1
|
Zheng K, Layton AT. Predicting sex differences in the effects of diuretics in renal epithelial transport during angiotensin II-induced hypertension. Am J Physiol Renal Physiol 2024; 326:F737-F750. [PMID: 38482554 DOI: 10.1152/ajprenal.00398.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic angiotensin II (ANG II) infusion is an experimental model that induces hypertension in rodents. The natriuresis, diuresis, and blood pressure responses differ between males and females. This is perhaps not unexpected, given the rodent kidney, which plays a key role in blood pressure regulation, exhibits marked sex differences. Under normotensive conditions, compared with males, the female rat nephron exhibits lower Na+/H+ exchanger 3 (NHE3) activity along the proximal tubule but higher Na+ transporter activities along the distal segments. ANG II infusion-induced hypertension induces a pressure natriuretic response that reduces NHE3 activity and shifts Na+ transport capacity downstream. The goals of this study were to apply a computational model of epithelial transport along a rat nephron 1) to understand how a 14-day ANG II infusion impacts segmental electrolyte transport in male and female rat nephrons and 2) to identify and explain any sex differences in the effects of loop diuretics, thiazide diuretics, and K+-sparing diuretics. Model simulations suggest that the NHE3 downregulation in the proximal tubule is a major contributor to natriuresis and diuresis in hypertension, with the effects stronger in males. All three diuretics are predicted to induce stronger natriuretic and diuretic effects under hypertension compared with normotension, with relative increases in sodium excretion higher in hypertensive females than in males. The stronger natriuretic responses can be explained by the downstream shift of Na+ transport load in hypertension and by the larger distal transport load in females, both of which limit the ability of the distal segments to further elevate their Na+ transport.NEW & NOTEWORTHY Sex differences in the prevalence of hypertension are found in human and animal models. The kidney, which regulates blood pressure, exhibits sex differences in morphology, hemodynamics, and membrane transporter distributions. This computational modeling study provides insights into how the sexually dimorphic responses to a 14-day angiotensin II infusion differentially impact segmental electrolyte transport in rats. Simulations of diuretic administration explain how the natriuretic and diuretic effects differ between normotension and hypertension and between the sexes.
Collapse
Affiliation(s)
- Kaixin Zheng
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Li L, Su XL, Bai TT, Qin W, Li AH, Liu YX, Wang M, Wang JK, Xing L, Li HJ, He CX, Zhou X, Zhao D, Li PQ, Wu SP, Liu JL, Chen YL, Cao HL. New paeonol derivative C302 reduces hypertension in spontaneously hypertensive rats through endothelium-dependent and endothelium-independent vasodilation. Eur J Pharmacol 2022; 927:175057. [PMID: 35636525 DOI: 10.1016/j.ejphar.2022.175057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022]
Abstract
Hypertension is a major risk factor for cardiovascular disease and Chinese herb monomers could provide new structural skeletons for anti-hypertension new drug development. Paeonol is a Chinese herbal monomer extracted from Cortex moutan, exhibited some anti-hypertensive activity. The study focused on the structural optimization of paeonol to provide promising lead compounds for anti-hypertension new drug development. Herein, twelve new paeonol derivatives (PD) were designed and synthesized and their vasodilation activity was evaluated by in vitro vasodilation drug screening platform based on Myograph. Its anti-hypertension activity, PD-C302 (2-hydroxy-4-methoxyvalerophenone) as a representative with the optimal vasodilation activity, was determined by its response to blood pressure in spontaneously hypertensive rats (SHR) in vivo. Moreover, its molecular mechanism was probed by the vasodilation activity of rat superior mesenteric artery rings with or without endothelium pre-contracted by potassium chloride (KCl) or phenylephrine hydrochloride (PE). It was indicated that PD-C302 significantly reduced the blood pressure in SHR, which would involve in PD-C302-induced vasodilation. Furthermore, endothelium-dependent pathways and endothelium-independent pathways both contributed importantly to PD-C302-induced vasodilation at low concentration of PD-C302. Endothelium-independent pathways (vascular smooth muscle cell-mediated vasodilation), were mainly responsible for the PD-C302-induced vasodilation at high concentration of PD-C302, which involved in opening multiple K+ channels to restrain Ca2+ channels, and then triggered vasodilation to reduce blood pressure. PD-C302 has a simple structure and favorable anti-hypertensive activity in vivo, which could be a promising lead compound for anti-hypertension new drug development.
Collapse
Affiliation(s)
- Long Li
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xing-Li Su
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Tian-Tian Bai
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wei Qin
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Ai-Hong Li
- Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute, Shaanxi Pharmaceutical Holding Group Co., LTD, Xi'an, Shaanxi, 710075, China
| | - Yang-Xin Liu
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Ming Wang
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jiang-Kai Wang
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Lu Xing
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hui-Jin Li
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Chun-Xia He
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhou
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Dong Zhao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Peng-Quan Li
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Shao-Ping Wu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jian-Li Liu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yu-Long Chen
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| | - Hui-Ling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
3
|
Lo Faro AF, Tini A, Gottardi M, Pirani F, Sirignano A, Giorgetti R, Busardò FP. Development and validation of a fast ultra-high-performance liquid chromatography tandem mass spectrometry method for determining carbonic anhydrase inhibitors and their metabolites in urine and hair. Drug Test Anal 2021; 13:1552-1560. [PMID: 33908166 PMCID: PMC8456811 DOI: 10.1002/dta.3055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 02/03/2023]
Abstract
A new, rapid, sensitive, and comprehensive ultra‐high‐performance liquid chromatography tandem mass spectrometry (UHPLC–MS/MS) method for quantifying diuretics (acetazolamide, brinzolamide, dorzolamide, and their metabolites) in human urine and hair was developed and fully validated. Twenty‐five milligrams of hair were incubated with 500‐μl M3® buffer reagent at 100°C for 1 h for complete digestion. After cooling, 1‐μl supernatant was injected onto chromatography system. Urine samples were simply diluted before injection. The chromatographic run time was short (8 min) through a column with a mobile phase gradient. The method was linear (determination coefficients always higher than 0.99) from limit of quantification (LOQ) to 500 ng/ml in urine and from LOQ to 10 ng/mg in hair. LOQs ranged from 0.07 to 1.16 ng/ml in urine and from 0.02 to 0.15 ng/mg in hair. No significant ion suppression due to matrix effect was observed, and process efficiency was always higher than 80%. Intra‐ and inter‐assay precision was lower than 15%. The suitability of the methods was tested with six urine and hair specimens from patients treated with acetazolamide, dorzolamide, or brinzolamide for ocular diseases or systemic hypertension. Average urine concentrations were 266.32 ng/ml for dorzolamide and 47.61 ng/ml for N‐deethyl‐dorzolamide (n = 3), 109.27 ng/ml for brinzolamide and 1.02 ng/ml for O‐desmethyl‐brinzolamide (n = 2), and finally, 12.63 ng/ml for acetazolamide. Average hair concentrations were 5.94 ng/mg for dorzolamide and 0.048 ng/mg for N‐deethyl‐dorzolamide (n = 3), 3.26 ng/mg for brinzolamide (n = 2), and 2.3 ng/mg for acetazolamide (n = 1). The developed method was simple and fast both in the extraction procedures making it eligible in high‐throughput analysis for clinical forensic and doping purposes.
Collapse
Affiliation(s)
- Alfredo Fabrizio Lo Faro
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Ancona, Italy
| | - Anastasio Tini
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Ancona, Italy
| | | | - Filippo Pirani
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Ancona, Italy
| | | | - Raffaele Giorgetti
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Ancona, Italy
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Ancona, Italy
| |
Collapse
|