1
|
Fishman CB, Crawford KD, Bhattarai-Kline S, Poola D, Zhang K, González-Delgado A, Rojas-Montero M, Shipman SL. Continuous multiplexed phage genome editing using recombitrons. Nat Biotechnol 2024:10.1038/s41587-024-02370-5. [PMID: 39237706 DOI: 10.1038/s41587-024-02370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 09/07/2024]
Abstract
Bacteriophage genome editing can enhance the efficacy of phages to eliminate pathogenic bacteria in patients and in the environment. However, current methods for editing phage genomes require laborious screening, counterselection or in vitro construction of modified genomes. Here, we present a scalable approach that uses modified bacterial retrons called recombitrons to generate recombineering donor DNA paired with single-stranded binding and annealing proteins for integration into phage genomes. This system can efficiently create genome modifications in multiple phages without the need for counterselection. The approach also supports larger insertions and deletions, which can be combined with simultaneous counterselection for >99% efficiency. Moreover, we show that the process is continuous, with more edits accumulating the longer the phage is cultured with the host, and multiplexable. We install up to five distinct mutations on a single lambda phage genome without counterselection in only a few hours of hands-on time and identify a residue-level epistatic interaction in the T7 gp17 tail fiber.
Collapse
Affiliation(s)
- Chloe B Fishman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Kate D Crawford
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Graduate Program in Bioengineering, University of California, San Francisco and Berkeley, CA, USA
| | - Santi Bhattarai-Kline
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Darshini Poola
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Indian Institute of Science Education and Research (IISER), Pune, India
| | - Karen Zhang
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Graduate Program in Bioengineering, University of California, San Francisco and Berkeley, CA, USA
| | | | | | - Seth L Shipman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
2
|
Fitschen LJ, Newing TP, Johnston NP, Bell CE, Tolun G. Half a century after their discovery: Structural insights into exonuclease and annealase proteins catalyzing recombineering. ENGINEERING MICROBIOLOGY 2024; 4:100120. [PMID: 39628787 PMCID: PMC11611040 DOI: 10.1016/j.engmic.2023.100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 12/06/2024]
Abstract
Recombineering is an essential tool for molecular biologists, allowing for the facile and efficient manipulation of bacterial genomes directly in cells without the need for costly and laborious in vitro manipulations involving restriction enzymes. The main workhorses behind recombineering are bacteriophage proteins that promote the single-strand annealing (SSA) homologous recombination pathway to repair double-stranded DNA breaks. While there have been several reviews examining recombineering methods and applications, comparatively few have focused on the mechanisms of the proteins that are the key players in the SSA pathway: a 5'→3' exonuclease and a single-strand annealing protein (SSAP or "annealase"). This review dives into the structures and functions of the two SSA recombination systems that were the first to be developed for recombineering in E. coli: the RecET system from E. coli Rac prophage and the λRed system from bacteriophage λ. By comparing the structures of the RecT and Redβ annealases, and the RecE and λExo exonucleases, we provide new insights into how the structures of these proteins dictate their function. Examining the sequence conservation of the λExo and RecE exonucleases gives more profound insights into their critical functional features. Ultimately, as recombineering accelerates and evolves in the laboratory, a better understanding of the mechanisms of the proteins behind this powerful technique will drive the development of improved and expanded capabilities in the future.
Collapse
Affiliation(s)
- Lucy J. Fitschen
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- The ARC Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| | - Timothy P. Newing
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- The ARC Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| | - Nikolas P. Johnston
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Charles E. Bell
- Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, OH 43210, United States
| | - Gökhan Tolun
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- The ARC Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
3
|
Guo L, Bao Y, Zhao Y, Ren Z, Bi L, Zhang X, Liu C, Hou X, Wang MD, Sun B. Joint Efforts of Replicative Helicase and SSB Ensure Inherent Replicative Tolerance of G-Quadruplex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307696. [PMID: 38126671 PMCID: PMC10916570 DOI: 10.1002/advs.202307696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Indexed: 12/23/2023]
Abstract
G-quadruplex (G4) is a four-stranded noncanonical DNA structure that has long been recognized as a potential hindrance to DNA replication. However, how replisomes effectively deal with G4s to avoid replication failure is still obscure. Here, using single-molecule and ensemble approaches, the consequence of the collision between bacteriophage T7 replisome and an intramolecular G4 located on either the leading or lagging strand is examined. It is found that the adjacent fork junctions induced by G4 formation incur the binding of T7 DNA polymerase (DNAP). In addition to G4, these inactive DNAPs present insuperable obstacles, impeding the progression of DNA synthesis. Nevertheless, T7 helicase can dismantle them and resolve lagging-strand G4s, paving the way for the advancement of the replication fork. Moreover, with the assistance of the single-stranded DNA binding protein (SSB) gp2.5, T7 helicase is also capable of maintaining a leading-strand G4 structure in an unfolded state, allowing for a fraction of T7 DNAPs to synthesize through without collapse. These findings broaden the functional repertoire of a replicative helicase and underscore the inherent G4 tolerance of a replisome.
Collapse
Affiliation(s)
- Lijuan Guo
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Yanling Bao
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Yilin Zhao
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Zhiyun Ren
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Lulu Bi
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Xia Zhang
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai201210China
| | - Xi‐Miao Hou
- College of Life SciencesNorthwest A&F UniversityYanglingShaanxi712100China
| | - Michelle D. Wang
- Department of Physics, Laboratory of Atomic and Solid State PhysicsCornell UniversityIthacaNY14853USA
- Howard Hughes Medical InstituteCornell UniversityIthacaNY14853USA
| | - Bo Sun
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| |
Collapse
|
4
|
Hou C, Wang X, Guo J, Qi C, Zhang Y, Chen Y, Feng J, Zhao B, Li F. Isolation, characterization, and genomic analysis of BUCT627: a lytic bacteriophage targeting Stenotrophomonas maltophilia. FEMS Microbiol Lett 2024; 371:fnae076. [PMID: 39349986 DOI: 10.1093/femsle/fnae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/31/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024] Open
Abstract
Stenotrophomonas infections pose significant therapeutic challenges due to escalating resistance to antibiotics and chemotherapeutic agents. Phages offer a potential solution by virtue of their specific bacterial targeting capabilities. In this study, we isolated a new Stenotrophomonas bacteriophage, named BUCT627, from hospital sewage. Phage BUCT627 exhibited a 30-min latent period and demonstrated a burst size of 46 plaque forming unit (PFU)/cell. Remarkably, this phage displayed robust stability across a wide pH range (pH 3-13) and exhibited resilience under varying thermal conditions. The receptor of phage BUCT627 on Stenotrophomonas maltophilia No. 826 predominantly consist of surface proteins. The complete genome of phage BUCT627 is a 61 860-bp linear double-stranded DNA molecule with a GC content of 56.3%, and contained 99 open reading frames and two tRNAs. Notably, no antibiotic resistance, toxin, virulence-related genes, or lysogen-formation gene clusters was identified in BUCT627. Transmission electron microscopy and phylogeny analysis indicated that this phage was a new member within the Siphoviridae family. The results of this study will enhance our understanding of phage diversity and hold promise for the development of alternative therapeutic strategies against S. maltophilia infections.
Collapse
Affiliation(s)
- Chenrui Hou
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Xuexue Wang
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Shanxi University, Taiyuan, 030006, China
| | - Jianguang Guo
- Office of Taian Central Blood Station of Shandong Province, Taian, 271000, China
| | - Chunling Qi
- Center for Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Ying Zhang
- Department of Hepatobiliary Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Yun Chen
- Department of Minimally Invasive Cancer, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Jiao Feng
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Shanxi University, Taiyuan, 030006, China
| | - Bin Zhao
- Pediatric Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Fei Li
- Center for Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
- Post-doctoral Programme, Shandong Runde Biotechnology Co. Ltd, Taian, 271000, China
| |
Collapse
|
5
|
Dong Y, Huang Y, Fan H, Song L, An X, Xu S, Li M, Tong Y. Characterization, complete genome sequencing, and CRISPR/Cas9 system-based decontamination of a novel Escherichia coli phage TR1 from fermentation substrates. Front Microbiol 2023; 14:1230775. [PMID: 37637117 PMCID: PMC10450929 DOI: 10.3389/fmicb.2023.1230775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Phage contamination has become a major concern for industrial bacteria, such as Escherichia coli BL21(DE3), used in fermentation processes. Herein, we report a CRISPR/Cas9 defense system-based strategy to precisely prey and degrade phage DNA to decontaminate target phages. First, we isolated a novel phage from fermentation substrates with BL21(DE3) as the host, named TR1. It showed a typical podovirus morphology with a head diameter of 51.46 ± 2.04 nm and a tail length of 9.31 ± 2.77 nm. The burst size of phage TR1 was 151 PFU/cell, suggesting its strong fecundity in the fermentation system. Additionally, whole-genome sequencing revealed that phage TR1 has a DNA genome of 44,099 bp in length with a 43.8% GC content, encoding a total of 68 open reading frames. Comparative genomics and phylogenetic analysis designated this phage to be a new species of the genus Christensenvirus. To counteract phage TR1, we employed the CRISPR/Cas9 system-based strategy and constructed two phage-resistant E. coli strains, BL21-C and BL21-T, based on conserved genes. Both EOP assays and growth curves indicated strong phage resistance of the recombinant strains, without affecting cell growth. Therefore, this study aimed to provide a resilient strategy to respond to ever-changing phages and ongoing phage-host arm race in industrial fermentation environments by the personalized design of spacers in the recombinant CRISPR/Cas system-containing plasmid. More importantly, our research sparks the use of phage defense mechanism to prevent phage contamination in extensive biotechnological applications.
Collapse
Affiliation(s)
- Yuqi Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yunfei Huang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shan Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Qinhuangdao Bohai Biological Research Institute, Beijing University of Chemical Technology, Qinhuangdao, Hebei, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
6
|
Stokar-Avihail A, Fedorenko T, Hör J, Garb J, Leavitt A, Millman A, Shulman G, Wojtania N, Melamed S, Amitai G, Sorek R. Discovery of phage determinants that confer sensitivity to bacterial immune systems. Cell 2023; 186:1863-1876.e16. [PMID: 37030292 DOI: 10.1016/j.cell.2023.02.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 04/10/2023]
Abstract
Over the past few years, numerous anti-phage defense systems have been discovered in bacteria. Although the mechanism of defense for some of these systems is understood, a major unanswered question is how these systems sense phage infection. To systematically address this question, we isolated 177 phage mutants that escape 15 different defense systems. In many cases, these escaper phages were mutated in the gene sensed by the defense system, enabling us to map the phage determinants that confer sensitivity to bacterial immunity. Our data identify specificity determinants of diverse retron systems and reveal phage-encoded triggers for multiple abortive infection systems. We find general themes in phage sensing and demonstrate that mechanistically diverse systems have converged to sense either the core replication machinery of the phage, phage structural components, or host takeover mechanisms. Combining our data with previous findings, we formulate key principles on how bacterial immune systems sense phage invaders.
Collapse
Affiliation(s)
- Avigail Stokar-Avihail
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Taya Fedorenko
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jens Hör
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jeremy Garb
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Azita Leavitt
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gabriela Shulman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nicole Wojtania
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
7
|
Fishman CB, Crawford KD, Bhattarai-Kline S, Zhang K, González-Delgado A, Shipman SL. Continuous Multiplexed Phage Genome Editing Using Recombitrons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534024. [PMID: 36993281 PMCID: PMC10055335 DOI: 10.1101/2023.03.24.534024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Bacteriophages, which naturally shape bacterial communities, can be co-opted as a biological technology to help eliminate pathogenic bacteria from our bodies and food supply1. Phage genome editing is a critical tool to engineer more effective phage technologies. However, editing phage genomes has traditionally been a low efficiency process that requires laborious screening, counter selection, or in vitro construction of modified genomes2. These requirements impose limitations on the type and throughput of phage modifications, which in turn limit our knowledge and potential for innovation. Here, we present a scalable approach for engineering phage genomes using recombitrons: modified bacterial retrons3 that generate recombineering donor DNA paired with single stranded binding and annealing proteins to integrate those donors into phage genomes. This system can efficiently create genome modifications in multiple phages without the need for counterselection. Moreover, the process is continuous, with edits accumulating in the phage genome the longer the phage is cultured with the host, and multiplexable, with different editing hosts contributing distinct mutations along the genome of a phage in a mixed culture. In lambda phage, as an example, recombitrons yield single-base substitutions at up to 99% efficiency and up to 5 distinct mutations installed on a single phage genome, all without counterselection and only a few hours of hands-on time.
Collapse
Affiliation(s)
- Chloe B. Fishman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Kate D. Crawford
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Graduate Program in Bioengineering, University of California, San Francisco and Berkeley, CA, USA
| | - Santi Bhattarai-Kline
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Karen Zhang
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Graduate Program in Bioengineering, University of California, San Francisco and Berkeley, CA, USA
| | | | - Seth L. Shipman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
8
|
Plaza-G A I, Lemishko KM, Crespo R, Truong TQ, Kaguni LS, Cao-García FJ, Ciesielski GL, Ibarra B. Mechanism of strand displacement DNA synthesis by the coordinated activities of human mitochondrial DNA polymerase and SSB. Nucleic Acids Res 2023; 51:1750-1765. [PMID: 36744436 PMCID: PMC9976888 DOI: 10.1093/nar/gkad037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/16/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023] Open
Abstract
Many replicative DNA polymerases couple DNA replication and unwinding activities to perform strand displacement DNA synthesis, a critical ability for DNA metabolism. Strand displacement is tightly regulated by partner proteins, such as single-stranded DNA (ssDNA) binding proteins (SSBs) by a poorly understood mechanism. Here, we use single-molecule optical tweezers and biochemical assays to elucidate the molecular mechanism of strand displacement DNA synthesis by the human mitochondrial DNA polymerase, Polγ, and its modulation by cognate and noncognate SSBs. We show that Polγ exhibits a robust DNA unwinding mechanism, which entails lowering the energy barrier for unwinding of the first base pair of the DNA fork junction, by ∼55%. However, the polymerase cannot prevent the reannealing of the parental strands efficiently, which limits by ∼30-fold its strand displacement activity. We demonstrate that SSBs stimulate the Polγ strand displacement activity through several mechanisms. SSB binding energy to ssDNA additionally increases the destabilization energy at the DNA junction, by ∼25%. Furthermore, SSB interactions with the displaced ssDNA reduce the DNA fork reannealing pressure on Polγ, in turn promoting the productive polymerization state by ∼3-fold. These stimulatory effects are enhanced by species-specific functional interactions and have significant implications in the replication of the human mitochondrial DNA.
Collapse
Affiliation(s)
- Ismael Plaza-G A
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain
| | - Kateryna M Lemishko
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain
| | - Rodrigo Crespo
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Pza. de Ciencias, 1, 28040 Madrid, Spain
| | - Thinh Q Truong
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, USA
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48823, USA
| | - Francisco J Cao-García
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Pza. de Ciencias, 1, 28040 Madrid, Spain
| | - Grzegorz L Ciesielski
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, USA.,Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48823, USA
| | - Borja Ibarra
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain.,Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| |
Collapse
|
9
|
Manavi F, Sharma A, Sharma R, Tsunoda T, Shatabda S, Dehzangi I. CNN-Pred: Prediction of single-stranded and double-stranded DNA-binding protein using convolutional neural networks. Gene X 2023; 853:147045. [PMID: 36503892 DOI: 10.1016/j.gene.2022.147045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
DNA-binding proteins play a vital role in biological activity including DNA replication, DNA packing, and DNA reparation. DNA-binding proteins can be classified into single-stranded DNA-binding proteins (SSBs) or double-stranded DNA-binding proteins (DSBs). Determining whether a protein is DSB or SSB helps determine the protein's function. Therefore, many studies have been conducted to accurately identify DSB and SSB in recent years. Despite all the efforts have been made so far, the DSB and SSB prediction performance remains limited. In this study, we propose a new method called CNN-Pred to accurately predict DSB and SSB. To build CNN-Pred, we first extract evolutionary-based features in the form of mono-gram and bi-gram profiles using position specific scoring matrix (PSSM). We then, use 1D-convolutional neural network (CNN) as the classifier to our extracted features. Our results demonstrate that CNN-Pred can enhance the DSB and SSB prediction accuracies by more than 4%, on the independent test compared to previous studies found in the literature. CNN-pred as a standalone tool and all its source codes are publicly available at: https://github.com/MLBC-lab/CNN-Pred.
Collapse
Affiliation(s)
- Farnoush Manavi
- Computer Science and Engineering and Information Technology Department, Shiraz University, Shiraz, Iran
| | - Alok Sharma
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Institute for Integrated and Intelligent Systems, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Ronesh Sharma
- School of Electrical and Electronics Engineering, Fiji National University, Suva, Fiji
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Laboratory for Medical Science Mathematics, Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Medical Science Mathematics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Swakkhar Shatabda
- Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
| | - Iman Dehzangi
- Department of Computer Science, Rutgers University, Camden, NJ, USA; Center for Computational and Integrative Biology, Rutgers University, Camden, USA
| |
Collapse
|
10
|
Xu L, Halma MTJ, Wuite GJL. Unravelling How Single-Stranded DNA Binding Protein Coordinates DNA Metabolism Using Single-Molecule Approaches. Int J Mol Sci 2023; 24:ijms24032806. [PMID: 36769124 PMCID: PMC9917605 DOI: 10.3390/ijms24032806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play vital roles in DNA metabolism. Proteins of the SSB family exclusively and transiently bind to ssDNA, preventing the DNA double helix from re-annealing and maintaining genome integrity. In the meantime, they interact and coordinate with various proteins vital for DNA replication, recombination, and repair. Although SSB is essential for DNA metabolism, proteins of the SSB family have been long described as accessory players, primarily due to their unclear dynamics and mechanistic interaction with DNA and its partners. Recently-developed single-molecule tools, together with biochemical ensemble techniques and structural methods, have enhanced our understanding of the different coordination roles that SSB plays during DNA metabolism. In this review, we discuss how single-molecule assays, such as optical tweezers, magnetic tweezers, Förster resonance energy transfer, and their combinations, have advanced our understanding of the binding dynamics of SSBs to ssDNA and their interaction with other proteins partners. We highlight the central coordination role that the SSB protein plays by directly modulating other proteins' activities, rather than as an accessory player. Many possible modes of SSB interaction with protein partners are discussed, which together provide a bigger picture of the interaction network shaped by SSB.
Collapse
|
11
|
Yin J, Fu Y, Rao G, Li Z, Tian K, Chong T, Kuang K, Wang M, Hu Z, Cao S. Structural transitions during the cooperative assembly of baculovirus single-stranded DNA-binding protein on ssDNA. Nucleic Acids Res 2022; 50:13100-13113. [PMID: 36477586 PMCID: PMC9825184 DOI: 10.1093/nar/gkac1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) interact with single-stranded DNA (ssDNA) to form filamentous structures with various degrees of cooperativity, as a result of intermolecular interactions between neighboring SSB subunits on ssDNA. However, it is still challenging to perform structural studies on SSB-ssDNA filaments at high resolution using the most studied SSB models, largely due to the intrinsic flexibility of these nucleoprotein complexes. In this study, HaLEF-3, an SSB protein from Helicoverpa armigera nucleopolyhedrovirus, was used for in vitro assembly of SSB-ssDNA filaments, which were structurally studied at atomic resolution using cryo-electron microscopy. Combined with the crystal structure of ssDNA-free HaLEF-3 octamers, our results revealed that the three-dimensional rearrangement of HaLEF-3 induced by an internal hinge-bending movement is essential for the formation of helical SSB-ssDNA complexes, while the contacting interface between adjacent HaLEF-3 subunits remains basically intact. We proposed a local cooperative SSB-ssDNA binding model, in which, triggered by exposure to oligonucleotides, HaLEF-3 molecules undergo ring-to-helix transition to initiate continuous SSB-SSB interactions along ssDNA. Unique structural features revealed by the assembly of HaLEF-3 on ssDNA suggest that HaLEF-3 may represent a new class of SSB.
Collapse
Affiliation(s)
| | | | | | - Zhiqiang Li
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kexing Tian
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tingting Chong
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kai Kuang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety, Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety, Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Sheng Cao
- To whom correspondence should be addressed. Tel: +86 27 87198286; Fax: +86 27 87198286;
| |
Collapse
|
12
|
Ratre V, Hemmadi V, Biswas S, Biswas M. Identification and Preliminary Characterization of a Novel Single-Stranded DNA Binding Protein of Staphylococcus aureus Phage Phi11 Expressed in Escherichia coli. Mol Biotechnol 2022; 65:922-933. [DOI: 10.1007/s12033-022-00598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/28/2022] [Indexed: 11/10/2022]
|
13
|
DNA Polymerase-Parental DNA Interaction Is Essential for Helicase-Polymerase Coupling during Bacteriophage T7 DNA Replication. Int J Mol Sci 2022; 23:ijms23031342. [PMID: 35163266 PMCID: PMC8835902 DOI: 10.3390/ijms23031342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 11/17/2022] Open
Abstract
DNA helicase and polymerase work cooperatively at the replication fork to perform leading-strand DNA synthesis. It was believed that the helicase migrates to the forefront of the replication fork where it unwinds the duplex to provide templates for DNA polymerases. However, the molecular basis of the helicase-polymerase coupling is not fully understood. The recently elucidated T7 replisome structure suggests that the helicase and polymerase sandwich parental DNA and each enzyme pulls a daughter strand in opposite directions. Interestingly, the T7 polymerase, but not the helicase, carries the parental DNA with a positively charged cleft and stacks at the fork opening using a β-hairpin loop. Here, we created and characterized T7 polymerases each with a perturbed β-hairpin loop and positively charged cleft. Mutations on both structural elements significantly reduced the strand-displacement synthesis by T7 polymerase but had only a minor effect on DNA synthesis performed against a linear DNA substrate. Moreover, the aforementioned mutations eliminated synergistic helicase-polymerase binding and unwinding at the DNA fork and processive fork progressions. Thus, our data suggested that T7 polymerase plays a dominant role in helicase-polymerase coupling and replisome progression.
Collapse
|
14
|
Bocanegra R, Plaza G A I, Ibarra B. In vitro single-molecule manipulation studies of viral DNA replication. Enzymes 2021; 49:115-148. [PMID: 34696830 DOI: 10.1016/bs.enz.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Faithfull replication of genomic information relies on the coordinated activity of the multi-protein machinery known as the replisome. Several constituents of the replisome operate as molecular motors that couple thermal and chemical energy to a mechanical task. Over the last few decades, in vitro single-molecule manipulation techniques have been used to monitor and manipulate mechanically the activities of individual molecular motors involved in DNA replication with nanometer, millisecond, and picoNewton resolutions. These studies have uncovered the real-time kinetics of operation of these biological systems, the nature of their transient intermediates, and the processes by which they convert energy to work (mechano-chemistry), ultimately providing new insights into their inner workings of operation not accessible by ensemble assays. In this chapter, we describe two of the most widely used single-molecule manipulation techniques for the study of DNA replication, optical and magnetic tweezers, and their application in the study of the activities of proteins involved in viral DNA replication.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Madrid, Spain
| | - Ismael Plaza G A
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Madrid, Spain
| | - Borja Ibarra
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Madrid, Spain.
| |
Collapse
|
15
|
Ciesielski GL, Kim S, de Bovi Pontes C, Kaguni LS. Physical and Functional Interaction of Mitochondrial Single-Stranded DNA-Binding Protein and the Catalytic Subunit of DNA Polymerase Gamma. Front Genet 2021; 12:721864. [PMID: 34539752 PMCID: PMC8440931 DOI: 10.3389/fgene.2021.721864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
The maintenance of the mitochondrial genome depends on a suite of nucleus-encoded proteins, among which the catalytic subunit of the mitochondrial replicative DNA polymerase, Pol γα, plays a pivotal role. Mutations in the Pol γα-encoding gene, POLG, are a major cause of human mitochondrial disorders. Here we present a study of direct and functional interactions of Pol γα with the mitochondrial single-stranded DNA-binding protein (mtSSB). mtSSB coordinates the activity of the enzymes at the DNA replication fork. However, the mechanism of this functional relationship is elusive, and no direct interactions between the replicative factors have been identified to date. This contrasts strikingly with the extensive interactomes of SSB proteins identified in other homologous replication systems. Here we show for the first time that mtSSB binds Pol γα directly, in a DNA-independent manner. This interaction is strengthened in the absence of the loop 2.3 structure in mtSSB, and is abolished upon preincubation with Pol γβ. Together, our findings suggest that the interaction between mtSSB and polymerase gamma holoenzyme (Pol γ) involves a balance between attractive and repulsive affinities, which have distinct effects on DNA synthesis and exonucleolysis.
Collapse
Affiliation(s)
- Grzegorz L Ciesielski
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland.,Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States
| | - Shalom Kim
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States
| | | | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| |
Collapse
|
16
|
Lo CY, Gao Y. DNA Helicase-Polymerase Coupling in Bacteriophage DNA Replication. Viruses 2021; 13:v13091739. [PMID: 34578319 PMCID: PMC8472574 DOI: 10.3390/v13091739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022] Open
Abstract
Bacteriophages have long been model systems to study the molecular mechanisms of DNA replication. During DNA replication, a DNA helicase and a DNA polymerase cooperatively unwind the parental DNA. By surveying recent data from three bacteriophage replication systems, we summarized the mechanistic basis of DNA replication by helicases and polymerases. Kinetic data have suggested that a polymerase or a helicase alone is a passive motor that is sensitive to the base-pairing energy of the DNA. When coupled together, the helicase-polymerase complex is able to unwind DNA actively. In bacteriophage T7, helicase and polymerase reside right at the replication fork where the parental DNA is separated into two daughter strands. The two motors pull the two daughter strands to opposite directions, while the polymerase provides a separation pin to split the fork. Although independently evolved and containing different replisome components, bacteriophage T4 replisome shares mechanistic features of Hel-Pol coupling that are similar to T7. Interestingly, in bacteriophages with a limited size of genome like Φ29, DNA polymerase itself can form a tunnel-like structure, which encircles the DNA template strand and facilitates strand displacement synthesis in the absence of a helicase. Studies on bacteriophage replication provide implications for the more complicated replication systems in bacteria, archaeal, and eukaryotic systems, as well as the RNA genome replication in RNA viruses.
Collapse
Affiliation(s)
| | - Yang Gao
- Correspondence: ; Tel.: +1-713-348-2619
| |
Collapse
|
17
|
Lechuga A, Kazlauskas D, Salas M, Redrejo-Rodríguez M. Unlimited Cooperativity of Betatectivirus SSB, a Novel DNA Binding Protein Related to an Atypical Group of SSBs From Protein-Primed Replicating Bacterial Viruses. Front Microbiol 2021; 12:699140. [PMID: 34267740 PMCID: PMC8276246 DOI: 10.3389/fmicb.2021.699140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022] Open
Abstract
Bam35 and related betatectiviruses are tail-less bacteriophages that prey on members of the Bacillus cereus group. These temperate viruses replicate their linear genome by a protein-primed mechanism. In this work, we have identified and characterized the product of the viral ORF2 as a single-stranded DNA binding protein (hereafter B35SSB). B35SSB binds ssDNA with great preference over dsDNA or RNA in a sequence-independent, highly cooperative manner that results in a non-specific stimulation of DNA replication. We have also identified several aromatic and basic residues, involved in base-stacking and electrostatic interactions, respectively, that are required for effective protein-ssDNA interaction. Although SSBs are essential for DNA replication in all domains of life as well as many viruses, they are very diverse proteins. However, most SSBs share a common structural domain, named OB-fold. Protein-primed viruses could constitute an exception, as no OB-fold DNA binding protein has been reported. Based on databases searches as well as phylogenetic and structural analyses, we showed that B35SSB belongs to a novel and independent group of SSBs. This group contains proteins encoded by protein-primed viral genomes from unrelated viruses, spanning betatectiviruses and Φ29 and close podoviruses, and they share a conserved pattern of secondary structure. Sensitive searches and structural predictions indicate that B35SSB contains a conserved domain resembling a divergent OB-fold, which would constitute the first occurrence of an OB-fold-like domain in a protein-primed genome.
Collapse
Affiliation(s)
- Ana Lechuga
- Centro de Biologiìa Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, Vilnius, Lithuania
| | - Margarita Salas
- Centro de Biologiìa Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Modesto Redrejo-Rodríguez
- Centro de Biologiìa Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| |
Collapse
|
18
|
Measuring the Complex Effects of the Single-Stranded DNA-Binding Protein gp2.5 on Primer Synthesis and Extension by the Bacteriophage T7 Replisome. Methods Mol Biol 2021; 2281:323-332. [PMID: 33847969 DOI: 10.1007/978-1-0716-1290-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The single-stranded DNA-binding protein gp2.5 of bacteriophage T7 plays myriad functions in the replication of phage genomes. In addition to interacting with ssDNA, gp2.5 binds to the T7 DNA polymerase and primase/helicase proteins, regulating their enzymatic activities. Here we describe in vitro methods to examine the effects of gp2.5 on primer synthesis and extension by the T7 replisome.
Collapse
|
19
|
Raducanu V, Raducanu D, Ouyang Y, Tehseen M, Takahashi M, Hamdan SM. TSGIT: An N- and C-terminal tandem tag system for purification of native and intein-mediated ligation-ready proteins. Protein Sci 2021; 30:497-512. [PMID: 33150985 PMCID: PMC7784762 DOI: 10.1002/pro.3989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 11/26/2022]
Abstract
A large variety of fusion tags have been developed to improve protein expression, solubilization, and purification. Nevertheless, these tags have been combined in a rather limited number of composite tags and usually these composite tags have been dictated by traditional commercially-available expression vectors. Moreover, most commercially-available expression vectors include either N- or C-terminal fusion tags but not both. Here, we introduce TSGIT, a fusion-tag system composed of both N- and a C-terminal composite fusion tags. The system includes two affinity tags, two solubilization tags and two cleavable tags distributed at both termini of the protein of interest. Therefore, the N- and the C-terminal composite fusion tags in TSGIT are fully orthogonal in terms of both affinity selection and cleavage. For using TSGIT, we streamlined the cloning, expression, and purification procedures. Each component tag is selected to maximize its benefits toward the final construct. By expressing and partially purifying the protein of interest between the components of the TSGIT fusion, the full-length protein is selected over truncated forms, which has been a long-standing problem in protein purification. Moreover, due to the nature of the cleavable tags in TSGIT, the protein of interest is obtained in its native form without any additional undesired N- or C-terminal amino acids. Finally, the resulting purified protein is ready for efficient ligation with other proteins or peptides for downstream applications. We demonstrate the use of this system by purifying a large amount of native fluorescent mRuby3 protein and bacteriophage T7 gp2.5 ssDNA-binding protein.
Collapse
Affiliation(s)
- Vlad‐Stefan Raducanu
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Daniela‐Violeta Raducanu
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Yujing Ouyang
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Muhammad Tehseen
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Masateru Takahashi
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Samir M. Hamdan
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
20
|
Oliveira MT, Ciesielski GL. The Essential, Ubiquitous Single-Stranded DNA-Binding Proteins. Methods Mol Biol 2021; 2281:1-21. [PMID: 33847949 DOI: 10.1007/978-1-0716-1290-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Maintenance of genomes is fundamental for all living organisms. The diverse processes related to genome maintenance entail the management of various intermediate structures, which may be deleterious if unresolved. The most frequent intermediate structures that result from the melting of the DNA duplex are single-stranded (ss) DNA stretches. These are thermodynamically less stable and can spontaneously fold into secondary structures, which may obstruct a variety of genome processes. In addition, ssDNA is more prone to breaking, which may lead to the formation of deletions or DNA degradation. Single-stranded DNA-binding proteins (SSBs) bind and stabilize ssDNA, preventing the abovementioned deleterious consequences and recruiting the appropriate machinery to resolve that intermediate molecule. They are present in all forms of life and are essential for their viability, with very few exceptions. Here we present an introductory chapter to a volume of the Methods in Molecular Biology dedicated to SSBs, in which we provide a general description of SSBs from various taxa.
Collapse
Affiliation(s)
- Marcos T Oliveira
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | | |
Collapse
|
21
|
Peralta-Castro A, García-Medel PL, Baruch-Torres N, Trasviña-Arenas CH, Juarez-Quintero V, Morales-Vazquez CM, Brieba LG. Plant Organellar DNA Polymerases Evolved Multifunctionality through the Acquisition of Novel Amino Acid Insertions. Genes (Basel) 2020; 11:genes11111370. [PMID: 33228188 PMCID: PMC7699545 DOI: 10.3390/genes11111370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
The majority of DNA polymerases (DNAPs) are specialized enzymes with specific roles in DNA replication, translesion DNA synthesis (TLS), or DNA repair. The enzymatic characteristics to perform accurate DNA replication are in apparent contradiction with TLS or DNA repair abilities. For instance, replicative DNAPs incorporate nucleotides with high fidelity and processivity, whereas TLS DNAPs are low-fidelity polymerases with distributive nucleotide incorporation. Plant organelles (mitochondria and chloroplast) are replicated by family-A DNA polymerases that are both replicative and TLS DNAPs. Furthermore, plant organellar DNA polymerases from the plant model Arabidopsis thaliana (AtPOLIs) execute repair of double-stranded breaks by microhomology-mediated end-joining and perform Base Excision Repair (BER) using lyase and strand-displacement activities. AtPOLIs harbor three unique insertions in their polymerization domain that are associated with TLS, microhomology-mediated end-joining (MMEJ), strand-displacement, and lyase activities. We postulate that AtPOLIs are able to execute those different functions through the acquisition of these novel amino acid insertions, making them multifunctional enzymes able to participate in DNA replication and DNA repair.
Collapse
Affiliation(s)
- Antolín Peralta-Castro
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Paola L. García-Medel
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Noe Baruch-Torres
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Carlos H. Trasviña-Arenas
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Víctor Juarez-Quintero
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Carlos M. Morales-Vazquez
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Luis G. Brieba
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
- Correspondence: ; Tel.: +52-462-1663007
| |
Collapse
|
22
|
Mutant and Recombinant Phages Selected from In Vitro Coevolution Conditions Overcome Phage-Resistant Listeria monocytogenes. Appl Environ Microbiol 2020; 86:AEM.02138-20. [PMID: 32887717 DOI: 10.1128/aem.02138-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Bacteriophages (phages) are currently available for use by the food industry to control the foodborne pathogen Listeria monocytogenes Although phage biocontrols are effective under specific conditions, their use can select for phage-resistant bacteria that repopulate phage-treated environments. Here, we performed short-term coevolution experiments to investigate the impact of single phages and a two-phage cocktail on the regrowth of phage-resistant L. monocytogenes and the adaptation of the phages to overcome this resistance. We used whole-genome sequencing to identify mutations in the target host that confer phage resistance and in the phages that alter host range. We found that infections with Listeria phages LP-048, LP-125, or a combination of both select for different populations of phage-resistant L. monocytogenes bacteria with different regrowth times. Phages isolated from the end of the coevolution experiments were found to have gained the ability to infect phage-resistant mutants of L. monocytogenes and L. monocytogenes strains previously found to be broadly resistant to phage infection. Phages isolated from coinfected cultures were identified as recombinants of LP-048 and LP-125. Interestingly, recombination events occurred twice independently in a locus encoding two proteins putatively involved in DNA binding. We show that short-term coevolution of phages and their hosts can be utilized to obtain mutant and recombinant phages with adapted host ranges. These laboratory-evolved phages may be useful for limiting the emergence of phage resistance and for targeting strains that show general resistance to wild-type (WT) phages.IMPORTANCE Listeria monocytogenes is a life-threatening bacterial foodborne pathogen that can persist in food processing facilities for years. Phages can be used to control L. monocytogenes in food production, but phage-resistant bacterial subpopulations can regrow in phage-treated environments. Coevolution experiments were conducted on a Listeria phage-host system to provide insight into the genetic variation that emerges in both the phage and bacterial host under reciprocal selective pressure. As expected, mutations were identified in both phage and host, but additionally, recombination events were shown to have repeatedly occurred between closely related phages that coinfected L. monocytogenes This study demonstrates that in vitro evolution of phages can be utilized to expand the host range and improve the long-term efficacy of phage-based control of L. monocytogenes This approach may also be applied to other phage-host systems for applications in biocontrol, detection, and phage therapy.
Collapse
|
23
|
Singh A, Pandey M, Nandakumar D, Raney KD, Yin YW, Patel SS. Excessive excision of correct nucleotides during DNA synthesis explained by replication hurdles. EMBO J 2020; 39:e103367. [PMID: 32037587 PMCID: PMC7073461 DOI: 10.15252/embj.2019103367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 11/25/2022] Open
Abstract
The proofreading exonuclease activity of replicative DNA polymerase excises misincorporated nucleotides during DNA synthesis, but these events are rare. Therefore, we were surprised to find that T7 replisome excised nearly 7% of correctly incorporated nucleotides during leading and lagging strand syntheses. Similar observations with two other DNA polymerases establish its generality. We show that excessive excision of correctly incorporated nucleotides is not due to events such as processive degradation of nascent DNA or spontaneous partitioning of primer‐end to the exonuclease site as a “cost of proofreading”. Instead, we show that replication hurdles, including secondary structures in template, slowed helicase, or uncoupled helicase–polymerase, increase DNA reannealing and polymerase backtracking, and generate frayed primer‐ends that are shuttled to the exonuclease site and excised efficiently. Our studies indicate that active‐site shuttling occurs at a high frequency, and we propose that it serves as a proofreading mechanism to protect primer‐ends from mutagenic extensions.
Collapse
Affiliation(s)
- Anupam Singh
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Manjula Pandey
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Divya Nandakumar
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, The University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Y Whitney Yin
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
24
|
Cerrón F, de Lorenzo S, Lemishko KM, Ciesielski GL, Kaguni LS, Cao FJ, Ibarra B. Replicative DNA polymerases promote active displacement of SSB proteins during lagging strand synthesis. Nucleic Acids Res 2019; 47:5723-5734. [PMID: 30968132 PMCID: PMC6582349 DOI: 10.1093/nar/gkz249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/22/2019] [Accepted: 03/29/2019] [Indexed: 11/23/2022] Open
Abstract
Genome replication induces the generation of large stretches of single-stranded DNA (ssDNA) intermediates that are rapidly protected by single-stranded DNA-binding (SSB) proteins. To date, the mechanism by which tightly bound SSBs are removed from ssDNA by the lagging strand DNA polymerase without compromising the advance of the replication fork remains unresolved. Here, we aimed to address this question by measuring, with optical tweezers, the real-time replication kinetics of the human mitochondrial and bacteriophage T7 DNA polymerases on free-ssDNA, in comparison with ssDNA covered with homologous and non-homologous SSBs under mechanical tension. We find important differences between the force dependencies of the instantaneous replication rates of each polymerase on different substrates. Modeling of the data supports a mechanism in which strong, specific polymerase-SSB interactions, up to ∼12 kBT, are required for the polymerase to dislodge SSB from the template without compromising its instantaneous replication rate, even under stress conditions that may affect SSB–DNA organization and/or polymerase–SSB communication. Upon interaction, the elimination of template secondary structure by SSB binding facilitates the maximum replication rate of the lagging strand polymerase. In contrast, in the absence of polymerase–SSB interactions, SSB poses an effective barrier for the advance of the polymerase, slowing down DNA synthesis.
Collapse
Affiliation(s)
- Fernando Cerrón
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia. 28049 Madrid, Spain.,Departamento Estructura de la Materia, Física Térmica y Electrónica. Universidad Complutense. 28040 Madrid, Spain
| | - Sara de Lorenzo
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia. 28049 Madrid, Spain
| | - Kateryna M Lemishko
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia. 28049 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología". 28049 Madrid, Spain
| | - Grzegorz L Ciesielski
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48823, USA
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48823, USA
| | - Francisco J Cao
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia. 28049 Madrid, Spain.,Departamento Estructura de la Materia, Física Térmica y Electrónica. Universidad Complutense. 28040 Madrid, Spain
| | - Borja Ibarra
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia. 28049 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología". 28049 Madrid, Spain
| |
Collapse
|
25
|
Mueller SH, Spenkelink LM, van Oijen AM. When proteins play tag: the dynamic nature of the replisome. Biophys Rev 2019; 11:641-651. [PMID: 31273608 PMCID: PMC6682189 DOI: 10.1007/s12551-019-00569-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
DNA replication, or the copying of DNA, is a fundamental process to all life. The system of proteins that carries out replication, the replisome, encounters many roadblocks on its way. An inability of the replisome to properly overcome these roadblocks will negatively affect genomic integrity which in turn can lead to disease. Over the past decades, efforts by many researchers using a broad array of approaches have revealed roles for many different proteins during the initial response of the replisome upon encountering roadblocks. Here, we revisit what is known about DNA replication and the effect of roadblocks during DNA replication across different organisms. We also address how advances in single-molecule techniques have changed our view of the replisome from a highly stable machine with behavior dictated by deterministic principles to a dynamic system that is controlled by stochastic processes. We propose that these dynamics will play crucial roles in roadblock bypass. Further single-molecule studies of this bypass will, therefore, be essential to facilitate the in-depth investigation of multi-protein complexes that is necessary to understand complicated collisions on the DNA.
Collapse
Affiliation(s)
- Stefan H Mueller
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
26
|
Abstract
Replication stalling has been associated with the formation of pathological mitochondrial DNA (mtDNA) rearrangements. Yet, almost nothing is known about the fate of stalled replication intermediates in mitochondria. We show here that replication stalling in mitochondria leads to replication fork regression and mtDNA double-strand breaks. The resulting mtDNA fragments are normally degraded by a mechanism involving the mitochondrial exonuclease MGME1, and the loss of this enzyme results in accumulation of linear and recombining mtDNA species. Additionally, replication stress promotes the initiation of alternative replication origins as an apparent means of rescue by fork convergence. Besides demonstrating an interplay between two major mechanisms rescuing stalled replication forks – mtDNA degradation and homology-dependent repair – our data provide evidence that mitochondria employ similar mechanisms to cope with replication stress as known from other genetic systems.
Collapse
|
27
|
Herpes simplex virus 1 ICP8 mutant lacking annealing activity is deficient for viral DNA replication. Proc Natl Acad Sci U S A 2018; 116:1033-1042. [PMID: 30598436 DOI: 10.1073/pnas.1817642116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most DNA viruses that use recombination-dependent mechanisms to replicate their DNA encode a single-strand annealing protein (SSAP). The herpes simplex virus (HSV) single-strand DNA binding protein (SSB), ICP8, is the central player in all stages of DNA replication. ICP8 is a classical replicative SSB and interacts physically and/or functionally with the other viral replication proteins. Additionally, ICP8 can promote efficient annealing of complementary ssDNA and is thus considered to be a member of the SSAP family. The role of annealing during HSV infection has been difficult to assess in part, because it has not been possible to distinguish between the role of ICP8 as an SSAP from its role as a replicative SSB during viral replication. In this paper, we have characterized an ICP8 mutant, Q706A/F707A (QF), that lacks annealing activity but retains many other functions characteristic of replicative SSBs. Like WT ICP8, the QF mutant protein forms filaments in vitro, binds ssDNA cooperatively, and stimulates the activities of other replication proteins including the viral polymerase, helicase-primase complex, and the origin binding protein. Interestingly, the QF mutant does not complement an ICP8-null virus for viral growth, replication compartment formation, or DNA replication. Thus, we have been able to separate the activities of ICP8 as a replicative SSB from its annealing activity. Taken together, our data indicate that the annealing activity of ICP8 is essential for viral DNA replication in the context of infection and support the notion that HSV-1 uses recombination-dependent mechanisms during DNA replication.
Collapse
|