1
|
Zhou N, Liu Z, Shi Z, Luo L, Xuan M, Zhu R, Hu K, Zhu X, Xu W, Li Y, Cao Z, Zhang Y. PARL regulates porcine oocyte meiotic maturation by mediating mitochondrial activity. Theriogenology 2025; 235:75-85. [PMID: 39798391 DOI: 10.1016/j.theriogenology.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
PARL is a rhomboid membrane protein that plays a crucial role in regulating the metabolism and maintaining the homeostasis of mitochondria which provide important energy and material reserves for oocyte maturation. However, the impact of PARL on oocyte maturation remains poorly understood. Here, we elucidated the pivotal role of PARL in oocyte maturation through its regulatory effects on mitochondrial activity. Specifically, our findings revealed that inhibiting PARL expression by interfering with RNA transcription in oocytes led to a substantial decrease in the rate of first polar body extrusion and early development of parthenogenetically activated embryos. Moreover, PARL deficiency disrupted mitochondrial distribution and activity, leading to the accumulation of ROS, abnormal distribution of CGs and actin, increased tubulin acetylation modification, disturbed spindle assembly and chromosome alignment, ultimately caused DNA damage in porcine oocytes at the metaphase II stage. Intriguingly, PARL deficiency did not cause occurrence of apoptosis in oocytes. Furthermore, our study highlighted that PARL deficiency caused the aberrant expression of genes associated with oocyte maturation, particularly those genes associated with mitochondrial function and DNA integrity. Collectively, these results demonstrate that the indispensable role of PARL in orchestrating porcine oocyte meiotic maturation though its modulation of mitochondrial activity.
Collapse
Affiliation(s)
- Naru Zhou
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China; Center for Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, 230001, China
| | - Zongliang Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zhenhu Shi
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Lei Luo
- Center for Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, 230001, China
| | - Mengqing Xuan
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ruiqing Zhu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Kunlong Hu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xinyue Zhu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Wenhuan Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
2
|
Marunaka Y. Physiological roles of chloride ions in bodily and cellular functions. J Physiol Sci 2025; 73:31. [PMID: 39842984 PMCID: PMC10717538 DOI: 10.1186/s12576-023-00889-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
Physiological roles of Cl-, a major anion in the body, are not well known compared with those of cations. This review article introduces: (1) roles of Cl- in bodily and cellular functions; (2) the range of cytosolic Cl- concentration ([Cl-]c); (3) whether [Cl-]c could change with cell volume change under an isosmotic condition; (4) whether [Cl-]c could change under conditions where multiple Cl- transporters and channels contribute to Cl- influx and efflux in an isosmotic state; (5) whether the change in [Cl-]c could be large enough to act as signals; (6) effects of Cl- on cytoskeletal tubulin polymerization through inhibition of GTPase activity and tubulin polymerization-dependent biological activity; (7) roles of cytosolic Cl- in cell proliferation; (8) Cl--regulatory mechanisms of ciliary motility; (9) roles of Cl- in sweet/umami taste receptors; (10) Cl--regulatory mechanisms of with-no-lysine kinase (WNK); (11) roles of Cl- in regulation of epithelial Na+ transport; (12) relationship between roles of Cl- and H+ in body functions.
Collapse
Affiliation(s)
- Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, General Incorporated Foundation, 67 Kitatsuboi-Cho, Nishinokyo, Nakagyo-Ku, 604-8472, Kyoto, Japan; Research Organization of Science and Technology, Ritsumeikan University, 525-8577, Kusatsu, Japan; Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, 602-8566, Kyoto, Japan.
| |
Collapse
|
3
|
Luo J, Lam WH, Yu D, Chao VC, Zopfi MN, Khoo CJ, Zhao C, Yan S, Liu Z, Li XD, Zheng C, Zhai Y, Ti SC. Tubulin acetyltransferases access and modify the microtubule luminal K40 residue through anchors in taxane-binding pockets. Nat Struct Mol Biol 2024:10.1038/s41594-024-01406-3. [PMID: 39496813 DOI: 10.1038/s41594-024-01406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/23/2024] [Indexed: 11/06/2024]
Abstract
Acetylation at α-tubulin K40 is the sole post-translational modification preferred to occur inside the lumen of hollow cylindrical microtubules. However, how tubulin acetyltransferases access the luminal K40 in micrometer-long microtubules remains unknown. Here, we use cryo-electron microscopy and single-molecule reconstitution assays to reveal the enzymatic mechanism for tubulin acetyltransferases to modify K40 in the lumen. One tubulin acetyltransferase spans across the luminal lattice, with the catalytic core docking onto two α-tubulins and the enzyme's C-terminal domain occupying the taxane-binding pockets of two β-tubulins. The luminal accessibility and enzyme processivity of tubulin acetyltransferases are inhibited by paclitaxel, a microtubule-stabilizing chemotherapeutic agent. Characterizations using recombinant tubulins mimicking preacetylated and postacetylated K40 show the crosstalk between microtubule acetylation states and the cofactor acetyl-CoA in enzyme turnover. Our findings provide crucial insights into the conserved multivalent interactions involving α- and β-tubulins to acetylate the confined microtubule lumen.
Collapse
Affiliation(s)
- Jingyi Luo
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wai Hei Lam
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China.
| | - Daqi Yu
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Victor C Chao
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Marc Nicholas Zopfi
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chen Jing Khoo
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chang Zhao
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shan Yan
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zheng Liu
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Xiang David Li
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Chaogu Zheng
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanliang Zhai
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China.
| | - Shih-Chieh Ti
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Zhang K, Xu R, Zheng L, Zhang H, Qian Z, Li C, Xue M, He Z, Ma J, Li Z, Chen L, Ma R, Yao B. Elevated N-glycosylated cathepsin L impairs oocyte function and contributes to oocyte senescence during reproductive aging. Aging Cell 2024:e14397. [PMID: 39494952 DOI: 10.1111/acel.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/04/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024] Open
Abstract
Age-related declines in oocyte quality and ovarian function are pivotal contributors to female subfertility in clinical settings. Yet, the mechanisms driving ovarian aging and oocyte senescence remain inadequately understood. The present study evaluated the alterations in N-glycoproteins associated with ovarian aging and noted a pronounced elevation in N221 glycopeptides of cathepsin L (Ctsl) in the ovaries of reproductive-aged mice (8-9 months and 11-12 months) compared to younger counterparts (6-8 weeks). Subsequent analysis examined the involvement of Ctsl in oocyte aging and demonstrated a significant elevation in Ctsl levels in aged oocytes. Further, it was revealed that the overexpression of Ctsl in young oocytes substantially diminished their quality, while oocytes expressing an N221-glycosylation mutant of Ctsl did not suffer similar quality degradation. This finding implies that the N221 glycosylation of Ctsl is pivotal in modulating its effect on oocyte health. The introduction of a Ctsl inhibitor into the culture medium restored oocyte quality in aged oocytes by enhancing mitochondrial function, reducing accumulated reactive oxygen species (ROS), lowering apoptosis, and recovering lysosome capacity. Furthermore, the targeted downregulation of Ctsl using siRNA microinjection in aged oocytes enhanced fertilization capability and blastocyst formation, affirming the role of Ctsl knockdown in fostering oocyte quality and embryonic developmental potential. In conclusion, these findings underscore the detrimental effects of high expression of N-glycosylated Ctsl on oocyte quality and its contribution to oocyte senescence, highlighting it as a potential therapeutic target to delay ovarian aging and enhance oocyte viability.
Collapse
Affiliation(s)
- Kemei Zhang
- Department of Reproductive Medicine, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Rui Xu
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lu Zheng
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hong Zhang
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhang Qian
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chuwei Li
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengqi Xue
- Department of Reproductive Medicine, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Zhaowanyue He
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jinzhao Ma
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhou Li
- Department of Reproductive Medicine, Jinling Hospital, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Chen
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rujun Ma
- Department of Reproductive Medicine, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bing Yao
- Department of Reproductive Medicine, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Reproductive Medicine, Jinling Hospital, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Asai K, Zhou Y, Takenouchi O, Kitajima TS. Artificial kinetochore beads establish a biorientation-like state in the spindle. Science 2024; 385:1366-1375. [PMID: 39298589 DOI: 10.1126/science.adn5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/24/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024]
Abstract
Faithful chromosome segregation requires biorientation, where the pair of kinetochores on the chromosome establish bipolar microtubule attachment. The integrity of the kinetochore, a macromolecular complex built on centromeric DNA, is required for biorientation, but components sufficient for biorientation remain unknown. Here, we show that tethering the outer kinetochore heterodimer NDC80-NUF2 to the surface of apolar microbeads establishes their biorientation-like state in mouse cells. NDC80-NUF2 microbeads align at the spindle equator and self-correct alignment errors. The alignment is associated with stable bipolar microtubule attachment and is independent of the outer kinetochore proteins SPC24-SPC25, KNL1, the Mis12 complex, inner kinetochore proteins, and Aurora. Larger microbeads align more rapidly, suggesting a size-dependent biorientation mechanism. This study demonstrates a biohybrid kinetochore design for synthetic biorientation of microscale particles in cells.
Collapse
Affiliation(s)
- Kohei Asai
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuanzhuo Zhou
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Osamu Takenouchi
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Wang X, ShiYang X, Ma W, Wu X, Lu Y. Extracellular signal-regulated protein kinase 5 modulates the spindle assembly to coordinate the oocyte meiotic maturation. Theriogenology 2024; 226:335-342. [PMID: 38959844 DOI: 10.1016/j.theriogenology.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Extracellular signal-regulated protein kinase 5 (Erk5), a member of the mitogen-activated protein kinase (MAPK) family, is ubiquitously expressed in all eukaryotic cells and is implicated in the various mitotic processes such as cell survival, proliferation, migration, and differentiation. However, the potential functional roles of Erk5 in oocyte meiosis have not been fully determined. In this study, we document that ERK5 participates in the meiotic maturation of mouse oocytes by regulating the spindle assembly to ensure the meiotic progression. We unexpectedly found that phosphorylated ERK5 was localized in the spindle pole region at metaphase I and II stages by immunostaining analysis. Inhibition of ERK5 activity using its specific inhibitor XMD8-92 dramatically reduced the incidence of first polar body extrusion. In addition, inhibition of ERK5 evoked the spindle assembly checkpoint to arrest oocytes at metaphase I stage by impairing the spindle assembly, chromosome alignment and kinetochore-microtubule attachment. Mechanically, over-strengthened microtubule stability was shown to disrupt the microtubule dynamics and thus compromise the spindle assembly in ERK5-inhibited oocytes. Conversely, overexpression of ERK5 caused decreased level of acetylated α-tubulin and spindle defects. Collectively, we conclude that ERK5 plays an important role in the oocyte meiotic maturation by regulating microtubule dynamics and spindle assembly.
Collapse
Affiliation(s)
- Xia Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Xiayan ShiYang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Ma
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China; Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Xue Wu
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China; Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Yajuan Lu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China.
| |
Collapse
|
7
|
Yin YX, Ding MQ, Yi Y, Zou YJ, Liao BY, Sun SC. Insufficient KIF15 during porcine oocyte ageing induces HDAC6-based microtubule instability. Theriogenology 2024; 226:49-56. [PMID: 38838614 DOI: 10.1016/j.theriogenology.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
During aging, oocytes display cytoskeleton dynamics defects and aneuploidy, leading to embryonic aneuploidy, which in turn causes miscarriages, implantation failures, and birth defects. KIF15 (also known as Hklp2), a member of the kinesin-12 superfamily, is a cytoplasmic motor protein reported to be involved in Golgi and vesicle-related transport during mitosis in somatic cells. However, the regulatory mechanisms of KIF15 during meiosis in porcine oocytes and the connection with postovulatory aging remain unclear. In present study, we found that KIF15 is expressed during porcine oocyte maturation, and its localization is dependent on microtubule dynamics. Furthermore, the level of KIF15 expression decreased in postovulatory aged oocytes. The decrease in KIF15 blocked polar body extrusion, thereby hindering oocyte maturation. We demonstrated that KIF15 defects contributed to abnormal spindle morphologies and chromosome misalignment, possibly due to microtubule instability, as evidenced by microtubule depolymerization after cold treatment. Additionally, our data indicated that KIF15 modulates HDAC6 to affect tubulin acetylation in oocytes. Taken together, these results suggest that KIF15 regulates HDAC6-related microtubule stability for spindle organization in porcine oocytes during meiosis, which may contribute to the decline in maturation competence in aged porcine oocytes.
Collapse
Affiliation(s)
- Yan-Xuan Yin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng-Qi Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Yi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bi-Yun Liao
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Jiang Y, Cheng R, Zhou H, Pu Y, Wang D, Jiao Y, Chen Y. ROS suppression and oocyte quality restoration: NMN intervention in decabromodiphenyl ether-exposed mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116557. [PMID: 38850695 DOI: 10.1016/j.ecoenv.2024.116557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Decabromodiphenyl ether (BDE-209) is an organic compound that is widely used in rubber, textile, electronics, plastics and other industries. It has been found that BDE-209 has a destructive effect on the reproductive system of mammals. However, the effect of BDE-209 exposure on oocyte quality and whether there is a viable salvage strategy have not been reported. Here, we report that murine oocytes exposed to BDE-209 produce a series of meiostic defects, including increased fragmentation rates and decreased PBE. Furthermore, exposure of oocytes to BDE-209 hinders mitochondrial function and disrupts mitochondrial integrity. Our observations show that supplementation with NMN successfully alleviated the meiosis impairment caused by BDE-209 and averted oocyte apoptosis by suppressing ROS generation. In conclusion, our findings suggest that NMN supplementation may be able to alleviate the oocyte quality impairment induced by BDE-209 exposure, providing a potential strategy for protecting oocytes from environmental pollutant exposure.
Collapse
Affiliation(s)
- Yi Jiang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Rong Cheng
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Haoyang Zhou
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Yanan Pu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Di Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Yangyang Jiao
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Yan Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
9
|
Ju JQ, Zhang HL, Wang Y, Hu LL, Sun SC. Kinesin KIFC3 is essential for microtubule stability and cytokinesis in oocyte meiosis. Cell Commun Signal 2024; 22:199. [PMID: 38553728 PMCID: PMC10979585 DOI: 10.1186/s12964-024-01589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/23/2024] [Indexed: 04/02/2024] Open
Abstract
KIFC3 is a member of Kinesin-14 family motor proteins, which play a variety of roles such as centrosome cohesion, cytokinesis, vesicles transportation and cell proliferation in mitosis. Here, we investigated the functional roles of KIFC3 in meiosis. Our findings demonstrated that KIFC3 exhibited expression and localization at centromeres during metaphase I, followed by translocation to the midbody at telophase I throughout mouse oocyte meiosis. Disruption of KIFC3 activity resulted in defective polar body extrusion. We observed aberrant meiotic spindles and misaligned chromosomes, accompanied by the loss of kinetochore-microtubule attachment, which might be due to the failed recruitment of BubR1/Bub3. Coimmunoprecipitation data revealed that KIFC3 plays a crucial role in maintaining the acetylated tubulin level mediated by Sirt2, thereby influencing microtubule stability. Additionally, our findings demonstrated an interaction between KIFC3 and PRC1 in regulating midbody formation during telophase I, which is involved in cytokinesis regulation. Collectively, these results underscore the essential contribution of KIFC3 to spindle assembly and cytokinesis during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Xu R, Pan M, Yin L, Zhang Y, Tang Y, Lu S, Gao Y, Wei Q, Han B, Ma B. C-Type Natriuretic Peptide Pre-Treatment Improves Maturation Rate of Goat Oocytes by Maintaining Transzonal Projections, Spindle Morphology, and Mitochondrial Function. Animals (Basel) 2023; 13:3880. [PMID: 38136917 PMCID: PMC10740921 DOI: 10.3390/ani13243880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
C-type natriuretic peptide (CNP) is a peptide molecule naturally found in follicles and can be used to extend meiotic resumption and enhance the potential for oocytes to develop. However, the mechanism by which CNP improves goat oocyte quality remains unclear. In this study, cumulus-oocyte complexes (COCs) from goats were pre-treated with CNP prior to IVM, and the results showed that pre-treatment with CNP enhanced goat oocyte maturation. First, we discovered that CNP maintained communication between cumulus cells and oocytes by regulating the transzonal projections (TZPs). We then found that CNP treatment reduced abnormal spindle formation and increased the expression of genes associated with spindle assembly and the spindle assembly checkpoint. Moreover, further analysis showed that oocytes exhibited better antioxidant ability in the CNP treatment group, which mainly manifested in higher glutathione (GSH) and lower reactive oxygen species (ROS) concentrations. Enhanced mitochondrial activity was signified via the augmented expression of mitochondrial oxidative metabolism and fusion and fission-related genes, thus diminishing the apoptosis of the oocytes. Overall, these results provide novel insights into the potential mechanism by which CNP treatment before IVM can improve oocyte quality.
Collapse
Affiliation(s)
- Rui Xu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (R.X.); (M.P.); (L.Y.); (Y.Z.); (Q.W.)
| | - Menghao Pan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (R.X.); (M.P.); (L.Y.); (Y.Z.); (Q.W.)
| | - Lu Yin
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (R.X.); (M.P.); (L.Y.); (Y.Z.); (Q.W.)
| | - Yiqian Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (R.X.); (M.P.); (L.Y.); (Y.Z.); (Q.W.)
| | - Yaju Tang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (R.X.); (M.P.); (L.Y.); (Y.Z.); (Q.W.)
| | - Sihai Lu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (R.X.); (M.P.); (L.Y.); (Y.Z.); (Q.W.)
| | - Yan Gao
- Yulin Animal Husbandry and Veterinary Service Center, Yulin 719000, China
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (R.X.); (M.P.); (L.Y.); (Y.Z.); (Q.W.)
| | - Bin Han
- Yulin Animal Husbandry and Veterinary Service Center, Yulin 719000, China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (R.X.); (M.P.); (L.Y.); (Y.Z.); (Q.W.)
| |
Collapse
|
11
|
Peng N, Zhang Y, Zhang X, Wu HY, Nakamura F. NAP1L1 is a novel microtubule-associated protein. Cytoskeleton (Hoboken) 2023; 80:382-392. [PMID: 37098731 DOI: 10.1002/cm.21761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/29/2023] [Accepted: 04/16/2023] [Indexed: 04/27/2023]
Abstract
Microtubule-associated proteins (MAPs) regulate assembly and stability of microtubules (MTs) during cell cytokinesis, cell migration, neuronal growth, axon guidance, and synapse formation. Using data mining of the Human Protein Atlas database and experimental screening, we identified nucleosome assembly protein 1 like 1 (NAP1L1) as a new MAP. The Human Protein Atlas and PubMed database screening identified 99 potential new MAPs. Twenty candidate proteins that highly co-localized with MTs were exogenously expressed with green fluorescent protein (GFP) or hemagglutinin (HA) tags in tissue culture cells and MTs were co-stained for immunofluorescent microscopy. We found that NAP1L1 is mainly localized in the cytosol with MTs during interphase. Using bacterially expressed recombinant NAP1L1 fragments and purified MTs, we biochemically mapped the MT-binding site on the N-terminal region (1-72aa) and the central region (164-269aa) of NAP1L1. NAP1L1 dimerizes through the long helix region (73-163aa), and full-length NAP1L1 induces the formation of thick MTs, indicating that NAP1L1 has the ability to bundle MTs in cells. Analysis of publicly available RNA-seq data of NAP1L1 depleted cells suggested that NAP1L1 is involved in cell adhesion and migration in agreement with the function of NAP1L1 as a MAP.
Collapse
Affiliation(s)
- Nannan Peng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xinyue Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Hui-Yuan Wu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
12
|
Carmona B, Marinho HS, Matos CL, Nolasco S, Soares H. Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation. BIOLOGY 2023; 12:biology12040561. [PMID: 37106761 PMCID: PMC10136095 DOI: 10.3390/biology12040561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Microtubules (MTs), dynamic polymers of α/β-tubulin heterodimers found in all eukaryotes, are involved in cytoplasm spatial organization, intracellular transport, cell polarity, migration and division, and in cilia biology. MTs functional diversity depends on the differential expression of distinct tubulin isotypes and is amplified by a vast number of different post-translational modifications (PTMs). The addition/removal of PTMs to α- or β-tubulins is catalyzed by specific enzymes and allows combinatory patterns largely enriching the distinct biochemical and biophysical properties of MTs, creating a code read by distinct proteins, including microtubule-associated proteins (MAPs), which allow cellular responses. This review is focused on tubulin-acetylation, whose cellular roles continue to generate debate. We travel through the experimental data pointing to α-tubulin Lys40 acetylation role as being a MT stabilizer and a typical PTM of long lived MTs, to the most recent data, suggesting that Lys40 acetylation enhances MT flexibility and alters the mechanical properties of MTs, preventing MTs from mechanical aging characterized by structural damage. Additionally, we discuss the regulation of tubulin acetyltransferases/desacetylases and their impacts on cell physiology. Finally, we analyze how changes in MT acetylation levels have been found to be a general response to stress and how they are associated with several human pathologies.
Collapse
Affiliation(s)
- Bruno Carmona
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| | - H Susana Marinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Lopes Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Helena Soares
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| |
Collapse
|
13
|
The Male Mouse Meiotic Cilium Emanates from the Mother Centriole at Zygotene Prior to Centrosome Duplication. Cells 2022; 12:cells12010142. [PMID: 36611937 PMCID: PMC9818220 DOI: 10.3390/cells12010142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Cilia are hair-like projections of the plasma membrane with an inner microtubule skeleton known as axoneme. Motile cilia and flagella beat to displace extracellular fluids, playing important roles in the airways and reproductive system. On the contrary, primary cilia function as cell-type-dependent sensory organelles, detecting chemical, mechanical, or optical signals from the extracellular environment. Cilia dysfunction is associated with genetic diseases called ciliopathies and with some types of cancer. Cilia have been recently identified in zebrafish gametogenesis as an important regulator of bouquet conformation and recombination. However, there is little information about the structure and functions of cilia in mammalian meiosis. Here we describe the presence of cilia in male mouse meiotic cells. These solitary cilia formed transiently in 20% of zygotene spermatocytes and reached considerable lengths (up to 15-23 µm). CEP164 and CETN3 localization studies indicated that these cilia emanate from the mother centriole prior to centrosome duplication. In addition, the study of telomeric TFR2 suggested that cilia are not directly related to the bouquet conformation during early male mouse meiosis. Instead, based on TEX14 labeling of intercellular bridges in spermatocyte cysts, we suggest that mouse meiotic cilia may have sensory roles affecting cyst function during prophase I.
Collapse
|
14
|
Triptolide exposure induces oxidative stress and decrease oocyte quality in mice. Toxicon 2022; 221:106964. [DOI: 10.1016/j.toxicon.2022.106964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|