1
|
Li F, Xu J, Zhu Y. MiR-6839-5p inhibits cell proliferation, migration and invasion; a possible correlation with the suppressing VEGFA expression in human chondrosarcoma cells. Discov Oncol 2024; 15:175. [PMID: 38762695 PMCID: PMC11102412 DOI: 10.1007/s12672-024-01038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
MicroRNAs play an important role in the proliferation, invasion, and metastasis of malignancy. In previous studies (detailed in our previous paper), the expression of miR-6839-5p was significantly increased in SW1353 cells after 125I seed 6 Gy irradiation, which indicated miR-6839-5p may play a tumor suppression function in chondrosarcoma cells. This study aimed to identify the effects of miR-6839-5p on the human chondrosarcoma cells, and investigate the potential target genes of miR-6839-5p. Firstly, chondrosarcoma cells (SW1353 and CAL78) were transfected with hsa-miR-6839-5p specific mimic. Secondly, Cell viability assay (MTT assay), Colony formation assay, Wound healing assay, Transwell assay, TUNEL staining and Western blotting experiments were performed, and the results proved miR-6839-5p can inhibit chondrosarcoma cells proliferation, migration and invasion. Meanwhile, miR-6839-5p significantly down-regulated apoptosis facilitator Bcl-2 expression, and promoted apoptosis of chondrosarcoma cells. It is reasonable to speculate miR-6839-5p might downregulate Bcl-2 expression to induce apoptosis in SW1353 human chondrosarcoma cells. Lastly, RNA extraction and bioinformatic analysis was performed on SW1353 cells transfected with hsa-miR-6839-5p specific mimic to investigate the potential target genes of miR-6839-5p. A total of 253 differentially expressed mRNA genes (105 up-regulated genes and 148 down-regulated genes) were found, and 23 differentially expressed downregulated genes were identified. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to validate the results, which demonstrated the expression of BST2, VEGFA, FPR3 and PPARA was significantly downregulated by miR-6839-5p mimic. Furthermore, miR-6839-5p inhibitor can restore or partially restore the expression value of the above four genes. The analysis results of miRNA target gene prediction database indicated VEGFA was the most likely direct target gene of miR-6839-5p.
Collapse
Affiliation(s)
- Fusheng Li
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, 155 Nan Jing Bei Street, Shenyang, 110001, People's Republic of China
- Department of Orthopaedics Oncology, The People's Hospital of Liaoning Province, Shenyang, 110016, People's Republic of China
| | - Jia Xu
- Department of Medical Microbiology, Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Yue Zhu
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, 155 Nan Jing Bei Street, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
2
|
Liang X, Zhang Y, Zhou J, Bu Z, Liu J, Zhang K. Tumor microenvironment-triggered intratumoral in situ construction of theranostic supramolecular self-assembly. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
3
|
Sadeghian I, Heidari R, Raee MJ, Negahdaripour M. Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 2022; 74:1085-1116. [PMID: 35728949 DOI: 10.1093/jpp/rgac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Peptides and proteins represent great potential for modulating various cellular processes including oxidative stress, inflammatory response, apoptosis and consequently the treatment of related diseases. However, their therapeutic effects are limited by their inability to cross cellular barriers. Cell-penetrating peptides (CPPs), which can transport cargoes into the cell, could resolve this issue, as would be discussed in this review. KEY FINDINGS CPPs have been successfully exploited in vitro and in vivo for peptide/protein delivery to treat a wide range of diseases involving oxidative stress, inflammatory processes and apoptosis. Their in vivo applications are still limited due to some fundamental issues of CPPs, including nonspecificity, proteolytic instability, potential toxicity and immunogenicity. SUMMARY Totally, CPPs could potentially help to manage the diseases involving oxidative stress, inflammatory response and apoptosis by delivering peptides/proteins that could selectively reach proper intracellular targets. More studies to overcome related CPP limitations and confirm the efficacy and safety of this strategy are needed before their clinical usage.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Shanmugam MK, Sethi G. Molecular mechanisms of cell death. MECHANISMS OF CELL DEATH AND OPPORTUNITIES FOR THERAPEUTIC DEVELOPMENT 2022:65-92. [DOI: 10.1016/b978-0-12-814208-0.00002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
5
|
Therapeutic potential of melatonin in colorectal cancer: Focus on lipid metabolism and gut microbiota. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166281. [PMID: 34610472 DOI: 10.1016/j.bbadis.2021.166281] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/24/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies. The occurrence and development of CRC are complicated processes. Obesity and dysbacteriosis have been increasingly regarded as the main risk factors for CRC. Understanding the etiology of CRC from multiple perspectives is conducive to screening for some potential drugs or new treatment strategies to limit the serious side effects of conventional treatment and prolong the survival of CRC patients. Melatonin, a natural indoleamine, is mainly produced by the pineal gland, but it is also abundant in other tissues, including the gastrointestinal tract, retina, testes, lymphocytes, and Harder's glands. Melatonin could participate in lipid metabolism by regulating adipogenesis and lipolysis. Additionally, many studies have focused on the potential beneficial effects of melatonin in CRC, such as promotion of apoptosis; inhibition of cell proliferation, migration, and invasion; antioxidant activity; and immune regulation. Meaningfully, gut microbiota is the main determinant of all aspects of health and disease (including obesity and tumorigenesis). The gut microbiota is of great significance for understanding the relationship between obesity and increased risk of CRC. Although the current understanding of how the melatonin-mediated gut microbiota coordinates a variety of physiological and pathological activities is fairly comprehensive, there are still many unknown topics to be explored in the face of a complex nutritional status and a changeable microbiota. This review summarizes the potential links among melatonin, lipid metabolism, gut microbiota, and CRC to promote the development of melatonin as a preventive and therapeutic agent for CRC.
Collapse
|
6
|
Nafie MS, Khodair AI, Hassan HAY, El-Fadeal NMA, Bogari HA, Elhady SS, Ahmed SA. Evaluation of 2-Thioxoimadazolidin-4-one Derivatives as Potent Anti-Cancer Agents through Apoptosis Induction and Antioxidant Activation: In Vitro and In Vivo Approaches. Molecules 2021; 27:83. [PMID: 35011314 PMCID: PMC8746798 DOI: 10.3390/molecules27010083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most widespread malignancies and is reported as the fourth most prevalent cause of cancer deaths worldwide. Therefore, we aimed to investigate the probable mechanistic cytotoxic effect of the promising 2-thioxoimidazolidin-4-one derivative on liver cancer cells using in vitro and in vivo approaches. The compounds were tested for the in vitro cytotoxic activity using MTT assay, and the promising compound was tested in colony forming unit assay, flow cytometric analysis, RT-PCR, Western blotting, in vivo using SEC-carcinoma and in silico to highlight the virtual mechanism of action. Both compounds 4 and 2 performed cytotoxic effects against HepG2 cells with IC50 values of 0.017 and 0.18 μM, respectively, compared to Staurosporine and 5-Fu as reference drugs with IC50 values of 5.07 and 5.18 µM, respectively. Compound 4 treatment revealed apoptosis induction by 19.35-fold (11.42% compared to 0.59% in control), arresting the cell cycle at G2/M phase. Moreover, studying gene expression that plays critical roles in cell cycle and apoptosis by RT-PCR demonstrated that compound 4 enhances the expression of the pro-apoptotic genes p53, PUMA, and Caspase 3, 8, and 9, and impedes the anti-apoptotic Bcl-2 gene in the HepG2 cells. It can also inhibit the PI3K/AKT pathway at both gene and protein levels, which was reinforced by the in silico predictions of the molecular docking simulations towards the PI3K/AKT proteins. Finally, in vivo study verified that compound 4 has a promising anti-cancer activity through activating antioxidant levels (CAT, SOD and GSH) and ameliorating hematological, biochemical, and histopathological findings.
Collapse
Affiliation(s)
- Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed I. Khodair
- Department of Chemistry, Faculty of Science, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Hebat Allah Y. Hassan
- Institute of Biotechnology for Graduate Studies & Research, Suez Canal University, Ismailia 41522, Egypt;
| | - Noha M. Abd El-Fadeal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Hanin A. Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Safwat A. Ahmed
- Institute of Biotechnology for Graduate Studies & Research, Suez Canal University, Ismailia 41522, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
7
|
The p53-caspase-2 axis in the cell cycle and DNA damage response. Exp Mol Med 2021; 53:517-527. [PMID: 33854186 PMCID: PMC8102494 DOI: 10.1038/s12276-021-00590-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/08/2023] Open
Abstract
Caspase-2 was discovered almost three decades ago. It was one of the first two mammalian homologs of CED-3, the other being interleukin 1β-converting enzyme (ICE/caspase-1). Despite high similarity with CED-3 and its fly and mammalian counterparts (DRONC and caspase-9, respectively), the function of caspase-2 in apoptosis has remained enigmatic. A number of recent studies suggest that caspase-2 plays an important role in the regulation of p53 in response to cellular stress and DNA damage to prevent the proliferation and accumulation of damaged or aberrant cells. Here, we review these recent observations and their implications in caspase-2-mediated cellular death, senescence, and tumor suppression.
Collapse
|
8
|
Xie J, Lai Z, Zheng X, Liao H, Xian Y, Li Q, Wu J, Ip S, Xie Y, Chen J, Su Z, Lin Z, Yang X. Apoptotic activities of brusatol in human non-small cell lung cancer cells: Involvement of ROS-mediated mitochondrial-dependent pathway and inhibition of Nrf2-mediated antioxidant response. Toxicology 2021; 451:152680. [PMID: 33465425 DOI: 10.1016/j.tox.2021.152680] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Brusatol occurs as a characteristic bioactive principle of Brucea javanica (L.) Merr., a traditional medicinal herb frequently employed to tackle cancer in China. This work endeavored to unravel the potential anti-cancer activity and action mechanism of brusatol against non-small cell lung cancer (NSCLC) cell lines. The findings indicated that brusatol remarkably inhibited the growth of wild-type NSCLC cell lines (A549 and H1650) and epidermal growth factor receptor-mutant cell lines (PC9 and HCC827) in a dose- and time-related fashion, and profoundly inhibited the clonogenic capability and migratory capacity of PC9 cells. Treatment with brusatol resulted in significant apoptosis in PC9 cells, as evidenced by Hoechst 33342 staining and flow cytometric analysis. The apoptotic effect was closely related to induction of G0-G1 cell cycle arrest, stimulation of reactive oxygen species (ROS) and malondialdehyde, decrease of glutathione levels and disruption of mitochondrial membrane potential. Furthermore, pretreatment with N-acetylcysteine, a typical ROS scavenger, markedly ameliorated the brusatol-induced inhibition of PC9 cells. Western blotting assay indicated that brusatol pronouncedly suppressed the expression levels of mitochondrial apoptotic pathway-associated proteins Bcl-2 and Bcl-xl, accentuated the expression of Bax and Bak, and upregulated the protein expression of XIAP, cleaved caspase-3/pro caspase-3, cleaved caspase-8/pro caspase-8, and cleaved PARP/total PARP. In addition, brusatol significantly suppressed the expression of Nrf2 and HO-1, and abrogated tBHQ-induced Nrf2 activation. Combinational administration of brusatol with four chemotherapeutic agents exhibited marked synergetic effect on PC9 cells. Together, the inhibition of PC9 cells proliferation by brusatol might be intimately associated with the modulation of ROS-mediated mitochondrial-dependent pathway and inhibition of Nrf2-mediated antioxidant response. This novel insight might provide further evidence to buttress the antineoplastic efficacy of B. javanica, and support a role for brusatol as a promising anti-cancer candidate or adjuvant to current chemotherapeutic medication in the therapy of EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Jianhui Xie
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, P.R. China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518000, P.R. China
| | - Xinghan Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Huijun Liao
- Department of Clinical Pharmacy and Pharmaceutical Services, Huazhong University of Science and Technology Union Shenzhen Hospital (the 6th Affiliated Hospital of Shenzhen University), Shenzhen 518052, P.R. China
| | - Yanfang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China
| | - Qian Li
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, P.R. China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, P.R. China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, P.R. China
| | - Jingjing Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, P.R. China; The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, P.R. China
| | - Siupo Ip
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China
| | - Youliang Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Zhixiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China.
| | - Xiaobo Yang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, P.R. China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, P.R. China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, P.R. China
| |
Collapse
|
9
|
Expression and Functional Characterization of a Novel Antimicrobial Peptide: Human Beta-Defensin 118. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1395304. [PMID: 33224970 PMCID: PMC7673234 DOI: 10.1155/2020/1395304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023]
Abstract
Purpose β-Defensin 118 (DEFB118) is a novel host defense peptide (HDP) identified in humans. To evaluate its potentials for future utilization, the DEFB118 gene was expressed in Escherichia coli (E. coli) and the recombinant protein was fully characterized. Methods The DEFB118 protein was obtained by heterologous expression using E. coli Rosetta (DE3). Antibacterial activity of DEFB118 was determined by using various bacterial strains. IPEC-J cells challenged by E. coli K88 were used to determine its influences on inflammatory responses. Results The E. coli transformants yielded more than 250 μg/mL DEFB118 protein after 4 h induction by 1.0 mM IPTG. The DEFB118 was estimated by SDS-PAGE to be 30 kDa, and MALDI-TOF analysis verified that it is a human β-defensin 118. Importantly, the DEFB118 showed antimicrobial activities against both Gram-negative bacteria (E. coli K88 and E. coli DH5α) and Gram-positive bacteria (S. aureus and B. subtilis), with a minimum inhibitory concentration (MIC) of 4 μg/mL. Hemolytic assays showed that DEFB118 had no detrimental impact on cell viability. Additionally, DEFB118 was found to elevate the viability of IPEC-J2 cells upon E. coli K88 challenge. Moreover, DEFB118 significantly decreased cell apoptosis in the late apoptosis phase and downregulated the expression of inflammatory cytokines such as IL-1β and TNF-α in IPEC-J2 cell exposure to E. coli K88. Conclusions These results suggested a novel function of the mammalian defensins, and the antibacterial and anti-inflammatory properties of DEFB118 may allow it as a potential substitute for conventionally used antibiotics or drugs.
Collapse
|
10
|
Brack E, Wachtel M, Wolf A, Kaech A, Ziegler U, Schäfer BW. Fenretinide induces a new form of dynamin-dependent cell death in pediatric sarcoma. Cell Death Differ 2020; 27:2500-2516. [PMID: 32144381 DOI: 10.1038/s41418-020-0518-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Alveolar rhabdomyosarcoma (aRMS) is a highly malicious childhood malignancy characterized by specific chromosomal translocations mostly encoding the oncogenic transcription factor PAX3-FOXO1 and therefore also referred to as fusion-positive RMS (FP-RMS). Previously, we have identified fenretinide (retinoic acid p-hydroxyanilide) to affect PAX3-FOXO1 expression levels as well as FP-RMS cell viability. Here, we characterize the mode of action of fenretinide in more detail. First, we demonstrate that fenretinide-induced generation of reactive oxygen species (ROS) depends on complex II of the mitochondrial respiratory chain, since ROS scavenging as well as complexing of iron completely abolished cell death. Second, we co-treated cells with a range of pharmacological inhibitors of specific cell death pathways including z-vad (apoptosis), necrostatin-1 (necroptosis), 3-methyladenine (3-MA) (autophagy), and ferrostatin-1 (ferroptosis) together with fenretinide. Surprisingly, none of these inhibitors was able to prevent cell death. Also genetic depletion of key players in the apoptotic and necroptotic pathway (BAK, BAX, and RIPK1) confirmed the pharmacological data. Interestingly however, electron microscopy of fenretinide-treated cells revealed an excessive accumulation of cytoplasmic vacuoles, which were distinct from autophagosomes. Further flow cytometry and fluorescence microscopy experiments suggested a hyperstimulation of macropinocytosis, leading to an accumulation of enlarged early and late endosomes. Surprisingly, pharmacological inhibition as well as genetic depletion of large dynamin GTPases completely abolished fenretinide-induced vesicle formation and subsequent cell death, suggesting a new form of dynamin-dependent programmed cell death. Taken together, our data identify a new form of cell death mediated through the production of ROS by fenretinide treatment, highlighting the value of this compound for treatment of sarcoma patients including FP-RMS.
Collapse
Affiliation(s)
- Eva Brack
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Anja Wolf
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Li Y, Zhu L, Shi F, Li R, Chen X, Zheng Z, Qiu B, Hou L. Modified Liangfu granule exhibits anti-cancer effects in gastric cancer by regulating apoptosis-related proteins and genes. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2019. [DOI: 10.1016/j.jtcms.2019.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
12
|
Huang J, Wang X, Wen G, Ren Y. miRNA‑205‑5p functions as a tumor suppressor by negatively regulating VEGFA and PI3K/Akt/mTOR signaling in renal carcinoma cells. Oncol Rep 2019; 42:1677-1688. [PMID: 31545453 PMCID: PMC6775807 DOI: 10.3892/or.2019.7307] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in the development of various types of cancers. Dysregulation of miR-205-5p has been reported in various types of human cancer. However, little is known concerning the role of miR-205-5p in renal cell carcinoma (RCC). The pr~esent study was designed to investigate the role of miR-205-5p in RCC. The expression of miR-205-5p was measured in clear cell renal cell carcinoma (ccRCC) tissues and cell lines using RT-qPCR. RCC cell lines were transfected with miR-205-5p mimics. CCK-8 assays, wound healing assays, Matrigel invasion assays and nucleosome ELISAs were used to assess the effects of miR-205-5p on cell growth, migration, invasion and apoptosis, respectively. Western blotting was employed to detect changes in protein levels. Bioinformatic analyses and luciferase reporter assays were performed to identify the potential targets of miR-205-5p. Mouse xenograft models were used to verify the effect of miR-205-5p in vivo. The expression of miR-205-5p was found to be downregulated in 25 RCC tissues compared to that noted in the adjacent normal tissues. Decreased expression of miR-205-5p was associated with poor clinical outcomes. Based on the results of the in vitro experiments, overexpression of miR-205-5p reduced RCC cell proliferation, invasion and migration. Overexpression of miR-205-5p also promoted apoptosis and inhibited the EMT in RCC cells. Moreover, the PI3K/Akt signaling pathway was found to be negatively regulated by miR-205-5p. Bioinformatic analyses and luciferase reporter assays revealed that miR-205-5p directly targeted the 3′-UTR of vascular endothelial growth factor A (VEGFA). Furthermore, miR-205-5p negatively regulated the expression of VEGFA in ccRCC cell lines. In ccRCC tissues, miR-205-5p expression was inversely correlated with VEGFA expression. Moreover, overexpression of miR-205-5p inhibited RCC growth in vivo in a mouse xenograft model. Overall, miR-205-5p functions as a tumor suppressor in RCC by targeting VEGFA and the PI3K/Akt signaling pathway, providing a potential therapeutic target for the treatment of ccRCC.
Collapse
Affiliation(s)
- Jianjun Huang
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Xue Wang
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Guobing Wen
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Yu Ren
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
13
|
Raptinal bypasses BAX, BAK, and BOK for mitochondrial outer membrane permeabilization and intrinsic apoptosis. Cell Death Dis 2019; 10:556. [PMID: 31324752 PMCID: PMC6642130 DOI: 10.1038/s41419-019-1790-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022]
Abstract
Most antineoplastic chemotherapies eliminate cancer cells through activation of the mitochondria-controlled intrinsic apoptotic pathway. Therein, BAX, BAK, and/or BOK function as the essential pore-forming executioners of mitochondrial outer membrane permeabilization (MOMP). The activation threshold of BAX and BAK also correlates inversely with the required strength of an apoptotic stimulus to induce MOMP and thereby effectively determines a cell’s readiness to undergo apoptosis. Consequently, the ‘gatekeepers’ BAX and BAK emerged as therapeutic targets, but functional or genetic loss renders BAX/BAK-targeting strategies prone to fail. Here, we show that the small molecule Raptinal overcomes this limitation by triggering cytochrome c release in a BAX/BAK/BOK-independent manner. Raptinal exerts a dual cytotoxic effect on cancer cells by rapid activation of the intrinsic apoptotic pathway and simultaneous shutdown of mitochondrial function. Together with its efficacy to eliminate cancer cells in vivo, Raptinal could be useful in difficult-to-treat cancer entities harboring defects in the intrinsic apoptosis pathway.
Collapse
|
14
|
Liu J, Wang F, Yin D, Zhang H, Feng F. Caspase 3 may participate in the anti-tumor immunity of dendritic cells. Biochem Biophys Res Commun 2019; 511:447-453. [PMID: 30797554 DOI: 10.1016/j.bbrc.2019.02.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Caspase 3 is not only involved in apoptosis, but also participates in the nonapoptotic functions. Previously, we found that caspase 3 gene knockout mice displayed decreased number of dendritic cells (DCs). However, whether caspase 3 participate in the function of DCs is unclear. Thus, the present study aims to investigate the role of caspase 3 in the maturation and antitumor function of DCs. METHODS Caspase 3 gene was overexpressed in DC2.4 cell line through Lentivirus system. The impact of caspase 3 gene overexpression on the biological behavior of DC2.4 cells was determined by CCK-8, colony formation and apoptosis analysis. The impact of caspase 3 gene overexpression on the antigen uptake, maturation, migration, T cell activation of DC2.4 cells was analyzed with phagocytosis, transwell and mixed lymphocyte reaction assay. Tumor growth and tumor infiltrated T cells were also investigated through tumor bearing model. RESULTS Caspase 3 gene overexpression could slightly increase the apoptosis of DC2.4 cells. Antigen uptake capability and maturation of DC2.4 cells were significantly promoted through caspases 3 gene overexpression. However, CXCR4 expression on DC2.4 cells and migration of DC2.4 cells were not influenced. Caspase 3 gene overexpression also enhanced the T cell activation and cytotoxicity of activated T cells. Finally, overexpression of caspase 3 gene significantly increased the tumor suppression of DC2.4 cells, accompanied by increased infiltration of CD4+ and CD8+ Cells in tumor tissue. CONCLUSION Caspase 3 gene overexpression could promote maturation and enhance antitumor capability of DC2.4 cells.
Collapse
Affiliation(s)
- Jinqiang Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, 710032, Xi'an, Shaanxi, China; Cadre' s Sanitarium, 62101 Army of PLA, 67 Nahu Road, 464000, Xinyang, Henan, China
| | - Fei Wang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, 710032, Xi'an, Shaanxi, China; Department of General Surgery, No. 534 Hospital of PLA, 471000, Luoyang, Henan, China
| | - Dandan Yin
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, 569 Xin Si Road, 710038, Xi'an, Shaanxi, China
| | - Hongwei Zhang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, 710032, Xi'an, Shaanxi, China.
| | - Fan Feng
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
15
|
Favero G, Moretti E, Bonomini F, Reiter RJ, Rodella LF, Rezzani R. Promising Antineoplastic Actions of Melatonin. Front Pharmacol 2018; 9:1086. [PMID: 30386235 PMCID: PMC6198052 DOI: 10.3389/fphar.2018.01086] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022] Open
Abstract
Melatonin is an endogenous indoleamine with an incredible variety of properties and activities. In recent years, an increasing number of studies have investigated this indoleamine’s interaction with cancerous cells. In particular, it seems that melatonin not only has the ability to improve the efficacy of many drugs used in chemotherapy but also has a direct inhibitory action on neoplastic cells. Many publications underlined the ability of melatonin to suppress the proliferation of various cancer cells or to modulate the expression of membrane receptors on these cells, thereby reducing tumor aggressiveness to metastasize. In addition, while melatonin has antiapoptotic actions in normal cells, in many cancer cells it has proapoptotic effects; these dichotomous actions have gained the interest of researchers. The increasing focus on melatonin in the field of oncology and the growing number of studies on this topic require a deep understanding of what we already know about the antineoplastic actions of melatonin. This information would be of value for potential use of melatonin against neoplastic diseases.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Enrico Moretti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs," University of Brescia, Brescia, Italy
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health Science Center, San Antonio, TX, United States
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs," University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs," University of Brescia, Brescia, Italy
| |
Collapse
|
16
|
Li X, Tang Y, Yu F, Sun Y, Huang F, Chen Y, Yang Z, Ding G. Inhibition of Prostate Cancer DU-145 Cells Proliferation by Anthopleura anjunae Oligopeptide (YVPGP) via PI3K/AKT/mTOR Signaling Pathway. Mar Drugs 2018; 16:E325. [PMID: 30208576 PMCID: PMC6165336 DOI: 10.3390/md16090325] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
We investigated the antitumor mechanism of Anthopleura anjunae oligopeptide (AAP-H, YVPGP) in prostate cancer DU-145 cells in vitro and in vivo. Results indicated that AAP-H was nontoxic and exhibited antitumor activities. Cell cycle analysis indicated that AAP-H may arrest DU-145 cells in the S phase. The role of the phosphatidylinositol 3-kinase/protein kinase B/mammalian rapamycin target protein (PI3K/AKT/mTOR) signaling pathway in the antitumor mechanism of APP-H was investigated. Results showed that AAP-H treatment led to dose-dependent reduction in the levels of p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448), whereas t-AKT and t-PI3K levels remained unaltered compared to the untreated DU-145 cells. Inhibition of PI3K/AKT/mTOR signaling pathway in the DU-145 cells by employing inhibitor LY294002 (10 μM) or rapamycin (20 nM) effectively attenuated AAP-H-induced phosphorylation of AKT and mTOR. At the same time, inhibitor addition further elevated AAP-H-induced cleaved-caspase-3 levels. Furthermore, the effect of AAP-H on tumor growth and the role of the PI3K/AKT/mTOR signaling pathway in nude mouse model were also investigated. Immunohistochemical analysis showed that activated AKT, PI3K, and mTOR levels were reduced in DU-145 xenografts. Western blotting showed that AAP-H treatment resulted in dose-dependent reduction in p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448) levels, whereas t-AKT and t-PI3K levels remained unaltered. Similarly, Bcl-xL levels decreased, whereas that of Bax increased after AAP-H treatment. AAP-H also increased initiator (caspase 8 and 9) and executor caspase (caspase 3 and 7) levels. Therefore, the antitumor mechanism of APP-H on DU-145 cells may involve regulation of the PI3K/AKT/mTOR signaling pathway, which eventually promotes apoptosis via mitochondrial and death receptor pathways. Thus, the hydrophobic oligopeptide (YVPGP) can be developed as an adjuvant for the prevention or treatment of prostate cancer in the future.
Collapse
Affiliation(s)
- Xiaojuan Li
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Fangmiao Yu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yu Sun
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhejiang Ocean University Donghai Science and Technology College, Zhoushan 316000, China.
| | - Fangfang Huang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yan Chen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Zuisu Yang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Guofang Ding
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
- Zhejiang Marine Fisheries Research Institution, Zhoushan 316021, China.
| |
Collapse
|
17
|
Baeesa SS, Hussein D, Altalhy A, Bakhaidar MG, Alghamdi FA, Bangash M, Abuzenadah A. Malignant Transformation and Spine Metastasis of an Intracranial Grade I Meningioma: In Situ Immunofluorescence Analysis of Cancer Stem Cells Case Report and Literature Review. World Neurosurg 2018; 120:274-289. [PMID: 30205223 DOI: 10.1016/j.wneu.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Malignant meningiomas are rare neoplasms of the central nervous system that occur de novo or rarely as a result of transformation. They have a higher rate of recurrence and metastasis accompanied by a significantly shorter survivorship compared with benign variants. Meningioma cancer stem cells (CSCs) have been previously shown to be associated with resistance and aggressiveness. However, the role they play in meningioma progression is still being investigated. CASE DESCRIPTION We report a 29-year-old man who underwent a resection of a grade I meningioma in 2011. The patient had multiple local recurrences of the tumor that showed an aggressive change in behavior and transformation to grade III meningioma, and developed extracranial metastasis to the cervical spine. He underwent multiple operations and received radiotherapy. Analysis of the tissues indicated the presence of CSC markers before metastasis, and showed increased expressions of associated markers in the metastasized tissue. In addition, similar to the patient's profile, the pharmacological testing of a primary cell line retrieved from the metastasized tissues showed a high level of drug tolerance and a diminished ability to initiate apoptosis. CONCLUSIONS Malignant progression of grade I meningioma can occur, and its eventuality may be anticipated by detecting CSCs. We performed a comprehensive literature review of relevant cases and discussed the clinical, diagnostic, and management characteristics of the reported cases.
Collapse
Affiliation(s)
- Saleh S Baeesa
- Division of Neurosurgery, Department of Surgery, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Deema Hussein
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali Altalhy
- Division of Neurosurgery, Department of Surgery, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamad G Bakhaidar
- Division of Neurosurgery, Department of Surgery, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Alghamdi
- Department of Pathology, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Bangash
- Division of Neurosurgery, Department of Surgery, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel Abuzenadah
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Center for Innovation for Personalized Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| |
Collapse
|
18
|
Zhang Y, Zhang XX, Yuan RY, Ren T, Shao ZY, Wang HF, Cai WL, Chen LT, Wang XA, Wang P. Cordycepin induces apoptosis in human pancreatic cancer cells via the mitochondrial-mediated intrinsic pathway and suppresses tumor growth in vivo. Onco Targets Ther 2018; 11:4479-4490. [PMID: 30122940 PMCID: PMC6078188 DOI: 10.2147/ott.s164670] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Cordycepin, the main active ingredient of a traditional Chinese herbal remedy - extracted from Cordyceps sinensis - has been demonstrated as a very effective anti-inflammatory and antitumor drug. The present study investigated its antitumor effect on pancreatic cancer, a highly aggressive cancer with extremely poor prognosis due to malignancy, and clarified its underlying mechanism both in vitro and in vivo. Methods The antitumor viability of cordycepin on human pancreatic cancer MIAPaCa-2 and Capan-1 cells was determined by colony formation assays. Annexin V/PI double staining and flow cytometry assay were used to investigate whether cordycepin induced apoptosis and cell cycle arrest. The mitochondrial membrane potential (ΔΨm) was analyzed by Rhodamine 123 staining, and expression of related proteins evaluated by Western blot and immunohistochemistry, both on pancreatic cancer cells and tumor xenografts to reveal the potential mechanism for the effect of cordycepin. Furthermore, the in vivo efficacy was examined on nude mice bearing MIAPaCa-2 cell tumors treated by intraperitoneal injection of cordycepin (0, 15, and 50 mg/kg/d) for 28 days. Results Cordycepin inhibited cell viability, proliferation and colony formation ability and induced cell cycle arrest and early apoptosis of human pancreatic cancer cells (MIAPaCa-2 and Capan-1) in a dose- and time-dependent manner. The same effect was also observed in vivo. Decrease of ΔΨm and upregulation of Bax, cleaved caspase-3, cleaved caspase-9, and cleaved PARP as well as downregulation of Bcl-2 both in vitro and in vivo indicated that the mitochondria-mediated intrinsic pathway was involved in cordycepin's antitumor effect. Conclusion Our data showed that cordycepin inhibited the activity of pancreatic cancer both in vitro and in vivo by regulating apoptosis-related protein expression through the mitochondrial pathway and suggest that cordycepin may be a promising therapeutic option for pancreatic cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, .,Department of General Surgery, Hangzhou First People's Hospital, Hangzhou 310006, People's Republic of China
| | - Xiao Xi Zhang
- Shanghai Health Development Research Center, Shanghai 200040, People's Republic of China
| | - Rui Yan Yuan
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, .,Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, ,
| | - Tai Ren
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, .,Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, ,
| | - Zi Yu Shao
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, .,Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, ,
| | - Hong Fei Wang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, .,Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, ,
| | - Wei Long Cai
- Department of General Surgery, Huzhou Central Hospital, Zhejiang 313000, People's Republic of China
| | - Li Tian Chen
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, .,Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, ,
| | - Xu An Wang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, ,
| | - Ping Wang
- Department of General Surgery, Hangzhou First People's Hospital, Hangzhou 310006, People's Republic of China
| |
Collapse
|
19
|
Xu DC, Arthurton L, Baena-Lopez LA. Learning on the Fly: The Interplay between Caspases and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5473180. [PMID: 29854765 PMCID: PMC5949197 DOI: 10.1155/2018/5473180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023]
Abstract
The ease of genetic manipulation, as well as the evolutionary conservation of gene function, has placed Drosophila melanogaster as one of the leading model organisms used to understand the implication of many proteins with disease development, including caspases and their relation to cancer. The family of proteases referred to as caspases have been studied over the years as the major regulators of apoptosis: the most common cellular mechanism involved in eliminating unwanted or defective cells, such as cancerous cells. Indeed, the evasion of the apoptotic programme resulting from caspase downregulation is considered one of the hallmarks of cancer. Recent investigations have also shown an instrumental role for caspases in non-lethal biological processes, such as cell proliferation, cell differentiation, intercellular communication, and cell migration. Importantly, malfunction of these essential biological tasks can deeply impact the initiation and progression of cancer. Here, we provide an extensive review of the literature surrounding caspase biology and its interplay with many aspects of cancer, emphasising some of the key findings obtained from Drosophila studies. We also briefly describe the therapeutic potential of caspase modulation in relation to cancer, highlighting shortcomings and hopeful promises.
Collapse
Affiliation(s)
- Derek Cui Xu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
- Cell Biology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lewis Arthurton
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|