1
|
Wang H, Liu X, Liu Y, Yang C, Ye Y, Yu X, Sheng N, Zhang S, Mao B, Ma P. The E3 ubiquitin ligase RNF220 maintains hindbrain Hox expression patterns through regulation of WDR5 stability. eLife 2024; 13:RP94657. [PMID: 39526890 PMCID: PMC11554307 DOI: 10.7554/elife.94657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The spatial and temporal linear expression of Hox genes establishes a regional Hox code, which is crucial for the antero-posterior (A-P) patterning, segmentation, and neuronal circuit development of the hindbrain. RNF220, an E3 ubiquitin ligase, is widely involved in neural development via targeting of multiple substrates. Here, we found that the expression of Hox genes in the pons was markedly up-regulated at the late developmental stage (post-embryonic day E15.5) in Rnf220-/- and Rnf220+/- mouse embryos. Single-nucleus RNA sequencing (RNA-seq) analysis revealed different Hox de-repression profiles in different groups of neurons, including the pontine nuclei (PN). The Hox pattern was disrupted and the neural circuits were affected in the PN of Rnf220+/- mice. We showed that this phenomenon was mediated by WDR5, a key component of the TrxG complex, which can be polyubiquitinated and degraded by RNF220. Intrauterine injection of WDR5 inhibitor (WDR5-IN-4) and genetic ablation of Wdr5 in Rnf220+/- mice largely recovered the de-repressed Hox expression pattern in the hindbrain. In P19 embryonal carcinoma cells, the retinoic acid-induced Hox expression was further stimulated by Rnf220 knockdown, which can also be rescued by Wdr5 knockdown. In short, our data suggest a new role of RNF220/WDR5 in Hox pattern maintenance and pons development in mice.
Collapse
Affiliation(s)
- Huishan Wang
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Xingyan Liu
- Academy of Mathematics and Systems Science, Chinese Academy of ScienceBeijingChina
- School of Mathematical Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Yamin Liu
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| | - Chencheng Yang
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| | - Yaxin Ye
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| | - Xiaomei Yu
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Nengyin Sheng
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Shihua Zhang
- Academy of Mathematics and Systems Science, Chinese Academy of ScienceBeijingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of SciencesHangzhouChina
| | - Bingyu Mao
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
| | - Pengcheng Ma
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| |
Collapse
|
2
|
Yap XL, Chen JA. Elucidation of how the Mir-23-27-24 cluster regulates development and aging. Exp Mol Med 2024; 56:1263-1271. [PMID: 38871817 PMCID: PMC11263685 DOI: 10.1038/s12276-024-01266-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
MicroRNAs (miRNAs) are pivotal regulators of gene expression and are involved in biological processes spanning from early developmental stages to the intricate process of aging. Extensive research has underscored the fundamental role of miRNAs in orchestrating eukaryotic development, with disruptions in miRNA biogenesis resulting in early lethality. Moreover, perturbations in miRNA function have been implicated in the aging process, particularly in model organisms such as nematodes and flies. miRNAs tend to be clustered in vertebrate genomes, finely modulating an array of biological pathways through clustering within a single transcript. Although extensive research of their developmental roles has been conducted, the potential implications of miRNA clusters in regulating aging remain largely unclear. In this review, we use the Mir-23-27-24 cluster as a paradigm, shedding light on the nuanced physiological functions of miRNA clusters during embryonic development and exploring their potential involvement in the aging process. Moreover, we advocate further research into the intricate interplay among miRNA clusters, particularly the Mir-23-27-24 cluster, in shaping the regulatory landscape of aging.
Collapse
Affiliation(s)
- Xin Le Yap
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-An Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Wellik DM. Hox genes and patterning the vertebrate body. Curr Top Dev Biol 2024; 159:1-27. [PMID: 38729674 DOI: 10.1016/bs.ctdb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The diversity of vertebrate body plans is dizzying, yet stunning for the many things they have in common. Vertebrates have inhabited virtually every part of the earth from its coldest to warmest climates. They locomote by swimming, flying, walking, slithering, or climbing, or combinations of these behaviors. And they exist in many different sizes, from the smallest of frogs, fish and lizards to giraffes, elephants, and blue whales. Despite these differences, vertebrates follow a remarkably similar blueprint for the establishment of their body plan. Within the relatively small amount of time required to complete gastrulation, the process through which the three germ layers, ectoderm, mesoderm, and endoderm are created, the embryo also generates its body axis and is simultaneously patterned. For the length of this axis, the genes that distinguish the neck from the rib cage or the trunk from the sacrum are the Hox genes. In vertebrates, there was evolutionary pressure to maintain this set of genes in the organism. Over the past decades, much has been learned regarding the regulatory mechanisms that ensure the appropriate expression of these genes along the main body axes. Genetic functions continue to be explored though much has been learned. Much less has been discerned on the identity of co-factors used by Hox proteins for the specificity of transcriptional regulation or what downstream targets and pathways are critical for patterning events, though there are notable exceptions. Current work in the field is demonstrating that Hox genes continue to function in many organs long after directing early patterning events. It is hopeful continued research will shed light on remaining questions regarding mechanisms used by this important and conserved set of transcriptional regulators.
Collapse
Affiliation(s)
- Deneen M Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States.
| |
Collapse
|
4
|
Bothe MS, Kohl T, Felmy F, Gallant J, Chagnaud BP. Timing and precision of rattlesnake spinal motoneurons are determined by the KV7 2/3 potassium channel. Curr Biol 2024; 34:286-297.e5. [PMID: 38157862 DOI: 10.1016/j.cub.2023.11.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The evolution of novel motor behaviors requires modifications in the central pattern generators (CPGs) controlling muscle activity. How such changes gradually lead to novel behaviors remains enigmatic due to the long time course of evolution. Rattlesnakes provide a unique opportunity to investigate how a locomotor CPG was evolutionarily modified to generate a novel behavior-in this case, acoustic signaling. We show that motoneurons (MNs) in the body and tail spinal cord of rattlesnakes possess fundamentally different physiological characteristics, which allow MNs in the tail to integrate and transmit CPG output for controlling superfast muscles with high temporal precision. Using patch-clamp electrophysiology, we demonstrate that these differences in locomotor and rattle MNs are mainly determined by KV72/3 potassium channels. However, although KV72/3 exerted a significantly different influence on locomotor and rattle MN physiology, single-cell RNA-seq unexpectedly did not reveal any differences in KV72/3 channels' expression. VIDEO ABSTRACT.
Collapse
Affiliation(s)
| | - Tobias Kohl
- TUM School of Life Science, Technical University of Munich, 85354 Munich, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Jason Gallant
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Boris P Chagnaud
- Institute of Biology, University of Graz, 8010 Graz, Austria; Department of Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
5
|
Liu C, Xie Y, Chen X, Liu L, Liu C, Yin Z. BAF45D-binding to HOX genes was differentially targeted in H9-derived spinal cord neural stem cells. Sci Rep 2024; 14:29. [PMID: 38168763 PMCID: PMC10761701 DOI: 10.1038/s41598-023-50939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Chromatin accessibility has been used to define how cells adopt region-specific neural fates. BAF45D is one of the subunits of a specialised chromatin remodelling BAF complex. It has been reported that BAF45D is expressed in spinal cord neural stem cells (NSCs) and regulates their fate specification. Within the developing vertebrate spinal cord, HOX genes exhibit spatially restricted expression patterns. However, the chromatin accessibility of BAF45D binding HOX genes in spinal cord NSCs is unclear. In the present study, we found that in H9-derived spinal cord NSCs, BAF45D targets TBX6, a gene that regulates spinal cord neural mesodermal progenitors. Furthermore, BAF45D binding to the NES gene is much more enriched in H9-derived spinal cord NSCs chromatin compared to ESCs chromatin. In addition, BAF45D binding to anterior and trunk/central HOX genes, but not to lumbosacral HOX genes, was much more enriched in NSCs chromatin compared to ESCs chromatin. These results may shed new light on the role of BAF45D in regulating region-specific spinal cord NSCs by targeting HOX genes.
Collapse
Affiliation(s)
- Chang Liu
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yuxin Xie
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xueying Chen
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Lihua Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Chao Liu
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
6
|
Mann RS, Glassford WJ. Hox genes: The original body builders. Semin Cell Dev Biol 2024; 152-153:1-3. [PMID: 37291029 PMCID: PMC10949336 DOI: 10.1016/j.semcdb.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, United States; Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, United States; Department of Systems Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, United States.
| | - William J Glassford
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, United States; Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, United States; Department of Systems Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, United States
| |
Collapse
|