions are considered to be monogenic, although the expression of the phenotype may be influenced by genetic modifiers. Although considered monogenic, establishing the genetic etiology in DSD has been difficult compared to other congenital disorders for a number of reasons including the absence of family cases for classical genetic association studies and the lack of evolutionary conservation of key genetic factors involved in gonad formation. In recent years, the widespread use of genomic sequencing technologies has resulted in multiple genes being identified and proposed as novel monogenic causes of 46,XX and/or 46,XY DSD. In this review, we will focus on the main genomic findings of recent years, which consists of new candidate genes or loci for DSD as well as new reproductive phenotypes associated with genes that are well established to cause DSD. For each gene or loci, we summarise the data that is currently available in favor of or against a role for these genes in DSD or the contribution of genomic variants within well-established genes to a new reproductive phenotype. Based on this analysis we propose a series of recommendations that should aid the interpretation of genomic data and ultimately help to improve the accuracy and yield genetic diagnosis of DSD.
Collapse
|
7
|
Naseem M, Cao S, Yang D, Millstein J, Puccini A, Loupakis F, Stintzing S, Cremolini C, Tokunaga R, Battaglin F, Soni S, Berger MD, Barzi A, Zhang W, Falcone A, Heinemann V, Lenz HJ. Random survival forests identify pathways with polymorphisms predictive of survival in KRAS mutant and KRAS wild-type metastatic colorectal cancer patients. Sci Rep 2021; 11:12191. [PMID: 34108518 PMCID: PMC8190302 DOI: 10.1038/s41598-021-91330-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
KRAS status serves as a predictive biomarker of response to treatment in metastatic colorectal cancer (mCRC). We hypothesize that complex interactions between multiple pathways contribute to prognostic differences between KRAS wild-type and KRAS mutant patients with mCRC, and aim to identify polymorphisms predictive of clinical outcomes in this subpopulation. Most pathway association studies are limited in assessing gene–gene interactions and are restricted to an individual pathway. In this study, we use a random survival forests (RSF) method for identifying predictive markers of overall survival (OS) and progression-free survival (PFS) in mCRC patients treated with FOLFIRI/bevacizumab. A total of 486 mCRC patients treated with FOLFIRI/bevacizumab from two randomized phase III trials, TRIBE and FIRE-3, were included in the current study. Two RSF approaches were used, namely variable importance and minimal depth. We discovered that Wnt/β-catenin and tumor associated macrophage pathway SNPs are strong predictors of OS and PFS in mCRC patients treated with FOLFIRI/bevacizumab independent of KRAS status, whereas a SNP in the sex-differentiation pathway gene, DMRT1, is strongly predictive of OS and PFS in KRAS mutant mCRC patients. Our results highlight RSF as a useful method for identifying predictive SNPs in multiple pathways.
Collapse
Affiliation(s)
- Madiha Naseem
- Division of Medical Oncology, Sharon Carpenter Laboratory, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dongyun Yang
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua Millstein
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alberto Puccini
- Division of Medical Oncology, Sharon Carpenter Laboratory, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA
| | - Fotios Loupakis
- Oncologia Medica 1, Istituto Oncologico Veneto, Istituto Di Ricovero E Cura a Carattere Scientifico, Via Gattamelata, Padua, Italy
| | - Sebastian Stintzing
- Medical Department, Division of Hematology, Oncology and Hematology, Tumor Immunology (CCM), Charité-Universitätsmedizin, Berlin, Germany
| | - Chiara Cremolini
- Oncologia Medica, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Via Roma, Pisa, Italy
| | - Ryuma Tokunaga
- Division of Medical Oncology, Sharon Carpenter Laboratory, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Sharon Carpenter Laboratory, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA.,Oncologia Medica 1, Istituto Oncologico Veneto, Istituto Di Ricovero E Cura a Carattere Scientifico, Via Gattamelata, Padua, Italy
| | - Shivani Soni
- Division of Medical Oncology, Sharon Carpenter Laboratory, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA
| | - Martin D Berger
- Division of Medical Oncology, Sharon Carpenter Laboratory, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA
| | - Afsaneh Barzi
- Division of Medical Oncology, Sharon Carpenter Laboratory, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA
| | - Wu Zhang
- Division of Medical Oncology, Sharon Carpenter Laboratory, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA
| | - Alfredo Falcone
- Oncologia Medica, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Via Roma, Pisa, Italy
| | - Volker Heinemann
- Department of Medicine and Comprehensive Cancer Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Sharon Carpenter Laboratory, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA.
| |
Collapse
|
8
|
van Wijnen AJ, Bagheri L, Badreldin AA, Larson AN, Dudakovic A, Thaler R, Paradise CR, Wu Z. Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. Bone 2021; 143:115659. [PMID: 32979540 DOI: 10.1016/j.bone.2020.115659] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulatory proteins support mammalian development, cancer, aging and tissue repair by controlling many cellular processes including stem cell self-renewal, lineage-commitment and senescence in both skeletal and non-skeletal tissues. We review here our knowledge of epigenetic regulatory protein complexes that support the formation of inaccessible heterochromatin and suppress expression of cell and tissue-type specific biomarkers during development. Maintenance and formation of heterochromatin critically depends on epigenetic regulators that recognize histone 3 lysine trimethylation at residues K9 and K27 (respectively, H3K9me3 and H3K27me3), which represent transcriptionally suppressive epigenetic marks. Three chromobox proteins (i.e., CBX1, CBX3 or CBX5) associated with the heterochromatin protein 1 (HP1) complex are methyl readers that interpret H3K9me3 marks which are mediated by H3K9 methyltransferases (i.e., SUV39H1 or SUV39H2). Other chromobox proteins (i.e., CBX2, CBX4, CBX6, CBX7 and CBX8) recognize H3K27me3, which is deposited by Polycomb Repressive Complex 2 (PRC2; a complex containing SUZ12, EED, RBAP46/48 and the methyl transferases EZH1 or EZH2). This second set of CBX proteins resides in PRC1, which has many subunits including other polycomb group factors (PCGF1, PCGF2, PCGF3, PCGF4, PCGF5, PCGF6), human polyhomeotic homologs (HPH1, HPH2, HPH3) and E3-ubiquitin ligases (RING1 or RING2). The latter enzymes catalyze the subsequent mono-ubiquitination of lysine 119 in H2A (H2AK119ub). We discuss biological, cellular and molecular functions of CBX proteins and their physiological and pathological activities in non-skeletal cells and tissues in anticipation of new discoveries on novel roles for CBX proteins in bone formation and skeletal development.
Collapse
Affiliation(s)
- Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Leila Bagheri
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Amr A Badreldin
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Christopher R Paradise
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Zhong Wu
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
9
|
Rosiglitazone ameliorates palmitic acid-induced endoplasmic reticulum stress and steroidogenic capacity in granulosa cells. Reprod Biol 2020; 20:293-299. [PMID: 32736984 DOI: 10.1016/j.repbio.2020.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 01/27/2023]
Abstract
Granulosa cells play essential roles in follicular development, oocyte maturation and sex hormone secretion. The exposure of granulosa cells to palmitic acid (PA), the main component of dietary saturated fat, inhibits cell viability. However, the mechanism underlying PA-induced cytotoxicity in granulosa cells has not been deeply investigated. Rosiglitazone (RSG) is a member of the thiazolidinedione family and is reported to protect cells from cytotoxicity and endoplasmic reticulum (ER) stress in other cell types, but whether RSG protects granulosa cells remain unknown. In this study, KGN cell line and primary granulosa cells were used as models of granulosa cells to explore the effects of PA and RSG and the underlying mechanisms. The results showed that PA inhibits cell viability and estradiol secretion through inducing ER stress and cAMP/PKA/CREB pathway. CCAAT/enhancer-binding protein homologous protein (CHOP), an ER stress marker, was demonstrated to participate in PA-induced cytotoxicity. RSG treatment rescued granulosa cells from PA-induced cell death and ER stress. Moreover, RSG was identified to ameliorate ER stress induced by tunicamycin in granulosa cells. In addition, RSG treatment rescued granulosa cells from PA-induced decrease of estrogen secretion by cAMP/PKA/CREB pathway. In conclusion, RSG can protect granulosa cells against PA-induced cytotoxicity by inhibiting ER stress, and can recover steroidogenic capacity, indicating a potential use of RSG in the treatment of granulosa cell dysfunction.
Collapse
|
10
|
Lamothe S, Bernard V, Christin-Maitre S. Gonad differentiation toward ovary. ANNALES D'ENDOCRINOLOGIE 2020; 81:83-88. [PMID: 32340851 DOI: 10.1016/j.ando.2020.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gonad differentiation depends on a set of cellular and hormonal signals interacting in a specific order, with very precise windows of action, to contribute to the establishment of the genital tract and a male or female phenotype. Research initially focused on the stages of gonad differentiation toward testis, in particular following the identification in 1990 of the SRY factor on chromosome Y. The mechanisms involved in gonad differentiation toward ovary took longer to identify. Thanks to patients with different sexual development (DSD) and animal knock-out models, description of the cascades involved in the activation and maintenance of ovarian development has progressed considerably in recent years.
Collapse
Affiliation(s)
- Sophie Lamothe
- Service d'endocrinologie, hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, 75012 Paris, France; Sorbonne université, Paris, France
| | - Valérie Bernard
- Service d'endocrinologie, hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, 75012 Paris, France; Sorbonne université, Paris, France
| | - Sophie Christin-Maitre
- Service d'endocrinologie, hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, 75012 Paris, France; Sorbonne université, Paris, France; UMR 933 75012 Paris, France.
| |
Collapse
|
11
|
Grinspon RP, Rey RA. Molecular Characterization of XX Maleness. Int J Mol Sci 2019; 20:ijms20236089. [PMID: 31816857 PMCID: PMC6928850 DOI: 10.3390/ijms20236089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
Androgens and anti-Müllerian hormone (AMH), secreted by the foetal testis, are responsible for the development of male reproductive organs and the regression of female anlagen. Virilization of the reproductive tract in association with the absence of Müllerian derivatives in the XX foetus implies the existence of testicular tissue, which can occur in the presence or absence of SRY. Recent advancement in the knowledge of the opposing gene cascades driving to the differentiation of the gonadal ridge into testes or ovaries during early foetal development has provided insight into the molecular explanation of XX maleness.
Collapse
Affiliation(s)
- Romina P. Grinspon
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
- Correspondence: (R.P.G.); (R.A.R.); Tel.: +54-11-49635931 (R.P.G.)
| | - Rodolfo A. Rey
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
- Departamento de Histología, Biología Celular, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
- Correspondence: (R.P.G.); (R.A.R.); Tel.: +54-11-49635931 (R.P.G.)
| |
Collapse
|
12
|
Wnt Signaling in Ovarian Cancer Stemness, EMT, and Therapy Resistance. J Clin Med 2019; 8:jcm8101658. [PMID: 31614568 PMCID: PMC6832489 DOI: 10.3390/jcm8101658] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancers represent the deadliest among gynecologic malignancies and are characterized by a hierarchical structure with cancer stem cells (CSCs) endowed with self-renewal and the capacity to differentiate. The Wnt/β-catenin signaling pathway, known to regulate stemness in a broad spectrum of stem cell niches including the ovary, is thought to play an important role in ovarian cancer. Importantly, Wnt activity was shown to correlate with grade, epithelial to mesenchymal transition, chemotherapy resistance, and poor prognosis in ovarian cancer. This review will discuss the current knowledge of the role of Wnt signaling in ovarian cancer stemness, epithelial to mesenchymal transition (EMT), and therapy resistance. In addition, the alleged role of exosomes in the paracrine activation of Wnt signaling and pre-metastatic niche formation will be reviewed. Finally, novel potential treatment options based on Wnt inhibition will be highlighted.
Collapse
|
13
|
Mohamed NE, Hay T, Reed KR, Smalley MJ, Clarke AR. APC2 is critical for ovarian WNT signalling control, fertility and tumour suppression. BMC Cancer 2019; 19:677. [PMID: 31291912 PMCID: PMC6617595 DOI: 10.1186/s12885-019-5867-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/24/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Canonical WNT signalling plays a critical role in the regulation of ovarian development; mis-regulation of this key pathway in the adult ovary is associated with subfertility and tumourigenesis. The roles of Adenomatous polyposis coli 2 (APC2), a little-studied WNT signalling pathway regulator, in ovarian homeostasis, fertility and tumourigenesis have not previously been explored. Here, we demonstrate essential roles of APC2 in regulating ovarian WNT signalling and ovarian homeostasis. METHODS A detailed analysis of ovarian histology, gene expression, ovulation and hormone levels was carried out in 10 week old and in aged constitutive APC2-knockout (Apc2-/-) mice (mixed background). Statistical significance for qRT-PCR data was determined from 95% confidence intervals. Significance testing was performed using 2-tailed Student's t-test, when 2 experimental cohorts were compared. When more were compared, ANOVA test was used, followed by a post-hoc test (LSD or Games-Howell). P-values of < 0.05 were considered statistically significant. RESULTS APC2-deficiency resulted in activation of ovarian WNT signalling and sub-fertility driven by intra-ovarian defects. Follicular growth was perturbed, resulting in a reduced rate of ovulation and corpora lutea formation, which could not be rescued by administration of gonadotrophins. Defects in steroidogenesis and follicular vascularity contributed to the subfertility phenotype. Tumour incidence was assessed in aged APC2-deficient mice, which also carried a hypomorphic Apc allele. APC2-deficiency in these mice resulted in predisposition to granulosa cell tumour (GCT) formation, accompanied by acute tumour-associated WNT-signalling activation and a histologic pattern and molecular signature seen in human adult GCTs. CONCLUSIONS Our work adds APC2 to the growing list of WNT-signalling members that regulate ovarian homeostasis, fertility and suppress GCT formation. Importantly, given that the APC2-deficient mouse develops tumours that recapitulate the molecular signature and histological features of human adult GCTs, this mouse has excellent potential as a pre-clinical model to study ovarian subfertility and transitioning to GCT, tumour biology and for therapeutic testing.
Collapse
Affiliation(s)
- Noha-Ehssan Mohamed
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy, Road, Cardiff, CF24 4HQ UK
- Hormones Evaluation Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
- Present address: CRUK Beatson Institute, Switchback road, Bearsden, Glasgow, G61 1BD UK
| | - Trevor Hay
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy, Road, Cardiff, CF24 4HQ UK
| | - Karen R. Reed
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy, Road, Cardiff, CF24 4HQ UK
| | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy, Road, Cardiff, CF24 4HQ UK
| | - Alan R. Clarke
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy, Road, Cardiff, CF24 4HQ UK
| |
Collapse
|
14
|
Ovarian activity regulation by anti-Müllerian hormone in early stages of human female life, an overview. ANTHROPOLOGICAL REVIEW 2018. [DOI: 10.2478/anre-2018-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The present study aimed at describing the anti-Müllerian hormone (AMH), with special focus on molecular background for ovarian activity, in particular the role AMH plays in sex determination and gonadogenesis process in early stages of prenatal life and folliculogenesis in postnatal life. It is a review of the literature currently indexed and abstracted in MEDLINE, SCOPUS and Google Scholars. The process of sex determination and gonad differentiation occurring during embryogenesis was discussed along with underlying molecular mechanisms. In the postnatal life the impact of AMH on the process of folliculogenesis was described. Clinical use of recent findings was shown as well. Genetic studies and molecular analyses have demonstrated that AMH is highly conservative, indicating its significance in reproductive process on the background of evolutionary processes.
Collapse
|
15
|
Wang D, Di X, Wang J, Li M, Zhang D, Hou Y, Hu J, Zhang G, Zhang H, Sun M, Meng X, Sun B, Jiang C, Ma T, Su W. Increased Formation of Follicular Antrum in Aquaporin-8-Deficient Mice Is Due to Defective Proliferation and Migration, and Not Steroidogenesis of Granulosa Cells. Front Physiol 2018; 9:1193. [PMID: 30190683 PMCID: PMC6115504 DOI: 10.3389/fphys.2018.01193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/07/2018] [Indexed: 01/15/2023] Open
Abstract
Aquaporin-8 (AQP8) is a water channel protein expressed exclusively in granulosa cells (GCs) in mouse ovary. Our previous studies of AQP8-deficient (AQP8-/-) mice demonstrated that AQP8 participates in folliculogenesis, including in the formation of follicles, ovulation, and atresia. However, its physiological function in formation of the antral follicle is still largely unknown. In the present study, we observed significantly increased numbers of antral follicles in AQP8-/- ovaries as well as significantly increased follicular antrum formation in in vitro 3D culture of AQP8-/- follicles. Functional detection of AQP8-/- GCs indicated that cell proliferation is impaired with FSH treatment, and wound healing and Transwell migration are also impaired with or without FSH treatment, compared with that in WT. However, the biosynthesis of estradiol and progesterone as well as the mRNA levels of key steroidogenic enzyme genes (CYP19A1 and StAR) in AQP8-/- GCs did not change, even with addition of FSH and/or testosterone. In order to estimate the influence of the impaired proliferation and migration on the density of GC mass, preantral follicles were injected with FITC-dextran, which distributes only in the intercellular space, and analyzed by confocal microscopy. The micrographs showed significantly higher transmission of fluorescence in AQP8-/- follicles, suggesting increased intercellular space of GCs. Based on this evidence, we concluded that AQP8 deficiency leads to increased formation of follicular antra in vivo and in vitro, and the mechanism may be associated with increased intercellular space of GCs, which may be caused by defective proliferation and migration of GCs. This study may offer new insight into the molecular mechanisms of the formation of follicular antrum.
Collapse
Affiliation(s)
- Dejiang Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xiangjun Di
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Jie Wang
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Miao Li
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Di Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yaxin Hou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiao Hu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ge Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - He Zhang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Meiyan Sun
- Department of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Xiangyu Meng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
16
|
Roush D, Rhen T. Developmental plasticity in reptiles: Critical evaluation of the evidence for genetic and maternal effects on temperature‐dependent sex determination. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:287-297. [DOI: 10.1002/jez.2194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/21/2018] [Accepted: 05/30/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Danielle Roush
- Department of Biology, University of North Dakota Grand Forks North Dakota
| | - Turk Rhen
- Department of Biology, University of North Dakota Grand Forks North Dakota
| |
Collapse
|
17
|
Bashamboo A, Eozenou C, Jorgensen A, Bignon-Topalovic J, Siffroi JP, Hyon C, Tar A, Nagy P, Sólyom J, Halász Z, Paye-Jaouen A, Lambert S, Rodriguez-Buritica D, Bertalan R, Martinerie L, Rajpert-De Meyts E, Achermann JC, McElreavey K. Loss of Function of the Nuclear Receptor NR2F2, Encoding COUP-TF2, Causes Testis Development and Cardiac Defects in 46,XX Children. Am J Hum Genet 2018; 102:487-493. [PMID: 29478779 PMCID: PMC5985285 DOI: 10.1016/j.ajhg.2018.01.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/26/2018] [Indexed: 12/02/2022] Open
Abstract
Emerging evidence from murine studies suggests that mammalian sex determination is the outcome of an imbalance between mutually antagonistic male and female regulatory networks that canalize development down one pathway while actively repressing the other. However, in contrast to testis formation, the gene regulatory pathways governing mammalian ovary development have remained elusive. We performed exome or Sanger sequencing on 79 46,XX SRY-negative individuals with either unexplained virilization or with testicular/ovotesticular disorders/differences of sex development (TDSD/OTDSD). We identified heterozygous frameshift mutations in NR2F2, encoding COUP-TF2, in three children. One carried a c.103_109delGGCGCCC (p.Gly35Argfs∗75) mutation, while two others carried a c.97_103delCCGCCCG (p.Pro33Alafs∗77) mutation. In two of three children the mutation was de novo. All three children presented with congenital heart disease (CHD), one child with congenital diaphragmatic hernia (CDH), and two children with blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). The three children had androgen production, virilization of external genitalia, and biochemical or histological evidence of testicular tissue. We demonstrate a highly significant association between the NR2F2 loss-of-function mutations and this syndromic form of DSD (p = 2.44 × 10−8). We show that COUP-TF2 is highly abundant in a FOXL2-negative stromal cell population of the fetal human ovary. In contrast to the mouse, these data establish COUP-TF2 as a human “pro-ovary” and “anti-testis” sex-determining factor in female gonads. Furthermore, the data presented here provide additional evidence of the emerging importance of nuclear receptors in establishing human ovarian identity and indicate that nuclear receptors may have divergent functions in mouse and human biology.
Collapse
|
18
|
Laissue P. The molecular complexity of primary ovarian insufficiency aetiology and the use of massively parallel sequencing. Mol Cell Endocrinol 2018; 460:170-180. [PMID: 28743519 DOI: 10.1016/j.mce.2017.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 11/28/2022]
Abstract
Primary ovarian insufficiency (POI) is a frequently occurring pathology, leading to infertility. Genetic anomalies have been described in POI and mutations in numerous genes have been definitively related to the pathogenesis of the disease. Some studies based on next generation sequencing (NGS) have been successfully undertaken as they have led to identify new mutations associated with POI aetiology. The purpose of this review is to present the most relevant molecules involved in diverse complex pathways, which may contribute towards POI. The main genes participating in bipotential gonad formation, sex determination, meiosis, folliculogenesis and ovulation are described to enable understanding how they may be considered putative candidates involved in POI. Considerations regarding NGS technical aspects such as design and data interpretation are mentioned. Successful NGS initiatives used for POI studying and future challenges are also discussed.
Collapse
Affiliation(s)
- Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
19
|
Xu Y, Zhou T, Shao L, Zhang B, Liu K, Gao C, Gao L, Liu J, Cui Y, Chian RC. Gene expression profiles in mouse cumulus cells derived from in vitro matured oocytes with and without blastocyst formation. Gene Expr Patterns 2017; 25-26:46-58. [DOI: 10.1016/j.gep.2017.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/11/2022]
|
20
|
Meyers-Wallen VN, Boyko AR, Danko CG, Grenier JK, Mezey JG, Hayward JJ, Shannon LM, Gao C, Shafquat A, Rice EJ, Pujar S, Eggers S, Ohnesorg T, Sinclair AH. XX Disorder of Sex Development is associated with an insertion on chromosome 9 and downregulation of RSPO1 in dogs (Canis lupus familiaris). PLoS One 2017; 12:e0186331. [PMID: 29053721 PMCID: PMC5650465 DOI: 10.1371/journal.pone.0186331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/28/2017] [Indexed: 12/15/2022] Open
Abstract
Remarkable progress has been achieved in understanding the mechanisms controlling sex determination, yet the cause for many Disorders of Sex Development (DSD) remains unknown. Of particular interest is a rare XX DSD subtype in which individuals are negative for SRY, the testis determining factor on the Y chromosome, yet develop testes or ovotestes, and both of these phenotypes occur in the same family. This is a naturally occurring disorder in humans (Homo sapiens) and dogs (C. familiaris). Phenotypes in the canine XX DSD model are strikingly similar to those of the human XX DSD subtype. The purposes of this study were to identify 1) a variant associated with XX DSD in the canine model and 2) gene expression alterations in canine embryonic gonads that could be informative to causation. Using a genome wide association study (GWAS) and whole genome sequencing (WGS), we identified a variant on C. familiaris autosome 9 (CFA9) that is associated with XX DSD in the canine model and in affected purebred dogs. This is the first marker identified for inherited canine XX DSD. It lies upstream of SOX9 within the canine ortholog for the human disorder, which resides on 17q24. Inheritance of this variant indicates that XX DSD is a complex trait in which breed genetic background affects penetrance. Furthermore, the homozygous variant genotype is associated with embryonic lethality in at least one breed. Our analysis of gene expression studies (RNA-seq and PRO-seq) in embryonic gonads at risk of XX DSD from the canine model identified significant RSPO1 downregulation in comparison to XX controls, without significant upregulation of SOX9 or other known testis pathway genes. Based on these data, a novel mechanism is proposed in which molecular lesions acting upstream of RSPO1 induce epigenomic gonadal mosaicism.
Collapse
Affiliation(s)
- Vicki N. Meyers-Wallen
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| | - Adam R. Boyko
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Charles G. Danko
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Jennifer K. Grenier
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Jason G. Mezey
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Jessica J. Hayward
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Laura M. Shannon
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Chuan Gao
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
| | - Afrah Shafquat
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
| | - Edward J. Rice
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, United States of America
| | - Shashikant Pujar
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, United States of America
| | - Stefanie Eggers
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Thomas Ohnesorg
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Andrew H. Sinclair
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Kalisch-Smith JI, Simmons DG, Pantaleon M, Moritz KM. Sex differences in rat placental development: from pre-implantation to late gestation. Biol Sex Differ 2017; 8:17. [PMID: 28523122 PMCID: PMC5434533 DOI: 10.1186/s13293-017-0138-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A male fetus is suggested to be more susceptible to in utero and birth complications. This may be due in part to altered morphology or function of the XY placenta. We hypothesised that sexual dimorphism begins at the blastocyst stage with sex differences in the progenitor trophectoderm (TE) and its derived trophoblast lineages, as these cells populate the majority of cell types within the placenta. We investigated sex-specific differences in cell allocation in the pre-implantation embryo and further characterised growth and gene expression of the placental compartments from the early stages of the definitive placenta through to late gestation. METHODS Naturally mated Sprague Dawley dams were used to collect blastocysts at embryonic day (E) 5 to characterise cell allocation; total, TE, and inner cell mass (ICM), and differentiation to downstream trophoblast cell types. Placental tissues were collected at E13, E15, and E20 to characterise volumes of placental compartments, and sex-specific gene expression profiles. RESULTS Pre-implantation embryos showed no sex differences in cell allocation (total, TE and ICM) or early trophoblast differentiation, assessed by outgrowth area, number and ploidy of trophoblasts and P-TGCs, and expression of markers of trophoblast stem cell state or differentiation. Whilst no changes in placental structures were found in the immature E13 placenta, the definitive E15 placenta from female fetuses had reduced labyrinthine volume, fetal and maternal blood space volume, as well as fetal blood space surface area, when compared to placentas from males. No differences between the sexes in labyrinth trophoblast volume or interhaemal membrane thickness were found. By E20 these sex-specific placental differences were no longer present, but female fetuses weighed less than their male counterparts. Coupled with expression profiles from E13 and E15 placental samples may suggest a developmental delay in placental differentiation. CONCLUSIONS Although there were no overt differences in blastocyst cell number or early placental development, reduced growth of the female labyrinth in mid gestation is likely to contribute to lower fetal weight in females at E20. These data suggest sex differences in fetal growth trajectories are due at least in part, to differences in placenta growth.
Collapse
Affiliation(s)
- J I Kalisch-Smith
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072 Australia
| | - D G Simmons
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072 Australia
| | - M Pantaleon
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072 Australia
| | - K M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072 Australia.,Centre for Child Health Research, The University of Queensland, South Brisbane, QLD 4101 Australia
| |
Collapse
|
22
|
Abstract
The process of sexual differentiation is central for reproduction of almost all metazoan and therefore for maintenance of practically all multicellular organisms. In sex development we can distinguish two different processes: First, sex determination is the developmental decision that directs the undifferentiated embryo into a sexually dimorphic individual. In mammals, sex determination equals gonadal development. The second process known as sex differentiation takes place once the sex determination decision has been made through factors produced by the gonads that determine the development of the phenotypic sex. Most of the knowledge on the factors involved in sexual development came from animal models and from studies of cases in whom the genetic or the gonadal sex does not match the phenotypical sex, i.e., patients affected by disorders of sex development (DSD). Generally speaking, factors influencing sex determination are transcriptional regulators, whereas factors important for sex differentiation are secreted hormones and their receptors. This review focuses on the factors involved in gonadal determination, and whenever possible, references on the "prismatic" clinical cases are given.
Collapse
Affiliation(s)
- Anna Biason-Lauber
- Department of Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland.
| |
Collapse
|
23
|
Pannetier M, Chassot AA, Chaboissier MC, Pailhoux E. Involvement of FOXL2 and RSPO1 in Ovarian Determination, Development, and Maintenance in Mammals. Sex Dev 2016; 10:167-184. [PMID: 27649556 DOI: 10.1159/000448667] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/19/2022] Open
Abstract
In mammals, sex determination is a process through which the gonad is committed to differentiate into a testis or an ovary. This process relies on a delicate balance between genetic pathways that promote one fate and inhibit the other. Once the gonad is committed to the female pathway, ovarian differentiation begins and, depending on the species, is completed during gestation or shortly after birth. During this step, granulosa cell precursors, steroidogenic cells, and primordial germ cells start to express female-specific markers in a sex-dimorphic manner. The germ cells then arrest at prophase I of meiosis and, together with somatic cells, assemble into functional structures. This organization gives the ovary its definitive morphology and functionality during folliculogenesis. Until now, 2 main genetic cascades have been shown to be involved in female sex differentiation. The first is driven by FOXL2, a transcription factor that also plays a crucial role in folliculogenesis and ovarian fate maintenance in adults. The other operates through the WNT/CTNNB1 canonical pathway and is regulated primarily by R-spondin1. Here, we discuss the roles of FOXL2 and RSPO1/WNT/ CTNNB1 during ovarian development and homeostasis in different models, such as humans, goats, and rodents.
Collapse
Affiliation(s)
- Maëlle Pannetier
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | | | | | | |
Collapse
|
24
|
Wang Y, Yang Q, Liu W, Yu M, Zhang Z, Cui X. DEHP exposure in utero disturbs sex determination and is potentially linked with precocious puberty in female mice. Toxicol Appl Pharmacol 2016; 307:123-129. [DOI: 10.1016/j.taap.2016.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022]
|
25
|
Grinspon RP, Rey RA. Disorders of Sex Development with Testicular Differentiation in SRY-Negative 46,XX Individuals: Clinical and Genetic Aspects. Sex Dev 2016; 10:1-11. [PMID: 27055195 DOI: 10.1159/000445088] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2015] [Indexed: 11/19/2022] Open
Abstract
Virilisation of the XX foetus is the result of androgen excess, resulting most frequently from congenital adrenal hyperplasia in individuals with typical ovarian differentiation. In rare cases, 46,XX gonads may differentiate into testes, a condition known as 46,XX testicular disorders of sex development (DSD), or give rise to the coexistence of ovarian and testicular tissue, a condition known as 46,XX ovotesticular DSD. Testicular tissue differentiation may be due to the translocation of SRY to the X chromosome or an autosome. In the absence of SRY, overexpression of other pro-testis genes, e.g. SOX family genes, or failure of pro-ovarian/anti-testis genes, such as WNT4 and RSPO1, may underlie the development of testicular tissue. Recent experimental and clinical evidence giving insight into SRY-negative 46,XX testicular or ovotesticular DSD is discussed.
Collapse
Affiliation(s)
- Romina P Grinspon
- Centro de Investigaciones Endocrinolx00F3;gicas x2018;Dr. Cx00E9;sar Bergadx00E1;' (CEDIE), CONICET-FEI-Divisix00F3;n de Endocrinologx00ED;a, Hospital de Nix00F1;os Ricardo Gutix00E9;rrez, Buenos Aires, Argentina
| | | |
Collapse
|
26
|
Abstract
In the female gonad, distinct signalling pathways activate ovarian differentiation while repressing the formation of testes. Human disorders of sex development (DSDs), such as 46,XX DSDs, can arise when this signalling is aberrant. Here we review the current understanding of the genetic mechanisms that control gonadal development, with particular emphasis on those that drive or inhibit ovarian differentiation. We discuss how disruption to these molecular pathways can lead to 46,XX disorders of ovarian development. Finally, we look at recently characterized novel genes and pathways that contribute and speculate how advances in technology will aid in further characterization of normal and disrupted human ovarian development.
Collapse
|