1
|
Colella JP, Blumstein DM, MacManes MD. Disentangling environmental drivers of circadian metabolism in desert-adapted mice. J Exp Biol 2021; 224:jeb242529. [PMID: 34495305 PMCID: PMC8502254 DOI: 10.1242/jeb.242529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/13/2021] [Indexed: 01/21/2023]
Abstract
Metabolism is a complex phenotype shaped by natural environmental rhythms, as well as behavioral, morphological and physiological adaptations. Metabolism has been historically studied under constant environmental conditions, but new methods of continuous metabolic phenotyping now offer a window into organismal responses to dynamic environments, and enable identification of abiotic controls and the timing of physiological responses relative to environmental change. We used indirect calorimetry to characterize metabolic phenotypes of the desert-adapted cactus mouse (Peromyscus eremicus) in response to variable environmental conditions that mimic their native environment versus those recorded under constant warm and constant cool conditions, with a constant photoperiod and full access to resources. We found significant sexual dimorphism, with males being more prone to dehydration than females. Under circadian environmental variation, most metabolic shifts occurred prior to physical environmental change and the timing was disrupted under both constant treatments. The ratio of CO2 produced to O2 consumed (the respiratory quotient) reached greater than 1.0 only during the light phase under diurnally variable conditions, a pattern that strongly suggests that lipogenesis contributes to the production of energy and endogenous water. Our results are consistent with historical descriptions of circadian torpor in this species (torpid by day, active by night), but reject the hypothesis that torpor is initiated by food restriction or negative water balance.
Collapse
Affiliation(s)
| | | | - Matthew D. MacManes
- University of New Hampshire, Department of Molecular, Cellular, and Biomedical Sciences, Durham, NH 03824, USA
| |
Collapse
|
2
|
Soltanmohammadi E, Zhang Y, Chatzistamou I, Kiaris H. Resilience, plasticity and robustness in gene expression during aging in the brain of outbred deer mice. BMC Genomics 2021; 22:291. [PMID: 33882817 PMCID: PMC8061204 DOI: 10.1186/s12864-021-07613-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Genes that belong to the same network are frequently co-expressed, but collectively, how the coordination of the whole transcriptome is perturbed during aging remains unclear. To explore this, we calculated the correlation of each gene in the transcriptome with every other, in the brain of young and older outbred deer mice (P. leucopus and P. maniculatus). RESULTS In about 25 % of the genes, coordination was inversed during aging. Gene Ontology analysis in both species, for the genes that exhibited inverse transcriptomic coordination during aging pointed to alterations in the perception of smell, a known impairment occurring during aging. In P. leucopus, alterations in genes related to cholesterol metabolism were also identified. Among the genes that exhibited the most pronounced inversion in their coordination profiles during aging was THBS4, that encodes for thrombospondin-4, a protein that was recently identified as rejuvenation factor in mice. Relatively to its breadth, abolishment of coordination was more prominent in the long-living P. leucopus than in P. maniculatus but in the latter, the intensity of de-coordination was higher. CONCLUSIONS There sults suggest that aging is associated with more stringent retention of expression profiles for some genes and more abrupt changes in others, while more subtle but widespread changes in gene expression appear protective. Our findings shed light in the mode of the transcriptional changes occurring in the brain during aging and suggest that strategies aiming to broader but more modest changes in gene expression may be preferrable to correct aging-associated deregulation in gene expression.
Collapse
Affiliation(s)
- E Soltanmohammadi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, SC, Columbia, USA
| | - Y Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, SC, Columbia, USA
| | - I Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, SC, Columbia, USA
| | - H Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, SC, Columbia, USA.
- Peromyscus Genetic Stock Center, University of South Carolina, SC, Columbia, USA.
| |
Collapse
|
3
|
Shang Z, Horovitz DJ, McKenzie RH, Keisler JL, Felder MR, Davis SW. Using genomic resources for linkage analysis in Peromyscus with an application for characterizing Dominant Spot. BMC Genomics 2020; 21:622. [PMID: 32912160 PMCID: PMC7488232 DOI: 10.1186/s12864-020-06969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
Background Peromyscus are the most common mammalian species in North America and are widely used in both laboratory and field studies. The deer mouse, P. maniculatus and the old-field mouse, P. polionotus, are closely related and can generate viable and fertile hybrid offspring. The ability to generate hybrid offspring, coupled with developing genomic resources, enables researchers to conduct linkage analysis studies to identify genomic loci associated with specific traits. Results We used available genomic data to identify DNA polymorphisms between P. maniculatus and P. polionotus and used the polymorphic data to identify the range of genetic complexity that underlies physiological and behavioral differences between the species, including cholesterol metabolism and genes associated with autism. In addition, we used the polymorphic data to conduct a candidate gene linkage analysis for the Dominant spot trait and determined that Dominant spot is linked to a region of chromosome 20 that contains a strong candidate gene, Sox10. During the linkage analysis, we found that the spot size varied quantitively in affected Peromyscus based on genetic background. Conclusions The expanding genomic resources for Peromyscus facilitate their use in linkage analysis studies, enabling the identification of loci associated with specific traits. More specifically, we have linked a coat color spotting phenotype, Dominant spot, with Sox10, a member the neural crest gene regulatory network, and that there are likely two genetic modifiers that interact with Dominant spot. These results establish Peromyscus as a model system for identifying new alleles of the neural crest gene regulatory network.
Collapse
Affiliation(s)
- Zhenhua Shang
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - David J Horovitz
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Ronald H McKenzie
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Jessica L Keisler
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Michael R Felder
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
4
|
D'Souza MH, Patel TR. Biodefense Implications of New-World Hantaviruses. Front Bioeng Biotechnol 2020; 8:925. [PMID: 32850756 PMCID: PMC7426369 DOI: 10.3389/fbioe.2020.00925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/17/2020] [Indexed: 01/20/2023] Open
Abstract
Hantaviruses, part of the Bunyaviridae family, are a genus of negative-sense, single-stranded RNA viruses that cause two major diseases: New-World Hantavirus Cardiopulmonary Syndrome and Old-World Hemorrhagic Fever with Renal Syndrome. Hantaviruses generally are found worldwide with each disease corresponding to their respective hemispheres. New-World Hantaviruses spread by specific rodent-host reservoirs and are categorized as emerging viruses that pose a threat to global health and security due to their high mortality rate and ease of transmission. Incidentally, reports of Hantavirus categorization as a bioweapon are often contradicted as both US National Institute of Allergy and Infectious Diseases and the Centers for Disease Control and Prevention refer to them as Category A and C bioagents respectively, each retaining qualitative levels of importance and severity. Concerns of Hantavirus being engineered into a novel bioagent has been thwarted by Hantaviruses being difficult to culture, isolate, and purify limiting its ability to be weaponized. However, the natural properties of Hantaviruses pose a threat that can be exploited by conventional and unconventional forces. This review seeks to clarify the categorization of Hantaviruses as a bioweapon, whilst defining the practicality of employing New-World Hantaviruses and their effect on armies, infrastructure, and civilian targets.
Collapse
Affiliation(s)
- Michael Hilary D'Souza
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada.,Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Li Ka Shing Institute of Virology and Discovery Lab, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Lindsey LL, Platt RN, Phillips CD, Ray DA, Bradley RD. Differential Expression in Testis and Liver Transcriptomes from Four Species of Peromyscus (Rodentia: Cricetidae). Genome Biol Evol 2020; 12:3698-3709. [PMID: 31909812 PMCID: PMC6967398 DOI: 10.1093/gbe/evz280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
The genus Peromyscus represents a rapidly diverged clade of Cricetid rodents that contains multiple cryptic species and has a propensity for morphologic conservation across its members. The unresolved relationships in previously proposed phylogenies reflect a suspected rapid adaptive radiation. To identify functional groups of genes that may be important in reproductive isolation in a reoccurring fashion across the Peromyscus phylogeny, liver and testis transcriptomes from four species (P. attwateri, P. boylii, P. leucopus, and P. maniculatus) were generated and differential expression (DE) tests were conducted. Taxa were selected to represent members diverged from a common ancestor: P. attwateri + P. boylii (clade A), and P. leucopus + P. maniculatus (clade B). Comparison of clades (A vs. B) suggested that 252 transcripts had significant DE in the liver data set, whereas significant DE was identified for 657 transcripts in the testis data set. Further, 45 genes had DE isoforms in the 657 testis transcripts and most of these functioned in major reproductive roles such as acrosome assembly, spermatogenesis, and cell cycle processes (meiosis). DE transcripts in the liver mapped to more broad gene ontology terms (metabolic processes, catabolic processes, response to chemical, and regulatory processes), and DE transcripts in the testis mapped to gene ontology terms associated with reproductive processes, such as meiosis, sperm motility, acrosome assembly, and sperm–egg fusion. These results suggest that a suite of genes that conduct similar functions in the testes may be responsible for the adaptive radiation events and potential reoccurring speciation of Peromyscus in terms of reproduction through varying expression levels.
Collapse
Affiliation(s)
| | - Roy N Platt
- Genetics Department, Texas Biomedical Research Institute, San Antonio, Texas
| | - Caleb D Phillips
- Department of Biological Sciences, Texas Tech University.,Natural Science Research Laboratory, Museum of Texas Tech University
| | - David A Ray
- Department of Biological Sciences, Texas Tech University
| | - Robert D Bradley
- Department of Biological Sciences, Texas Tech University.,Natural Science Research Laboratory, Museum of Texas Tech University
| |
Collapse
|
6
|
Meléndez‐Rosa J, Bi K, Lacey EA. Differential gene expression in relation to mating system in Peromyscine rodents. Ecol Evol 2019; 9:5975-5990. [PMID: 31161013 PMCID: PMC6540711 DOI: 10.1002/ece3.5181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/15/2019] [Accepted: 03/29/2019] [Indexed: 12/25/2022] Open
Abstract
Behaviors that increase an individual's exposure to pathogens are expected to have important effects on immunoactivity. Because sexual reproduction typically requires close contact among conspecifics, mating systems provide an ideal opportunity to study the immunogenetic correlates of behaviors with high versus low risks of pathogen exposure. Despite logical links between polygynandrous mating behavior, increased pathogen exposure, and greater immunoactivity, these relationships have seldom been examined in nonhuman vertebrates. To explore interactions among these variables in a different lineage of mammals, we used RNAseq to study the gene expression profiles of liver tissue-a highly immunoactive organ-from sympatric populations of the monogamous California mouse (Peromyscus californicus) and two polygynandrous congeners (P. maniculatus and P. boylii). Differential expression and co-expression analyses revealed distinct patterns of gene activity among species, with much of this variation associated with differences in mating system. This tendency was particularly pronounced for MHC genes, with multiple MHC Class I genes being upregulated in the two polygynandrous species, as expected if exposure to sexually transmitted pathogens varies with mating system. Our results underscore the role of mating behavior in influencing patterns of gene expression and highlight the use of emerging transcriptomic tools in behavioral studies of free-living animals.
Collapse
Affiliation(s)
- Jesyka Meléndez‐Rosa
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCalifornia
| | - Ke Bi
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCalifornia
- Computational Genomics Resource LaboratoryUniversity of CaliforniaBerkeleyCalifornia
| | - Eileen A. Lacey
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCalifornia
| |
Collapse
|
7
|
Harris SE, Munshi-South J. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus). Mol Ecol 2017; 26:6336-6350. [PMID: 28980357 DOI: 10.1111/mec.14369] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 09/25/2017] [Indexed: 02/06/2023]
Abstract
Urbanization significantly alters natural ecosystems and has accelerated globally. Urban wildlife populations are often highly fragmented by human infrastructure, and isolated populations may adapt in response to local urban pressures. However, relatively few studies have identified genomic signatures of adaptation in urban animals. We used a landscape genomic approach to examine signatures of selection in urban populations of white-footed mice (Peromyscus leucopus) in New York City. We analysed 154,770 SNPs identified from transcriptome data from 48 P. leucopus individuals from three urban and three rural populations and used outlier tests to identify evidence of urban adaptation. We accounted for demography by simulating a neutral SNP data set under an inferred demographic history as a null model for outlier analysis. We also tested whether candidate genes were associated with environmental variables related to urbanization. In total, we detected 381 outlier loci and after stringent filtering, identified and annotated 19 candidate loci. Many of the candidate genes were involved in metabolic processes and have well-established roles in metabolizing lipids and carbohydrates. Our results indicate that white-footed mice in New York City are adapting at the biomolecular level to local selective pressures in urban habitats. Annotation of outlier loci suggests selection is acting on metabolic pathways in urban populations, likely related to novel diets in cities that differ from diets in less disturbed areas.
Collapse
Affiliation(s)
- Stephen E Harris
- The Graduate Center, City University of New York (CUNY), New York, NY, USA
| | - Jason Munshi-South
- Louis Calder Center-Biological Field Station, Fordham University, Armonk, NY, USA
| |
Collapse
|
8
|
Kordonowy L, MacManes M. Characterizing the reproductive transcriptomic correlates of acute dehydration in males in the desert-adapted rodent, Peromyscus eremicus. BMC Genomics 2017; 18:473. [PMID: 28645248 PMCID: PMC5481918 DOI: 10.1186/s12864-017-3840-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/02/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The understanding of genomic and physiological mechanisms related to how organisms living in extreme environments survive and reproduce is an outstanding question facing evolutionary and organismal biologists. One interesting example of adaptation is related to the survival of mammals in deserts, where extreme water limitation is common. Research on desert rodent adaptations has focused predominantly on adaptations related to surviving dehydration, while potential reproductive physiology adaptations for acute and chronic dehydration have been relatively neglected. This study aims to explore the reproductive consequences of acute dehydration by utilizing RNAseq data in the desert-specialized cactus mouse (Peromyscus eremicus). RESULTS We exposed 22 male cactus mice to either acute dehydration or control (fully hydrated) treatment conditions, quasimapped testes-derived reads to a cactus mouse testes transcriptome, and then evaluated patterns of differential transcript and gene expression. Following statistical evaluation with multiple analytical pipelines, nine genes were consistently differentially expressed between the hydrated and dehydrated mice. We hypothesized that male cactus mice would exhibit minimal reproductive responses to dehydration; therefore, this low number of differentially expressed genes between treatments aligns with current perceptions of this species' extreme desert specialization. However, these differentially expressed genes include Insulin-like 3 (Insl3), a regulator of male fertility and testes descent, as well as the solute carriers Slc45a3 and Slc38a5, which are membrane transport proteins that may facilitate osmoregulation. CONCLUSIONS These results suggest that in male cactus mice, acute dehydration may be linked to reproductive modulation via Insl3, but not through gene expression differences in the subset of other a priori tested reproductive hormones. Although water availability is a reproductive cue in desert-rodents exposed to chronic drought, potential reproductive modification via Insl3 in response to acute water-limitation is a result which is unexpected in an animal capable of surviving and successfully reproducing year-round without available external water sources. Indeed, this work highlights the critical need for integrative research that examines every facet of organismal adaptation, particularly in light of global climate change, which is predicted, amongst other things, to increase climate variability, thereby exposing desert animals more frequently to the acute drought conditions explored here.
Collapse
Affiliation(s)
- Lauren Kordonowy
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Rudman Hall (MCBS), 46 College Road, Durham, 03824 NH USA
| | - Matthew MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Rudman Hall (MCBS), 46 College Road, Durham, 03824 NH USA
| |
Collapse
|
9
|
Kiaris H. Editorial. Semin Cell Dev Biol 2017; 61:80-81. [PMID: 28081800 DOI: 10.1016/j.semcdb.2016.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences and Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|