1
|
McCullough PA, Amin A, Pantalone KM, Ronco C. Cardiorenal Nexus: A Review With Focus on Combined Chronic Heart and Kidney Failure, and Insights From Recent Clinical Trials. J Am Heart Assoc 2022; 11:e024139. [PMID: 35616212 PMCID: PMC9238695 DOI: 10.1161/jaha.121.024139] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cardiorenal nexus encompasses a bidirectional relationship between the heart and the kidneys. Chronic abnormalities in cardiac function can lead to progressive kidney disease, and chronic kidney disease can lead to progressively decreasing cardiac function and increasing risk of cardiovascular disease, including heart failure. About 15% of US adults have chronic kidney disease, 2% have heart failure, and 9% have cardiovascular disease. Prevalence rates of chronic kidney disease, cardiovascular disease, and associated morbidities such as type 2 diabetes are expected to increase with an aging population. Observational studies provide evidence for the cardiorenal nexus. Follow-up data from placebo arms of clinical trials in chronic kidney disease or cardiovascular disease show higher rates of renal and cardiovascular outcome events in patient subgroups with type 2 diabetes than in those without type 2 diabetes. The cardiorenal syndromes develop along an interlinked pathophysiological trajectory that requires a holistic, collaborative approach involving a multidisciplinary team. There is now a compendium of treatment options. Greater understanding of the underlying pathophysiology of the cardiorenal nexus will support optimization of the management of these interlinked disease states.
Collapse
Affiliation(s)
| | - Alpesh Amin
- Department of MedicineUniversity of California Irvine School of MedicineOrangeCA
| | | | - Claudio Ronco
- International Renal Research Institute of VicenzaItaly
- Department of Nephrology, Dialysis and TransplantationSan Bortolo HospitalVicenzaItaly
- Department of Medicine (DIMED)Università di PadovaPaduaItaly
| |
Collapse
|
2
|
Anti-Eryptotic Activity of Food-Derived Phytochemicals and Natural Compounds. Int J Mol Sci 2022; 23:ijms23063019. [PMID: 35328440 PMCID: PMC8951285 DOI: 10.3390/ijms23063019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/05/2023] Open
Abstract
Human red blood cells (RBCs), senescent or damaged due to particular stress, can be removed by programmed suicidal death, a process called eryptosis. There are various molecular mechanisms underlying eryptosis. The most frequent is the increase in the cytoplasmic concentration of Ca2+ ions, later exposure of erythrocytes to oxidative stress, hyperosmotic shock, ceramide formation, stimulation of caspases, and energy depletion. Phosphatidylserine (PS) exposed by eryptotic RBCs due to interaction with endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor, causes the RBCs to adhere to vascular wall with consequent damage to the microcirculation. Eryptosis can be triggered by various xenobiotics and endogenous molecules, such as high cholesterol levels. The possible diseases associated with eryptosis are various, including anemia, chronic kidney disease, liver failure, diabetes, hypertension, heart failure, thrombosis, obesity, metabolic syndrome, arthritis, and lupus. This review addresses and collates the existing ex vivo and animal studies on the inhibition of eryptosis by food-derived phytochemicals and natural compounds including phenolic compounds (PC), alkaloids, and other substances that could be a therapeutic and/or co-adjuvant option in eryptotic-driven disorders, especially if they are introduced through the diet.
Collapse
|
3
|
Lang F, Bissinger R, Abed M, Artunc F. Eryptosis - the Neglected Cause of Anemia in End Stage Renal Disease. Kidney Blood Press Res 2017; 42:749-760. [PMID: 29151105 DOI: 10.1159/000484215] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/23/2017] [Indexed: 11/19/2022] Open
Abstract
End stage renal disease (ESRD) invariably leads to anemia which has been mainly attributed to compromised release of erythropoietin from the defective kidneys with subsequent impairment of erythropoiesis. However, erythropoietin replacement only partially reverses anemia pointing to the involvement of additional mechanisms. As shown more recently, anemia of ESRD is indeed in large part a result of accelerated erythrocyte loss due to suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the cell surface. Phosphatidylserine exposing erythrocytes are bound to and engulfed by macrophages and are thus rapidly cleared from circulating blood. If the loss of erythrocytes cannot be fully compensated by enhanced erythropoiesis, stimulation of eryptosis leads to anemia. Eryptotic erythrocytes may further adhere to the vascular wall and thus impair microcirculation. Stimulators of eryptosis include complement, hyperosmotic shock, energy depletion, oxidative stress, and a wide variety of xenobiotics. Signaling involved in the stimulation of eryptosis includes increase of cytosolic Ca2+ activity, ceramide, caspases, calpain, p38 kinase, protein kinase C, Janus-activated kinase 3, casein kinase 1α, and cyclin-dependent kinase 4. Eryptosis is inhibited by AMP-activated kinase, p21-activated kinase 2, cGMP-dependent protein kinase, mitogen- and stress-activated kinase MSK1/2, and some illdefined tyrosine kinases. In ESRD eryptosis is stimulated at least in part by a plasma component, as it is triggered by exposure of erythrocytes from healthy individuals to plasma from ESRD patients. Several eryptosis-stimulating uremic toxins have been identified, such as vanadate, acrolein, methylglyoxal, indoxyl sulfate, indole-3-acetic acid and phosphate. Attempts to fully reverse anemia in ESRD with excessive stimulation of erythropoiesis enhances the number of circulating suicidal erythrocytes and bears the risk of interference with micocirculation, At least in theory, anemia in ESRD could preferably be treated with replacement of erythropoietin and additional inhibition of eryptosis thus avoiding eryptosis-induced impairment of microcirculation. A variety of eryptosis inhibitors have been identified, their efficacy in ESRD remains, however, to be shown.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology I, University of Tübingen, Tübingen, Germany.,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Rosi Bissinger
- Department of Internal Medicine III, University of Tübingen, Tübingen, Germany
| | - Majed Abed
- Department of Physiology I, University of Tübingen, Tübingen, Germany
| | - Ferruh Artunc
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Suzuki N, Sasaki Y, Kato K, Yamazaki S, Kurasawa M, Yorozu K, Shimonaka Y, Yamamoto M. Efficacy estimation of erythropoiesis-stimulating agents using erythropoietin-deficient anemic mice. Haematologica 2016; 101:e356-60. [PMID: 27247319 DOI: 10.3324/haematol.2015.140814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Norio Suzuki
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Sasaki
- Product Research Department, Chugai Pharmaceutical Co. Ltd., Kamakura, Japan
| | - Koichiro Kato
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Yamazaki
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Sendai, Japan Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsue Kurasawa
- Product Research Department, Chugai Pharmaceutical Co. Ltd., Kamakura, Japan
| | - Keigo Yorozu
- Product Research Department, Chugai Pharmaceutical Co. Ltd., Kamakura, Japan
| | - Yasushi Shimonaka
- Product Research Department, Chugai Pharmaceutical Co. Ltd., Kamakura, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Lang F, Jilani K, Lang E. Therapeutic potential of manipulating suicidal erythrocyte death. Expert Opin Ther Targets 2015; 19:1219-27. [PMID: 26013571 DOI: 10.1517/14728222.2015.1051306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Eryptosis, the suicidal erythrocyte death, is characterized by erythrocyte shrinkage and phosphatidylserine translocation to the erythrocyte surface. Eryptosis is triggered by cell stress such as energy depletion and oxidative stress, by Ca(2+)-entry, ceramide, caspases, calpain and/or altered activity of several kinases. Phosphatidylserine-exposing erythrocytes adhere to the vascular wall and may thus impede microcirculation. Eryptotic cells are further engulfed by phagocytes and thus rapidly cleared from circulation. AREAS COVERED Stimulation of eryptosis contributes to anemia of several clinical conditions such as metabolic syndrome, diabetes, malignancy, hepatic failure, heart failure, uremia, hemolytic uremic syndrome, sepsis, fever, dehydration, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose-6-phosphate dehydrogenase deficiency and Wilson's disease. On the other hand, eryptosis with subsequent clearance of infected erythrocytes in malaria may counteract parasitemia. EXPERT OPINION In theory, anemia due to excessive eryptosis could be alleviated by treatment with small molecules inhibiting eryptosis. In malaria, stimulators of eryptosis may accelerate death of infected erythrocytes and thus favorably influence the clinical course of the disease. Many small molecules inhibit or stimulate eryptosis. Several stimulators favorably influence murine malaria. Further preclinical and subsequent clinical studies are required to elucidate the therapeutic potential of stimulators or inhibitors of eryptosis.
Collapse
Affiliation(s)
- Florian Lang
- University of Tübingen, Department of Physiology , Gmelinstr. 5, 72076 Tübingen , Germany +49 7071 29 72194 ; +49 7071 29 5618 ;
| | | | | |
Collapse
|
6
|
Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death. BIOMED RESEARCH INTERNATIONAL 2015; 2015:513518. [PMID: 25821808 PMCID: PMC4364016 DOI: 10.1155/2015/513518] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/13/2022]
Abstract
Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca(2+) entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16). Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.
Collapse
|
7
|
Toblli JE, Di Gennaro F, Rivas C. Changes in Echocardiographic Parameters in Iron Deficiency Patients with Heart Failure and Chronic Kidney Disease Treated with Intravenous Iron. Heart Lung Circ 2015; 24:686-95. [PMID: 25666998 DOI: 10.1016/j.hlc.2014.12.161] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/23/2014] [Accepted: 12/26/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Treatment of iron deficiency helps to improve cardiac and renal function in patients with chronic heart failure. However, the mechanism by which this occurs is currently unclear. METHODS We undertook a double-blind, randomised, placebo-controlled study of intravenous iron sucrose treatment (200mg/mL weekly for five weeks) in patients with chronic heart failure, chronic kidney disease and iron-deficiency anaemia receiving optimal treatment for chronic heart failure (N=60). Markers of disease severity, iron status, anaemia and inflammation were measured during a six-month follow-up period, and evaluation of echocardiographic parameters was performed at baseline and six months after treatment. RESULTS At six months after treatment initiation, intravenous iron was associated with reduced severity of the symptoms of chronic heart failure and improved renal function (both p<0.001 versus control). Also, ferritin and transferrin saturation levels were increased, as were haemoglobin levels, whereas inflammatory markers were reduced (all p<0.001 versus control). Left ventricular systolic and diastolic diameters were increased and improved left ventricular function correlated with iron status in patients receiving intravenous iron but not patients in the control group. CONCLUSIONS Intravenous iron treatment was associated with improved myocardial functional parameters and cardiac dimensions in patients with anaemia and chronic kidney disease.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Anemia, Iron-Deficiency/blood
- Anemia, Iron-Deficiency/complications
- Anemia, Iron-Deficiency/drug therapy
- Double-Blind Method
- Female
- Ferric Compounds/administration & dosage
- Ferric Oxide, Saccharated
- Glucaric Acid/administration & dosage
- Heart Failure/blood
- Heart Failure/complications
- Heart Failure/drug therapy
- Heart Failure/physiopathology
- Hematinics/administration & dosage
- Humans
- Iron/blood
- Iron Deficiencies
- Male
- Pilot Projects
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/physiopathology
- Ventricular Function, Left/drug effects
Collapse
Affiliation(s)
- Jorge E Toblli
- Hospital Alemán, School of Medicine, University of Buenos Aires, Av. Pueyrredon 1640, (1118) Buenos Aires, Argentina.
| | - Federico Di Gennaro
- Hospital Alemán, School of Medicine, University of Buenos Aires, Av. Pueyrredon 1640, (1118) Buenos Aires, Argentina
| | - Carlos Rivas
- Hospital Alemán, School of Medicine, University of Buenos Aires, Av. Pueyrredon 1640, (1118) Buenos Aires, Argentina
| |
Collapse
|
8
|
Abdel-Daim MM, Abd Eldaim MA, Mahmoud MM. Trigonella foenum-graecumprotection against deltamethrin-induced toxic effects on haematological, biochemical, and oxidative stress parameters in rats. Can J Physiol Pharmacol 2014; 92:679-85. [DOI: 10.1139/cjpp-2014-0144] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Trigonella foenum-graecum L. is enriched with many active ingredients. TFG oil was evaluated for its protective effect against deltamethrin toxicity in rats. Rats of the control group were administered saline. The 2nd group was administered deltamethrin (DLM) orally at a concentration of 15 mg/kg body mass. The 3rd and 4th groups were administered DLM at a concentration of 15 mg/kg body mass and were fed diets containing 2.5% and 5% TFG oil, respectively. DLM intoxication reduced red blood cell and platelet counts, hemoglobin concentration, and hematocrit value while it induced leucocytosis. Furthermore, it increased serum levels of lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, γ-glutamyltransferase, triglycerides, cholesterol, uric acid, urea, and creatinine; increased hepatic, renal, and brain lipid peroxidation; decreased serum acetylcholine esterase level; and decreased hepatic, renal, and brain antioxidant markers’ activities. However, TFG oil kept the studied hematological and biochemical parameters within normal ranges. In addition, it prevented lipid peroxidation and oxidative stress induced by DLM intoxication in a dose-dependent manner. Therefore, these results indicated that TFG oil inhibited the toxic effects of DLM on hematological and biochemical parameters as well as oxidative status by its free radical scavenging and potent antioxidant activities, and it appeared to be a promising protective agent against DLM-induced toxicity.
Collapse
Affiliation(s)
- Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- United Graduate School of Drug Discovery and Medical Information Sciences, Department of Gene and Development, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Mabrouk A. Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Sadat City University, Sadat City 32897, Egypt
| | | |
Collapse
|
9
|
Abstract
SIGNIFICANCE Eryptosis, the suicidal erythrocyte death, is characterized by cell shrinkage, membrane blebbing, and phosphatidylserine translocation to the outer membrane leaflet. Phosphatidylserine at the erythrocyte surface binds endothelial CXCL16/SR-PSOX (CXC-Motiv-Chemokin-16/Scavenger-receptor-for-phosphatidylserine-and-oxidized-low-density-lipoprotein) and fosters engulfment of affected erythrocytes by phagocytosing cells. Eryptosis serves to eliminate infected or defective erythrocytes, but excessive eryptosis may lead to anemia and may interfere with microcirculation. Clinical conditions with excessive eryptosis include diabetes, chronic renal failure, hemolytic uremic syndrome, sepsis, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, glutamate cysteine ligase modulator deficiency, and Wilson's disease. RECENT ADVANCES Eryptosis is triggered by a wide variety of xenobiotics and other injuries such as oxidative stress. Signaling of eryptosis includes prostaglandin E₂ formation with subsequent activation of Ca(2+)-permeable cation channels, Ca(2+) entry, activation of Ca(2+)-sensitive K(+) channels, and cell membrane scrambling, as well as phospholipase A2 stimulation with release of platelet-activating factor, sphingomyelinase activation, and ceramide formation. Eryptosis may involve stimulation of caspases and calpain with subsequent degradation of the cytoskeleton. It is regulated by AMP-activated kinase, cGMP-dependent protein kinase, Janus-activated kinase 3, casein kinase 1α, p38 kinase, and p21-activated kinase 2. It is inhibited by erythropoietin, antioxidants, and further small molecules. CRITICAL ISSUES It remains uncertain for most disorders whether eryptosis is rather beneficial because it precedes and thus prevents hemolysis or whether it is harmful because of induction of anemia and impairment of microcirculation. FUTURE DIRECTIONS This will address the significance of eryptosis, further mechanisms underlying eryptosis, and additional pharmacological tools fostering or inhibiting eryptosis.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen , Tübingen, Germany
| | | | | | | |
Collapse
|
10
|
Abed M, Artunc F, Alzoubi K, Honisch S, Baumann D, Föller M, Lang F. Suicidal erythrocyte death in end-stage renal disease. J Mol Med (Berl) 2014; 92:871-9. [PMID: 24743961 DOI: 10.1007/s00109-014-1151-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED Anemia in end-stage renal disease (ESRD) results mainly from erythropoietin and iron deficiency. Anemia could be confounded, however, by accelerated clearance of circulating erythrocytes because of premature suicidal erythrocyte death or eryptosis characterized by phosphatidylserine exposure at the erythrocyte surface. Triggers of eryptosis include increased cytosolic Ca(2+) concentration ([Ca(2+)]i), oxidative stress, and ceramide. The present study explored whether and how ESRD influences eryptosis. Blood was drawn from healthy volunteers (n = 20) as well as ESRD patients (n = 20) prior to and after hemodialysis. Phosphatidylserine exposure was estimated from annexin V binding, [Ca(2+)]i from Fluo3-fluorescence, reactive oxygen species (ROS) from 2',7'dichlorodihydrofluorescein fluorescence, and ceramide from fluorescein-isothiocyanate-conjugated antibody binding in flow cytometry. Measurements were made in erythrocytes from freshly drawn blood and in erythrocytes from healthy volunteers exposed in vitro for 24 h to plasma from healthy volunteers or ESRD patients prior to and following dialysis. The patients suffered from anemia (hemoglobin 10.1 ± 0.5 g/100 ml) despite 1.96 ± 0.34 % reticulocytes. The percentage of phosphatidylserine-exposing erythrocytes was significantly higher in ESRD patients (0.84 ± 0.09 %) than in healthy volunteers (0.43 ± 0.04 %) and was significantly increased immediately after dialysis (1.35 ± 0.13 %). The increase in phosphatidylserine exposure was paralleled by increase in [Ca(2+)]i, oxidative stress, and ceramide abundance. As compared to addition of plasma from healthy individuals, addition of predialytic but not of postdialytic plasma from ESRD patients increased phosphatidylserine exposure, [Ca(2+)]i, ROS, and ceramide abundance. In conclusion, both, dialyzable components of uremic plasma and dialysis procedure, trigger eryptosis at least in part by increasing erythrocyte [Ca(2+)]i, ROS, and ceramide formation. KEY MESSAGES Anemia in uremia results in part from eryptosis, the suicidal erythrocyte death. Eryptosis in uremia is triggered in part by a dialyzable plasma component. Eryptosis in uremia is further triggered by dialysis procedure. Eryptosis in uremia is in part due to increased cytosolic Ca(2+) concentration. Eryptosis in uremia is further due to oxidative stress and ceramide formation.
Collapse
Affiliation(s)
- Majed Abed
- Department of Physiology, University of Tuebingen, Gmelinstrasse 5, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
von Haehling S, Anker SD, Doehner W, Morley JE, Vellas B. Frailty and heart disease. Int J Cardiol 2013; 168:1745-7. [DOI: 10.1016/j.ijcard.2013.07.068] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/01/2013] [Indexed: 01/10/2023]
|
12
|
Pinto de Carvalho L, McCullough PA, Gao F, Sim LL, Tan HC, Foo D, Ooi YW, Richards AM, Chan MY, Yeo TC. Renal function and anaemia in acute myocardial infarction. Int J Cardiol 2013; 168:1397-401. [DOI: 10.1016/j.ijcard.2012.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/06/2012] [Indexed: 01/13/2023]
|
13
|
Ahmed MSE, Langer H, Abed M, Voelkl J, Lang F. The Uremic Toxin Acrolein Promotes Suicidal Erythrocyte Death. ACTA ACUST UNITED AC 2013; 37:158-67. [DOI: 10.1159/000350141] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2013] [Indexed: 11/19/2022]
|
14
|
Abstract
Worsening renal function (WRF) during the treatment of acute decompensated heart failure (ADHF) occurs in up to a third of patients and is associated with worse survival. Venous congestion is increasingly being recognized as a key player associated with WRF in ADHF. Understanding the hemodynamic effects of venous congestion and the interplay between venous congestion and other pathophysiological factors such as raised abdominal pressure, endothelial cell activation, anemia/ iron deficiency, sympathetic overactivity, and stimulation of the renin-angiotensin-aldosterone system will help in devising effective management strategies. Early recognition of venous congestion through novel techniques such as bioimpedance measurements and remote monitoring of volume status combined with customized diuretic regimens may prevent venous congestion and perhaps avoid significant WRF.
Collapse
|