1
|
Huang X, Zhang H, Luo Y, Yi X, Zhou Z, Guo F, Yi L. Lipopolysaccharide-induced active telocyte exosomes alleviate lipopolysaccharide-induced vascular barrier disruption and acute lung injury via the activation of the miRNA-146a-5p/caspase-3 signaling pathway in endothelial cells. BURNS & TRAUMA 2025; 13:tkae074. [PMID: 39811430 PMCID: PMC11732254 DOI: 10.1093/burnst/tkae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/21/2024] [Indexed: 01/16/2025]
Abstract
Background Lipopolysaccharide (LPS)-induced apoptosis of lung microvascular endothelial cells (ECs) is the main reason of lung edema and acute lung injury (ALI) in septic conditions. Telocytes (TCs) are a distinct type of interstitial cells found around the lung microvasculature, which may protect ECs through the release of shed vesicles. However, whether TCs protect against LPS-induced EC apoptosis and ALI has not been determined. Methods The protective effects of TCs on ECs were assessed in vitro using transwell assays and flow cytometry, and in vivo using an LPS-induced mouse ALI model. RNA sequencing was used to identify miRNA-146a-5p as a key component of TC-derived exosomes. The functions of miRNA-146a-5p were further evaluated by western blotting, flow cytometry, and transendothelial electrical resistance measurements. Results We demonstrated that LPS stimulation induced the secretion of active exosomes from TCs, which inhibited LPS-mediated apoptosis of ECs and reduced ALI in mice. Moreover, miRNA-146a-5p was identified as the main bioactive molecule in TC-derived exosomes, capable of inhibiting LPS-induced caspase-3 activation and apoptosis in ECs. Conclusions Our results indicate that TCs effectively prevent LPS-induced EC apoptosis and ALI through the release of exosomes, with subsequent activation of the miRNA-146a-5p/caspase-3 signaling pathway in ECs.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Second Ruijin Road, Huangpu District, Shanghai, 200025, China
| | - Haoran Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yuhong Luo
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Second Ruijin Road, Huangpu District, Shanghai, 200025, China
| | - Xin Yi
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Second Ruijin Road, Huangpu District, Shanghai, 200025, China
| | - Zengding Zhou
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Second Ruijin Road, Huangpu District, Shanghai, 200025, China
| | - Feng Guo
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Xuhui District, Shanghai, 200235, China
| | - Lei Yi
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Second Ruijin Road, Huangpu District, Shanghai, 200025, China
| |
Collapse
|
2
|
Picchio V, Pagano F, Carnevale R, D'Amico A, Cozzolino C, Floris E, Bordin A, Schirone L, Vecchio D, Saade W, Miraldi F, De Falco E, Sciarretta S, Peruzzi M, Biondi-Zoccai G, Frati G, Chimenti I. Exposure to serum from exclusive heated tobacco product smokers induces mTOR activation and fibrotic features in human cardiac stromal cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167350. [PMID: 39002704 DOI: 10.1016/j.bbadis.2024.167350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Chronic smokers have increased risk of fibrosis-related atrial fibrillation. The use of heated-tobacco products (HTPs) is increasing exponentially, and their health impact is still uncertain. We aim to investigate the effects of circulating molecules in exclusive HTP chronic smokers on the fibrotic behavior of human atrial cardiac stromal cells (CSCs). CSCs were isolated from atrial tissue of elective cardiac surgery patients, and exposed to serum lots from young healthy subjects, stratified in exclusive HTP smokers, tobacco combustion cigarette (TCC) smokers, or nonsmokers (NS). CSCs treated with TCC serum displayed impaired migration and increased expression of pro-inflammatory cytokines. Cells cultured with HTP serum showed increased levels of pro-fibrotic markers, and reduced expression of connexin-43. Both TCC and HTP sera increased collagen release and reduced secretion of angiogenic protective factors from CSCs, compared to NS serum. Paracrine support to tube-formation by endothelial cells and to viability of cardiomyocytes was significantly impaired. Treatment with sera of both smokers groups impaired H2O2/NO release balance by CSCs and reduced early phosphorylation of several pathways compared to NS serum, leading to mTOR activation. Cotreatment with rapamycin was able to reduce mTOR phosphorylation and differentiation into aSMA-positive myofibroblasts in CSCs exposed to TCC and HTP sera. In conclusion, the circulating molecules in the serum of chronic exclusive HTP smokers induce fibrotic behavior in CSCs through activation of the mTOR pathway, and reduce their beneficial paracrine effects on endothelial cells and cardiomyocytes. These results point to a potential risk for cardiac fibrosis in chronic HTP users.
Collapse
Affiliation(s)
- Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy; Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), Monterotondo, Italy
| | - Roberto Carnevale
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy; Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Alessandra D'Amico
- Department of Movement, Human, and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Claudia Cozzolino
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Erica Floris
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | | | - Daniele Vecchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Wael Saade
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Fabio Miraldi
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy; Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy; Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Mariangela Peruzzi
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy; Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy; Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy; Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy; Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy.
| |
Collapse
|
3
|
Long M, Cheng M. Small extracellular vesicles associated miRNA in myocardial fibrosis. Biochem Biophys Res Commun 2024; 727:150336. [PMID: 38959731 DOI: 10.1016/j.bbrc.2024.150336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Myocardial fibrosis involves the loss of cardiomyocytes, myocardial fibroblast proliferation, and a reduction in angiogenesis, ultimately leading to heart failure, Given its significant implications, it is crucial to explore novel therapies for myocardial fibrosis. Recently one emerging avenue has been the use of small extracellular vesicles (sEV)-carried miRNA. In this review, we summarize the regulatory role of sEV-carried miRNA in myocardial fibrosis. We explored not only the potential diagnostic value of circulating miRNA as biomarkers for heart disease but also the therapeutic implications of sEV-carried miRNA derived from various cellular sources and applications of modified sEV. This exploration is paramount for researchers striving to develop innovative, cell-free therapies as potential drug candidates for the management of myocardial fibrosis.
Collapse
Affiliation(s)
- Minwen Long
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Anwar I, Wang X, Pratt RE, Dzau VJ, Hodgkinson CP. The impact of aging on cardiac repair and regeneration. J Biol Chem 2024; 300:107682. [PMID: 39159819 PMCID: PMC11414664 DOI: 10.1016/j.jbc.2024.107682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
In contrast to neonates and lower organisms, the adult mammalian heart lacks any capacity to regenerate following injury. The vast majority of our understanding of cardiac regeneration is based on research in young animals. Research in aged individuals is rare. This is unfortunate as aging induces many changes in the heart. The first part of this review covers the main technologies being pursued in the cardiac regeneration field and how they are impacted by the aging processes. The second part of the review covers the significant amount of aging-related research that could be used to aid cardiac regeneration. Finally, a perspective is provided to suggest how cardiac regenerative technologies can be improved by addressing aging-related effects.
Collapse
Affiliation(s)
- Iqra Anwar
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Xinghua Wang
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Richard E Pratt
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Victor J Dzau
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Conrad P Hodgkinson
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
5
|
Imam RAEN, Aboulhoda BE, Amer MM, Hassan FE, Alghamdi MA, Abdel-Hamed MR. Role of mesenchymal stem cells-derived exosomes on inflammation, apoptosis, fibrosis and telocyte modulation in doxorubicin-induced cardiotoxicity: A closer look at the structural level. Microsc Res Tech 2024; 87:1598-1614. [PMID: 38441397 DOI: 10.1002/jemt.24544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/13/2024] [Accepted: 02/23/2024] [Indexed: 06/03/2024]
Abstract
Cardiotoxicity induced by doxorubicin (Dox) is a major complication in cancer patients. Exosomes (Ex) derived from mesenchymal cells could be a promising therapeutic for various heart diseases. This study investigated the role of Ex in Dox-induced cardiotoxicity and its mechanistic insights, using Sacubitril/valsartan (S/V) as a reference drug widely recommended in heart failure management. The study involved 24 Wistar rats, divided into a control, Dox, Dox + S/V, and Dox + Ex groups. The rats were assessed for cardiac enzymes, inflammatory and oxidative stress markers. Immunohistochemical expression of caspase-1, nuclear factor erythroid 2-related factor 2 (NrF2), E-Cadherin, CD117/c-kit, and Platelet-derived growth factor-α (PDGFα) was evaluated. P53 and Annexin V were assessed by PCR. Histological examination was performed using hematoxylin and eosin and Sirius red stains. Ex ameliorated the adverse cardiac pathological changes and significantly decreased the cardiac enzymes and inflammatory and oxidative stress markers. Ex also exerted antifibrotic and antiapoptotic effect in heart tissue. Ex treatment also improved NrF2 immunohistochemistry, up-regulated E-Cadherin immune expression, and restored the telocyte markers CD117/c-kit and PDGFα. Ex can mitigate Dox-induced cardiotoxicity by acting as an anti-inflammatory, antioxidant, antiapoptotic, and antifibrotic agents, restoring telocytes and modulating epithelial mesenchymal transition. RESEARCH HIGHLIGHTS: Exosomes exhibit positive expression for CD90 and CD105 whereas showing -ve expression for CD 34 by flow cytometry. Exosomes restore the immunohistochemical expression of the telocytes markers CD117/c-kit and PDGFα. Exosomes alleviate myocardial apoptosis, oxidative stress and fibrosis.
Collapse
Affiliation(s)
- Reda A El Nasser Imam
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha M Amer
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Fatma E Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
- General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Mansour A Alghamdi
- College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamed R Abdel-Hamed
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Wei X, Li H, Chen T, Yang X. Histological study of telocytes in mice intrauterine adhesion model and their positive effect on mesenchymal stem cells in vitro. Cell Biol Int 2024; 48:647-664. [PMID: 38353345 DOI: 10.1002/cbin.12137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/31/2023] [Accepted: 01/28/2024] [Indexed: 04/16/2024]
Abstract
Intrauterine adhesions (IUA), the main cause of secondary infertility in women, result from irreversible fibrotic repair of the endometrium due to inflammation or human factors, accompanied by disruptions in the repair function of endometrial stem cells. This significantly impacts the physical and mental health of women in their childbearing years. Telocytes (TCs), a distinctive type of interstitial cells found in various tissues and organs, play diverse repair functions due to their unique spatial structure. In this study, we conduct the inaugural exploration of the changes in TCs in IUA disease and their potential impact on the function of stem cells. Our results show that in vivo, through double immunofluorescence staining (CD34+/Vimentin+; CD34+/CD31-), as endometrial fibrosis deepens, the number of TCs gradually decreases, telopodes shorten, and the three-dimensional structure becomes disrupted in the mouse IUA mode. In vitro, TCs can promote the proliferation and cycle of bone mesenchymal stem cells (BMSCs) by promoting the Wnt/β-catenin signaling pathway, which were inhibited using XAV939. TCs can promote the migrated ability of BMSCs and contribute to the repair of stem cells during endometrial injury. In addition, TCs can inhibit the apoptosis of BMSCs through the Bcl-2/Bax pathway. In conclusion, our study demonstrates, for the first time, the resistance role of TCs in IUA disease, shedding light on their potential involvement in endometrial repair through the modulation of stem cell function.
Collapse
Affiliation(s)
- Xiaojiao Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, People's Republic of China
| | - Hui Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, People's Republic of China
| | - Tianquan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, People's Republic of China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People's Republic of China
| | - Xiaojun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, People's Republic of China
| |
Collapse
|
7
|
Borges LF, Falcão RSP, Taboga SR, Gutierrez PS, Michel JB. Are telocytes related to maintenance of vascular homeostasis in normal and pathological aorta? Cardiovasc Pathol 2024; 70:107617. [PMID: 38309490 DOI: 10.1016/j.carpath.2024.107617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
The telocyte (TC) is a new interstitial cell type described in a wide variety of organs and loose connective tissues around small vessels, but its presence in large arteries remains unexplored. TCs have small cell bodies and remarkably thin, long, moniliform processes called telopods (Tps). Using transmission electron microscopy and immunofluorescence, we identified TCs in normal human thoracic aortas and in those with aneurysm or acute dissection (TAAD). In normal aortas the TCs were distributed throughout the connective tissue of the adventitial layer, in its innermost portion and at the zone of transition with the medial layer, with their long axes oriented parallel to the external elastic lamellae, forming a three-dimensional network, without prevalence in the media layer. In contrast, TAAD TCs were present in the medial layer and in regions of neovascularization. The most important feature of the adventitia of diseased aortas was the presence of numerous contacts between TCs and stem cells, including vascular progenitor cells. Although the biologically functional correlations need to be elucidated, the morphological observations presented here provide strong evidence of the involvement of TCs in maintaining vascular homeostasis in pathological situations of tissue injury.
Collapse
Affiliation(s)
- Luciano Figueiredo Borges
- Morphophysiology & Pathology Sector, Biological Sciences Department, Federal University of São Paulo, Diadema, SP, Brazil.
| | | | | | | | | |
Collapse
|
8
|
Borges LF, Manetti M. Telocytes and Stem Cells. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:305-337. [DOI: 10.1016/b978-0-443-15289-4.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Choobineh S, Borjian Fard M, Soori R, Mazaheri Z. Telocytes response to cardiac growth induced by resistance exercise training and endurance exercise training in adult male rats. J Physiol Sci 2023; 73:12. [PMID: 37301825 DOI: 10.1186/s12576-023-00868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/18/2023] [Indexed: 06/12/2023]
Abstract
Telocytes are interstitial cells found in different tissues, including cardiac stem cell niches. The purpose of this study was to investigate the response of the telocytes to the cardiac growth that occurs in response to resistance and endurance exercise trainings using rats distributed into control, endurance, and resistance training groups. Results revealed that the ratio of heart weight to body weight, cardiomycyte number, cardiomyocyte area, thickness of the left ventricular wall were significantly higher in the training groups compared to the control group. We observed increment in the cardiomyocytes surface area and thickness of the left ventricular wall in the resistance-training group than endurance-training group. We conclude that both resistance and endurance exercise trainings will lead to an increased number of cardiac telocytes, consequently, promote activity of the cardiac stem cells, and results in physiological cardiac growth, and this response does not seem to depend on the type of exercise.
Collapse
Affiliation(s)
- Siroos Choobineh
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran
| | - Mahboobeh Borjian Fard
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran.
| | - Rahman Soori
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| |
Collapse
|
10
|
Tang L, Song D, Qi R, Zhu B, Wang X. Roles of pulmonary telocytes in airway epithelia to benefit experimental acute lung injury through production of telocyte-driven mediators and exosomes. Cell Biol Toxicol 2023; 39:451-465. [PMID: 34978009 PMCID: PMC8720540 DOI: 10.1007/s10565-021-09670-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Telocytes (TCs) are experimentally evidenced as an alternative of cell therapies for organ tissue injury and repair. The aims of the present studies are to explore direct roles of TCs and the roles of TC-derived exosomes in support of experimental acute lung injury (ALI) in vivo or in vitro. MATERIALS AND METHODS The roles of TCs in experimental ALI were firstly estimated. Phosphoinositide 3-kinase (PI3K) p110δ and α/δ/β isoform inhibitors were used in study dynamic alterations of bio-behaviors, and in expression of functional factors of TCs per se and TC-co-cultured airway epithelial cells during the activation with lipopolysaccharide (LPS). TC-driven exosomes were furthermore characterized for intercellular communication by which activated or non-activated TCs interacted with epithelia. RESULTS Our results showed that TCs mainly prevented from lung tissue edema and hemorrhage and decreased the levels of VEGF-A and MMP9 induced by LPS. Treatment with CAL101 (PI3K p110δ inhibitor) and LY294002 (PI3Kα/δ/β inhibitor) could inhibit TC movement and differentiation and increase the number of dead TCs. The expression of Mtor, Hif1α, Vegf-a, or Mmp9 mRNA increased in TCs challenged with LPS, while Mtor, Hif1α, and Vegf-a even more increased after adding CAL101 or Mtor after adding LY. The rate of epithelial cell proliferation was higher in co-culture of human bronchial epithelial (HBE) and TCs than that in HBE alone under conditions with or without LPS challenge or when cells were treated with LPS and CAL101 or LY294002. The levels of mTOR, HIF1α, or VEGF-A significantly increased in mono-cultured or co-cultured cells, challenged with LPS as compared with those with vehicle. LPS-pretreated TC-derived exosomes upregulated the expression of AKT, p-AKT, HIF1α, and VEGF-A protein of HBE. CONCLUSION The present study demonstrated that intraperitoneal administration of TCs ameliorated the severity of lung tissue edema accompanied by elevated expression of VEGF-A. TCs could nourish airway epithelial cells through nutrients produced from TCs, increasing epithelial cell proliferation, and differentiation as well as cell sensitivity to LPS challenge and PI3K p110δ and α/δ/β inhibitors, partially through exosomes released from TCs.
Collapse
Affiliation(s)
- Li Tang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China
| | - Dongli Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China.
| | - Ruixue Qi
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China
| | - Bijun Zhu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
11
|
Chen TQ, Wei XJ, Liu HY, Zhan SH, Yang XJ. Telocyte-Derived Exosomes Provide an Important Source of Wnts That Inhibits Fibrosis and Supports Regeneration and Repair of Endometrium. Cell Transplant 2023; 32:9636897231212746. [PMID: 38006220 PMCID: PMC10676634 DOI: 10.1177/09636897231212746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Intrauterine adhesions (IUAs) often occurred after common obstetrical and gynecological procedures or infections in women of reproductive age. It was characterized by the formation of endometrial fibrosis and prevention of endometrial regeneration, usually with devastating fertility consequences and poor treatment outcomes so far. Telocytes (TCs), as a novel interstitial cell type, present in female uterus with in vitro therapeutic potential in decidualization-defective gynecologic diseases. This study aims to further investigate the role of TC-derived Wnt ligands carried by exosomes (Exo) in reversal of fibrosis and enhancement of regeneration repair in endometrium. IUA cellular and animal models were established from endometrial stromal cells (ESCs) and mice, followed with treatment of TC-conditioned medium (TCM) or TC-derived Exo. In cellular model, fibrosis markers (collagen type 1 alpha 1 [COL1A1], fibronectin [FN], and α-smooth muscle actin [α-SMA]), angiogenesis (vascular endothelial growth factor [VEGF]), and pathway protein (β-catenin) were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting (WB), and immunofluorescence. Results showed that, TCs (either TCM or TC-derived Exo) provide a source of Wnts that inhibit cellular fibrosis, as evidenced by significantly elevated VEGF and β-catenin with decreased fibrotic markers, whereas TCs lost salvage on fibrosis after being blocked with Wnt/β-catenin inhibitors (XAV939 or ETC-159). Further in mouse model, regeneration repair (endometrial thickness, number of glands, and fibrosis area ratio), fibrosis markers (fibronectin [FN]), mesenchymal-epithelial transition (MET) (E-cadherin, N-cadherin), and angiogenesis (VEGF, microvessel density [MVD]) were studied by hematoxylin-eosin (HE), Masson staining, and immunohistochemistry. Results demonstrated that TC-Exo treatment effectively promotes regeneration repair of endometrium by relieving fibrosis, enhancing MET, and angiogenesis. These results confirmed new evidence for therapeutic perspective of TC-derived Exo in IUAs.
Collapse
Affiliation(s)
- Tian-Quan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiao-Jiao Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hai-Yan Liu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Sheng-Hua Zhan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Csöbönyeiová M, Beerová N, Klein M, Debreová-Čeháková M, Danišovič Ľ. Cell-Based and Selected Cell-Free Therapies for Myocardial Infarction: How Do They Compare to the Current Treatment Options? Int J Mol Sci 2022; 23:10314. [PMID: 36142245 PMCID: PMC9499607 DOI: 10.3390/ijms231810314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Because of cardiomyocyte death or dysfunction frequently caused by myocardial infarction (MI), heart failure is a leading cause of morbidity and mortality in modern society. Paradoxically, only limited and non-curative therapies for heart failure or MI are currently available. As a result, over the past two decades research has focused on developing cell-based approaches promoting the regeneration of infarcted tissue. Cell-based therapies for myocardial regeneration include powerful candidates, such as multipotent stem cells (mesenchymal stem cells (MSCs), bone-marrow-derived stem cells, endothelial progenitor cells, and hematopoietic stem cells) and induced pluripotent stem cells (iPSCs). These possess unique properties, such as potency to differentiate into desired cell types, proliferation capacity, and patient specificity. Preclinical and clinical studies have demonstrated modest improvement in the myocardial regeneration and reduced infarcted areas upon transplantation of pluripotent or multipotent stem cells. Another cell population that need to be considered as a potential source for cardiac regeneration are telocytes found in different organs, including the heart. Their therapeutic effect has been studied in various heart pathologies, such as MI, arrhythmias, or atrial amyloidosis. The most recent cell-free therapeutic tool relies on the cardioprotective effect of complex cargo carried by small membrane-bound vesicles-exosomes-released from stem cells via exocytosis. The MSC/iPSC-derived exosomes could be considered a novel exosome-based therapy for cardiovascular diseases thanks to their unique content. There are also other cell-free approaches, e.g., gene therapy, or acellular cardiac patches. Therefore, our review provides the most recent insights into the novel strategies for myocardial repair based on the regenerative potential of different cell types and cell-free approaches.
Collapse
Affiliation(s)
- Mária Csöbönyeiová
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Nikoleta Beerová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Martin Klein
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Michaela Debreová-Čeháková
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ľuboš Danišovič
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
13
|
The Mechanism of Wnt Pathway Regulated by Telocytes to Promote the Regeneration and Repair of Intrauterine Adhesions. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3809792. [PMID: 35844454 PMCID: PMC9279088 DOI: 10.1155/2022/3809792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022]
Abstract
Background Telocytes (TCs), a novel interstitial cell type in the reproductive tract, participating in pathophysiology of intrauterine adhesions (IUA). This study further investigates the hypothesis that TCs, a source of Wnt, promote the regeneration and repair of IUA. Methods RNA sequencing datasets of IUA patient (GSE160633) and mouse intestine mesenchymal cells (GSE94072) in GEO database were analyzed for differentially expressed genes (DEGs), and quantitative real-time PCR (qRT-PCR) measured indicated gene expression in TC-educated endometrial stromal cells (ESCs) and noneducated ESCs and verified the results of data mining from GEO database. Results The expression levels of Wnt genes were downregulated in IUA compared to the control and were upregulated in TCs. In particular, the changes of Wnt5a expression level were the most significant (logFC = 4.0314 and adjusted P value = 0.0023), and the relative Wnt5a expression level was remarkably higher in TC-educated ESCs than noneducated ESCs verified by qRT-PCR (P = 0.0027). Conclusions TCs may enhance the regeneration and repair of IUA through the Wnt signaling pathway.
Collapse
|
14
|
Hiroshige T, Uemura KI, Hirashima S, Togo A, Ohta K, Nakamura KI, Igawa T. Three-dimensional analysis of interstitial cells in the lamina propria of the murine vas deferens by confocal laser scanning microscopy and FIB/SEM. Sci Rep 2022; 12:9484. [PMID: 35676513 PMCID: PMC9177838 DOI: 10.1038/s41598-022-13245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
The present study aimed to explore the three-dimensional (3D) ultrastructure of interstitial cells (ICs) within the lamina propria of the murine vas deferens and the spatial relationships between epithelial cells and surrounding cells. Focused ion beam scanning electron microscopy and confocal laser scanning microscopy were performed. ICs within the lamina propria had a flat, sheet-like structure of cytoplasm with multiple cellular processes. In addition, two types of 3D structures that comprised cell processes of flat, sheet-like ICs were observed: one was an accordion fold-like structure and the other was a rod-shaped structure. ICs were located parallel to the epithelium and were connected to each other via gap junctions or adherens junctions. Moreover, multiple sphere-shaped extracellular vesicle-like structures were frequently observed around the ICs. The ICs formed a complex 3D network comprising sheet-like cytoplasm and multiple cell processes with different 3D structures. From this morphological study, we noted that ICs within the lamina propria of murine vas deferens may be involved in signal transmission between the epithelium and smooth muscle cells by physical interaction and by exchanging extracellular vesicles.
Collapse
Affiliation(s)
- Tasuku Hiroshige
- Department of Urology, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Kei-Ichiro Uemura
- Department of Urology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Shingo Hirashima
- Division Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Keisuke Ohta
- Division Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan.,Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Kei-Ichiro Nakamura
- Cognitive and Molecular Research Institute of Brain Diseases, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Tsukasa Igawa
- Department of Urology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| |
Collapse
|
15
|
Cucu I, Nicolescu MI, Busnatu ȘS, Manole CG. Dynamic Involvement of Telocytes in Modulating Multiple Signaling Pathways in Cardiac Cytoarchitecture. Int J Mol Sci 2022; 23:5769. [PMID: 35628576 PMCID: PMC9143034 DOI: 10.3390/ijms23105769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022] Open
Abstract
Cardiac interstitium is a complex and dynamic environment, vital for normal cardiac structure and function. Telocytes are active cellular players in regulating main events that feature myocardial homeostasis and orchestrating its involvement in heart pathology. Despite the great amount of data suggesting (microscopically, proteomically, genetically, etc.) the implications of telocytes in the different physiological and reparatory/regenerative processes of the heart, understanding their involvement in realizing the heart's mature cytoarchitecture is still at its dawn. Our scrutiny of the recent literature gave clearer insights into the implications of telocytes in the WNT signaling pathway, but also TGFB and PI3K/AKT pathways that, inter alia, conduct cardiomyocytes differentiation, maturation and final integration into heart adult architecture. These data also strengthen evidence for telocytes as promising candidates for cellular therapies in various heart pathologies.
Collapse
Affiliation(s)
- Ioana Cucu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Ștefan-Sebastian Busnatu
- Department of Cardiology-“Bagdasar Arseni” Emergency Clinical Hospital, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 041915 Bucharest, Romania
| | - Cătălin Gabriel Manole
- Department of Cellular & Molecular Biology and Histology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Laboratory of Ultrastructural Pathology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
16
|
Wei XJ, Chen TQ, Yang XJ. Telocytes in Fibrosis Diseases: From Current Findings to Future Clinical Perspectives. Cell Transplant 2022; 31:9636897221105252. [PMID: 35748420 PMCID: PMC9235300 DOI: 10.1177/09636897221105252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Telocytes (TCs), a distinct type of interstitial (stromal) cells, have been discovered in many organs of human and mammal animals. TCs, which have unique morphological characteristics and abundant paracrine substance, construct a three-dimensional (3D) interstitial network within the stromal compartment by homocellular and heterocellular communications which are important for tissue homeostasis and normal development. Fibrosis-related diseases remain a common but challenging problem in the field of medicine with unclear pathogenesis and limited therapeutic options. Recently, increasing evidences suggest that where TCs are morphologically or numerically destructed, many diseases continuously develop, finally lead to irreversible interstitial fibrosis. It is not difficult to find that TCs are associated with chronic inflammation and fibrosis. This review mainly discusses relationship between TCs and the occurrence of fibrosis in various diseases. We analyzed in detail the potential roles and speculated mechanisms of TCs in onset and progression of systemic fibrosis diseases, as well as providing the most up-to-date research on the current therapeutic roles of TCs and involved related pathways. Only through continuous research and exploration in the future can we uncover its magic veil and provide strategies for treatment of fibrosis-related disease.
Collapse
Affiliation(s)
- Xiao-jiao Wei
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| | - Tian-quan Chen
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| | - Xiao-jun Yang
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| |
Collapse
|
17
|
MicroRNAs and exosomes: Cardiac stem cells in heart diseases. Pathol Res Pract 2021; 229:153701. [PMID: 34872024 DOI: 10.1016/j.prp.2021.153701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Treating cardiovascular diseases with cardiac stem cells (CSCs) is a valid treatment among various stem cell-based therapies. With supplying the physiological need for cardiovascular cells as their main function, under pathological circumstances, CSCs can also reproduce the myocardial cells. Although studies have identified many of CSCs' functions, our knowledge of molecular pathways that regulate these functions is not complete enough. Either physiological or pathological studies have shown, stem cells proliferation and differentiation could be regulated by microRNAs (miRNAs). How miRNAs regulate CSC behavior is an interesting area of research that can help us study and control the function of these cells in vitro; an achievement that may be beneficial for patients with cardiovascular diseases. The secretome of stem and progenitor cells has been studied and it has been determined that exosomes are the main source of their secretion which are very small vesicles at the nanoscale and originate from endosomes, which are secreted into the extracellular space and act as key signaling organelles in intercellular communication. Mesenchymal stem cells, cardiac-derived progenitor cells, embryonic stem cells, induced pluripotent stem cells (iPSCs), and iPSC-derived cardiomyocytes release exosomes that have been shown to have cardioprotective, immunomodulatory, and reparative effects. Herein, we summarize the regulation roles of miRNAs and exosomes in cardiac stem cells.
Collapse
|
18
|
Cardiac Telocytes 16 Years on-What Have We Learned So Far, and How Close Are We to Routine Application of the Knowledge in Cardiovascular Regenerative Medicine? Int J Mol Sci 2021; 22:ijms222010942. [PMID: 34681601 PMCID: PMC8535888 DOI: 10.3390/ijms222010942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
The regeneration of a diseased heart is one of the principal challenges of modern cardiovascular medicine. There has been ongoing research on stem-cell-based therapeutic approaches. A cell population called telocytes (TCs) described only 16 years ago largely contributed to the research area of cardiovascular regeneration. TCs are cells with small bodies and extremely long cytoplasmic projections called telopodes, described in all layers of the heart wall. Their functions include cell-to-cell signaling, stem-cell nursing, mechanical support, and immunoregulation, to name but a few. The functional derangement or quantitative loss of TCs has been implicated in the pathogenesis of myocardial infarction, heart failure, arrhythmias, and many other conditions. The exact pathomechanisms are still unknown, but the loss of regulative, integrative, and nursing functions of TCs may provide important clues. Therefore, a viable avenue in the future modern management of these conditions is TC-based cell therapy. TCs have been previously transplanted into a mouse model of myocardial infarction with promising results. Tandem transplantation with stem cells may provide additional benefit; however, many underresearched areas need to be addressed in future research before routine application of TC-based cell therapy in human subjects. These include the standardization of protocols for isolation, cultivation, and transplantation, quantitative optimization of TC transplants, cost-effectivity analysis, and many others.
Collapse
|
19
|
Cimini M, Kishore R. Role of Podoplanin-Positive Cells in Cardiac Fibrosis and Angiogenesis After Ischemia. Front Physiol 2021; 12:667278. [PMID: 33912076 PMCID: PMC8072458 DOI: 10.3389/fphys.2021.667278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 01/05/2023] Open
Abstract
New insights into the cellular and extra-cellular composition of scar tissue after myocardial infarction (MI) have been identified. Recently, a heterogeneous podoplanin-expressing cell population has been associated with fibrogenic and inflammatory responses and lymphatic vessel growth during scar formation. Podoplanin is a mucin-like transmembrane glycoprotein that plays an important role in heart development, cell motility, tumorigenesis, and metastasis. In the adult mouse heart, podoplanin is expressed only by cardiac lymphatic endothelial cells; after MI, it is acquired with an unexpected heterogeneity by PDGFRα-, PDGFRβ-, and CD34-positive cells. Podoplanin may therefore represent a sign of activation of a cohort of progenitor cells during different phases of post-ischemic myocardial wound repair. Podoplanin binds to C-type lectin-like receptor 2 (CLEC-2) which is exclusively expressed by platelets and a variety of immune cells. CLEC-2 is upregulated in CD11bhigh cells, including monocytes and macrophages, following inflammatory stimuli. We recently published that inhibition of the interaction between podoplanin-expressing cells and podoplanin-binding cells using podoplanin-neutralizing antibodies reduces but does not fully suppress inflammation post-MI while improving heart function and scar composition after ischemic injury. These data support an emerging and alternative mechanism of interactome in the heart that, when neutralized, leads to altered inflammatory response and preservation of cardiac function and structure. The overarching objective of this review is to assimilate and discuss the available evidence on the functional role of podoplanin-positive cells on cardiac fibrosis and remodeling. A detailed characterization of cell-to-cell interactions and paracrine signals between podoplanin-expressing cells and the other type of cells that compose the heart tissue is needed to open a new line of investigation extending beyond the known function of these cells. This review attempts to discuss the role and biology of podoplanin-positive cells in the context of cardiac injury, repair, and remodeling.
Collapse
Affiliation(s)
- Maria Cimini
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
20
|
Condrat CE, Barbu MG, Thompson DC, Dănilă CA, Boboc AE, Suciu N, Crețoiu D, Voinea SC. Roles and distribution of telocytes in tissue organization in health and disease. TISSUE BARRIERS IN DISEASE, INJURY AND REGENERATION 2021:1-41. [DOI: 10.1016/b978-0-12-818561-2.00001-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Myotendinous junction adaptations to ladder-based resistance training: identification of a new telocyte niche. Sci Rep 2020; 10:14124. [PMID: 32839490 PMCID: PMC7445244 DOI: 10.1038/s41598-020-70971-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
The present study shows chronic adjustments in the myotendinous junction (MTJ) in response to different ladder-based resistance training (LRT) protocols. Thirty adult male Wistar rats were divided into groups: sedentary (S), calisthenics (LRT without additional load [C]), and resistance-trained (LRT with extra weight [R]). We demonstrated longer lengths of sarcoplasmatic invaginations in the trained groups; however, evaginations were seen mainly in group R. We showed a greater thickness of sarcoplasmatic invaginations in groups C and R, in addition to greater evaginations in R. We also observed thinner basal lamina in trained groups. The support collagen layer (SCL) adjacent to the MTJ and the diameters of the transverse fibrils were larger in R. We also discovered a niche of telocytes in the MTJ with electron micrographs of the plantar muscle and with immunostaining with CD34+ in the gastrocnemius muscle near the blood vessels and pericytes. We concluded that the continuous adjustments in the MTJ ultrastructure were the result of tissue plasticity induced by LRT, which is causally related to muscle hypertrophy and, consequently, to the remodeling of the contact interface. Also, we reveal the existence of a collagen layer adjacent to MTJ and discover a new micro anatomic location of telocytes.
Collapse
|
22
|
Xu MY, Ye ZS, Song XT, Huang RC. Differences in the cargos and functions of exosomes derived from six cardiac cell types: a systematic review. Stem Cell Res Ther 2019; 10:194. [PMID: 31248454 PMCID: PMC6598249 DOI: 10.1186/s13287-019-1297-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exosomes are bilayer membrane vesicles with cargos that contain a variety of surface proteins, markers, lipids, nucleic acids, and noncoding RNAs. Exosomes from different cardiac cells participate in the processes of cell migration, proliferation, apoptosis, hypertrophy, and regeneration, as well as angiogenesis and enhanced cardiac function, which accelerate cardiac repair. In this article, we mainly focused on the exosomes from six main types of cardiac cells, i.e., fibroblasts, cardiomyocytes, endothelial cells, cardiac progenitor cells, adipocytes, and cardiac telocytes. This may be the first article to describe the commonalities and differences in regard to the function and underlying mechanisms of exosomes among six cardiac cell types in cardiovascular disease.
Collapse
Affiliation(s)
- Ming-Yue Xu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, People's Republic of China
| | - Zhi-Shuai Ye
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95th Yong An Road, Xuan Wu District, Beijing, 100050, People's Republic of China
| | - Xian-Tao Song
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Disease, Capital Medical University, 2 Anzhen Road, Beijing, 100029, People's Republic of China
| | - Rong-Chong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95th Yong An Road, Xuan Wu District, Beijing, 100050, People's Republic of China.
| |
Collapse
|
23
|
Ge T, Ye Y, Zhang H. Ultrastructure of telocytes, a new type of interstitial cells in the myocardium of the Chinese giant salamander (Andrias davidianus). Eur J Histochem 2019; 63. [PMID: 31122004 PMCID: PMC6536913 DOI: 10.4081/ejh.2019.3021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Telocytes (TCs) are new interstitial cells, and they are involved in tissue regeneration, particularly in heart. Therefore, TCs are suggested to be promising cells in regenerative medicine. However, the information of location structural characteristics and functions of TCs is still limited. In this study, cardiac TCs of the Chinese giant salamanders (Andrias davidianus) were identified by transmission electron microscopy. TCs were located in the interstitium between cardiomyocytes (CM). TCs possessed distinctive ultrastructural characteristics, including one to two very long and thin moniliform telopodes (Tps), emerging points from the cell body, caveolae, dichotomous branchings, labyrinthic systems, neighbouring exosomes and homocellular contacts between Tps. TCs/Tps were frequently observed in close proximity to cardiomyocytes. Moreover, Tps established hetero-cellular contacts with cardiomyocytes. Our results confirm the presence of TCs in the myocardium of the A. davidianus. This will help us to better understand roles of TCs in amphibian hearts.
Collapse
Affiliation(s)
- Tingting Ge
- College of Life Science and Engineering, Foshan University; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang.
| | | | | |
Collapse
|
24
|
Psarras S, Beis D, Nikouli S, Tsikitis M, Capetanaki Y. Three in a Box: Understanding Cardiomyocyte, Fibroblast, and Innate Immune Cell Interactions to Orchestrate Cardiac Repair Processes. Front Cardiovasc Med 2019; 6:32. [PMID: 31001541 PMCID: PMC6454035 DOI: 10.3389/fcvm.2019.00032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Following an insult by both intrinsic and extrinsic pathways, complex cellular, and molecular interactions determine a successful recovery or inadequate repair of damaged tissue. The efficiency of this process is particularly important in the heart, an organ characterized by very limited regenerative and repair capacity in higher adult vertebrates. Cardiac insult is characteristically associated with fibrosis and heart failure, as a result of cardiomyocyte death, myocardial degeneration, and adverse remodeling. Recent evidence implies that resident non-cardiomyocytes, fibroblasts but also macrophages -pillars of the innate immunity- form part of the inflammatory response and decisively affect the repair process following a cardiac insult. Multiple studies in model organisms (mouse, zebrafish) of various developmental stages (adult and neonatal) combined with genetically engineered cell plasticity and differentiation intervention protocols -mainly targeting cardiac fibroblasts or progenitor cells-reveal particular roles of resident and recruited innate immune cells and their secretome in the coordination of cardiac repair. The interplay of innate immune cells with cardiac fibroblasts and cardiomyocytes is emerging as a crucial platform to help our understanding and, importantly, to allow the development of effective interventions sufficient to minimize cardiac damage and dysfunction after injury.
Collapse
Affiliation(s)
- Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitris Beis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Sofia Nikouli
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Mary Tsikitis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
25
|
Awad M, Ghanem ME. Localization of telocytes in rabbits testis: Histological and immunohistochemical approach. Microsc Res Tech 2018; 81:1268-1274. [PMID: 30351479 DOI: 10.1002/jemt.23133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/06/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022]
Abstract
Telocyte (TC) is an interesting unique interstitial cell demonstrated in many human and animal tissues and organs. This study verified, for the first time, the pattern of TC distribution in the testicular tissue of New Zealand White rabbits using histological, immunohistochemical, and electron microscopic tools. Rabbit testicular tissue samples were obtained from three pairs of adult healthy New Zealand white rabbit by surgical procedures. The testicular tissues were stained with hematoxyline-eosin, Crossmon's trichrome and Periodic acid Schiff. The immunohistochemistry was performed using three different antibodies CD34, CD117, and vimentin. The testes were examined by scanning and transmission electron microscopy. Histologically, TCs formed a sheath surrounding the seminiferous tubules. Other TCs were located in the interstitial tissue of the rabbit testis. Immunohistochemically, TCs reacted strongly with CD34, CD117, and vimentin. Scanning electron microscopic findings clearly elucidated the spreading pattern of TCs and their cytoplasmic processes with the interstitial tissue including blood vessels. Both homocellular and heterocellular junctions were demonstrated by transmission electron microscope. On the basis of TCs distribution and connections, the before mentioned data suggested that, TCs may play a potential role in maintaining the testicular construction and regulation. A future work is needed to clarify the actual role played by TCs in monitoring testicular fertility. RESEARCH HIGHLIGHTS: Telocyte (TC) is a unique cell demonstrated in human and animal tissues. TCs formed a sheath surrounding the seminiferous tubules in rabbits and may be located in interstitial tissue. Immunohistochemically, TCs reacted strongly with CD34 and CD117.
Collapse
Affiliation(s)
- Mahmoud Awad
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Mohamed Elshabrawy Ghanem
- Department of Theriogenology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
26
|
Yuan Y, Du W, Liu J, Ma W, Zhang L, Du Z, Cai B. Stem Cell-Derived Exosome in Cardiovascular Diseases: Macro Roles of Micro Particles. Front Pharmacol 2018; 9:547. [PMID: 29904347 PMCID: PMC5991072 DOI: 10.3389/fphar.2018.00547] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022] Open
Abstract
The stem cell-based therapy has emerged as the promising therapeutic strategies for cardiovascular diseases (CVDs). Recently, increasing evidence suggest stem cell-derived active exosomes are important communicators among cells in the heart via delivering specific substances to the adjacent/distant target cells. These exosomes and their contents such as certain proteins, miRNAs and lncRNAs exhibit huge beneficial effects on preventing heart damage and promoting cardiac repair. More importantly, stem cell-derived exosomes are more effective and safer than stem cell transplantation. Therefore, administration of stem cell-derived exosomes will expectantly be an alternative stem cell-based therapy for the treatment of CVDs. Furthermore, modification of stem cell-derived exosomes or artificial synthesis of exosomes will be the new therapeutic tools for CVDs in the future. In addition, stem cell-derived exosomes also have been implicated in the diagnosis and prognosis of CVDs. In this review, we summarize the current advances of stem cell-derived exosome-based treatment and prognosis for CVDs, including their potential benefits, underlying mechanisms and limitations, which will provide novel insights of exosomes as a new tool in clinical therapeutic translation in the future.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Weijie Du
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaqi Liu
- Department of Pharmacology, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China
| | - Wenya Ma
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lai Zhang
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhimin Du
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Benzhi Cai
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
27
|
Varga I, Kyselovič J, Galfiova P, Danisovic L. The Non-cardiomyocyte Cells of the Heart. Their Possible Roles in Exercise-Induced Cardiac Regeneration and Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 999:117-136. [PMID: 29022261 DOI: 10.1007/978-981-10-4307-9_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The non-cardiomyocyte cellular microenvironment of the heart includes diverse types of cells of mesenchymal origin. During development, the majority of these cells derive from the epicardium, while a subset derives from the endothelium/endocardium and neural crest derived mesenchyme. This subset includes cardiac fibroblasts and telocytes, the latter of which are a controversial type of "connecting cell" that support resident cardiac progenitors in the postnatal heart. Smooth muscle cells, pericytes, and endothelial cells are also present, in addition to adipocytes, which accumulate as epicardial adipose connective tissue. Furthermore, the heart harbors many cells of hematopoietic origin, such as mast cells, macrophages, and other immune cell populations. Most of these control immune reactions and inflammation. All of the above-mentioned non-cardiomyocyte cells of the heart contribute to this organ's well-orchestrated physiology. These cells also contribute to regeneration as a result of injury or age, in addition to tissue remodeling triggered by chronic disease or increased physical activity (exercise-induced cardiac growth). These processes in the heart, the most important vital organ in the human body, are not only fascinating from a scientific standpoint, but they are also clinically important. It is well-known that regular exercise can help prevent many cardiovascular diseases. However, the precise mechanisms underpinning myocardial remodeling triggered by physical activity are still unknown. Surprisingly, exercise-induced adaptation mechanisms are often identical or very similar to tissue remodeling caused by pathological conditions, such as hypertension, cardiac hypertrophy, and cardiac fibrosis. This review provides a summary of our current knowledge regarding the cardiac cellular microenvironment, focusing on the clinical applications this information to the study of heart remodeling during regular physical exercise.
Collapse
Affiliation(s)
- Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| | - Jan Kyselovič
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Paulina Galfiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
28
|
Marini M, Ibba-Manneschi L, Manetti M. Cardiac Telocyte-Derived Exosomes and Their Possible Implications in Cardiovascular Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 998:237-254. [PMID: 28936744 DOI: 10.1007/978-981-10-4397-0_16] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Among cardiac interstitial cells, the recently described telocytes (TCs) display the unique ability to build a supportive three-dimensional network formed by their very long and thin prolongations named telopodes. Cardiac TCs are increasingly regarded as pivotal regulators in intercellular signaling with multiple cell types, such as cardiomyocytes, stem/progenitor cells, microvessels, nerve endings, fibroblasts and immune cells, thus converting the cardiac stromal compartment into an integrated system that may drive either heart development or maintenance of cardiac homeostasis in post-natal life. Besides direct intercellular communications between TCs and neighboring cells, different types of TC-released extracellular vesicles (EVs), namely exosomes, ectosomes and multivesicular cargos, may act as shuttles for paracrine molecular signal exchange between cardiac TCs and cardiomyocytes or putative cardiomyocyte progenitors. In this review, we summarize the recent research findings on cardiac TCs and their EVs. We first provide an overview of the general features of TCs, including their peculiar morphological traits and immunophenotypes, intercellular signaling mechanisms and possible functional roles. Thereafter, we describe the distribution of TCs in normal and diseased hearts, as well as their role as intercellular communicators via the release of exosomes and other types of EVs. Finally, the involvement of cardiac TCs in cardiovascular diseases and the potential utility of TC transplantation and TC-derived exosomes in cardiac regeneration and repair are discussed.
Collapse
Affiliation(s)
- Mirca Marini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence, 50134, Italy
| | - Lidia Ibba-Manneschi
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence, 50134, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence, 50134, Italy.
| |
Collapse
|
29
|
Tay H, Vandecasteele T, Van den Broeck W. Identification of telocytes in the porcine heart. Anat Histol Embryol 2017; 46:519-527. [PMID: 28884484 DOI: 10.1111/ahe.12296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 12/11/2022]
Abstract
Recently, a new interstitial cell type called telocyte has been identified. Telocytes are found in many organs including the heart, where they are especially well described. However, their presence in the porcine heart has not yet been proven. The pig is a valuable animal model in research because of its resemblance with man, making it interesting to determine whether telocytes can be found in pigs as well. The focus of this study is the identification and ultrastructural description of telocytes in the heart tissue of pig. Using transmission electron microscopy, telocytes were found in both left and right atrium and ventricle, usually close to cardiomyocytes and/or blood vessels. Their most important characteristic is the long cytoplasmic processes called telopodes, which have a moniliform aspect, measure tens of μm and usually have a thickness below 0.2 μm. This unique morphological feature enables telocytes to be recognized from other interstitial cells such as fibroblasts. Additional observations include the ability to release extracellular vesicles and to make contacts with other structures such as endothelial cells, suggesting a role in intercellular communication.
Collapse
Affiliation(s)
- H Tay
- Faculty of Veterinary Medicine, Department of Morphology, Ghent University, Merelbeke, Belgium
| | - T Vandecasteele
- Faculty of Veterinary Medicine, Department of Morphology, Ghent University, Merelbeke, Belgium
| | - W Van den Broeck
- Faculty of Veterinary Medicine, Department of Morphology, Ghent University, Merelbeke, Belgium
| |
Collapse
|
30
|
Ye L, Song D, Jin M, Wang X. Therapeutic roles of telocytes in OVA-induced acute asthma in mice. J Cell Mol Med 2017; 21:2863-2871. [PMID: 28524369 PMCID: PMC5661110 DOI: 10.1111/jcmm.13199] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/22/2017] [Indexed: 12/15/2022] Open
Abstract
Telocytes (TCs) newly discovered as the mesenchyme-derived interstitial cells were found to have supportive effects on mesenchymal stem cells (MSCs). The present study aimed at investigating effects of TCs or TCs gathered with MSCs on experimental airway inflammation and hyper-responsiveness. The TCs were isolated from the lung tissue of the female BALB/c mice. The ovalbumin (OVA)-induced asthma model was established. TCs (1 × 106 /2 × 106 ) and/or MSCs (1 × 106 ) were injected through mice tail vein for consecutive three days before OVA excited the mice. This study at first demonstrated that the transplantation of TCs could improve allergen-induced asthma by obviously inhibiting airway inflammation and airway hyper-responsiveness preclinically, with the down-regulation of Th2-related cytokine IL-4, transcription factor GATA-3 and Th2 cell differentiation, while up-regulation of Th1-related cytokine IFN-γ, transcription factor T-bet and Th1 cells proliferation in asthma, just like MSCs. Co-transplantation of TCs with MSCs showed better therapeutic effects on experimental asthma, even though the therapeutic effects of TCs alone were similar to those of MSCs alone. TCs and the combination of TCs with MSCs could improve the airway inflammation and airway hyper-responsiveness and can be a new alternative for asthma therapy.
Collapse
Affiliation(s)
- Ling Ye
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai, China
| | - Dongli Song
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai, China
| | - Meiling Jin
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, Wang H, Xuan Q, Chen P, Xu J, Che L, Liu H, Zhong J, Sluijter JPG, Li X, Rosenzweig A, Xiao J. miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Am J Cancer Res 2017; 7:664-676. [PMID: 28255358 PMCID: PMC5327641 DOI: 10.7150/thno.15162] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 11/04/2016] [Indexed: 12/28/2022] Open
Abstract
Limited microRNAs (miRNAs, miRs) have been reported to be necessary for exercise-induced cardiac growth and essential for protection against pathological cardiac remodeling. Here we determined members of the miR-17-92 cluster and their passenger miRNAs expressions in two distinct murine exercise models and found that miR-17-3p was increased in both. miR-17-3p promoted cardiomyocyte hypertrophy, proliferation, and survival. TIMP-3 was identified as a direct target gene of miR-17-3p whereas PTEN was indirectly inhibited by miR-17-3p. Inhibition of miR-17-3p in vivo attenuated exercise-induced cardiac growth including cardiomyocyte hypertrophy and expression of markers of myocyte proliferation. Importantly, mice injected with miR-17-3p agomir were protected from adverse remodeling after cardiac ischemia/reperfusion injury. Collectively, these data suggest that miR-17-3p contributes to exercise-induced cardiac growth and protects against adverse ventricular remodeling. miR-17-3p may represent a novel therapeutic target to promote functional recovery after cardiac ischemia/reperfusion.
Collapse
|
32
|
Telocytes in gastric lamina propria of the Chinese giant salamander, Andrias davidianus. Sci Rep 2016; 6:33554. [PMID: 27629815 PMCID: PMC5024317 DOI: 10.1038/srep33554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022] Open
Abstract
In this study, we attempt to identify gastric telocytes (TCs) of the Chinese giant salamander Andrias davidianus, by light microscopy, immunohistochemistry and transmission electron microscopy (TEM) methods. Toluidine blue staining showed TCs with one to two very thin and long telopodes (Tps) that were located in gastric lamina propria. Tps had characteristic structures, including podoms, podomers and dichotomous branching. Immunohistochemistry showed the existence of CD34+/PDGFRα+ TCs with moniliform Tps in stroma and were close to gastric glands and blood vessels. TEM micrographs also demonstrated the presence of TCs in interstitium between gastric glands. TCs/Tps were located in close proximity to gastric glands, blood vessels, endocrine cells and stem cells. In particular, Tps frequently surrounded stem cells. TCs and Tps, Tps and stem cells established close contacts. Moreover, the exosomes were also found near TCs/Tps. Our data confirmed the presence of TCs in gastric lamina propria of the amphibian, and suggested that TCs cooperate with resident stem cells to regulate endocrine cells and gastric glands regeneration and homeostasis.
Collapse
|
33
|
Abstract
Telocytes (TCs) are a novel type of interstitial cells, with extremely long and thin cellular prolongations termed telopodes (Tps). TCs were first identified by Popescu et al. and described their finding as "cells with telopodes." The presence of TCs has been reported in the majority of tissues and organs (for details please visit www.telocytes.com ). TCs have been ignored or overlooked for a long time due to our inability to observe these cells via a light microscopy. TCs represent a distinct cell population, different from other types of interstitial cells, based on their distinct (ultra)structure, immunophenotype, microRNA profile, gene feature, proteome signature, and secretome features. As TCs have been suggested as new cellular targets for forthcoming therapies, developing specific methods to modulate TC numbers represents an important objective.
Collapse
Affiliation(s)
- Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| | - Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| |
Collapse
|