1
|
Miao J, Zhu H, Wang J, Chen J, Han F, Lin W. Experimental models for preclinical research in kidney disease. Zool Res 2024; 45:1161-1174. [PMID: 39257378 PMCID: PMC11491777 DOI: 10.24272/j.issn.2095-8137.2024.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/04/2024] [Indexed: 09/12/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are significant public health issues associated with a long-term increase in mortality risk, resulting from various etiologies including renal ischemia, sepsis, drug toxicity, and diabetes mellitus. Numerous preclinical models have been developed to deepen our understanding of the pathophysiological mechanisms and therapeutic approaches for kidney diseases. Among these, rodent models have proven to be powerful tools in the discovery of novel therapeutics, while the development of kidney organoids has emerged as a promising advancement in the field. This review provides a comprehensive analysis of the construction methodologies, underlying biological mechanisms, and recent therapeutic developments across different AKI and CKD models. Additionally, this review summarizes the advantages, limitations, and challenges inherent in these preclinical models, thereby contributing robust evidence to support the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Jin Miao
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Nephrology, Zhejiang University
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang 310003, China
| | - Huanhuan Zhu
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Nephrology, Zhejiang University
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang 310003, China
| | - Junni Wang
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Nephrology, Zhejiang University
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang 310003, China
| | - Jianghua Chen
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Nephrology, Zhejiang University
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang 310003, China
| | - Fei Han
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Nephrology, Zhejiang University
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang 310003, China. E-mail:
| | - Weiqiang Lin
- Department of Nephrology, Center for Regeneration and Aging Medicine, Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China. E-mail:
| |
Collapse
|
2
|
Venda J, Henriques A, Leal R, Alves R. Coexisting presentation of two rare genetic variants of autosomal dominant polycystic kidney disease and Alport syndrome. BMJ Case Rep 2024; 17:e259500. [PMID: 38740443 DOI: 10.1136/bcr-2023-259500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Alport syndrome and autosomal dominant polycystic kidney disease are monogenic causes of chronic kidney disease and end-stage kidney failure. We present a case of a man in his 60s with progressive chronic kidney disease, bilateral sensorineural hearing loss and multiple renal cysts. Genetic analysis revealed a heterozygous variant in COL4A3 (linked to Alport syndrome) and in the GANAB gene (associated with a milder form of autosomal dominant polycystic kidney disease). Although each variant confers a mild risk of developing end-stage kidney disease, the patient presented a pronounced and accelerated progression of chronic kidney disease, which goes beyond what would be predicted by adding up their individual effects. This suggests a potential synergic effect of both variants, which warrants further investigation.
Collapse
Affiliation(s)
- João Venda
- Department of Nephrology, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Andreia Henriques
- Department of Nephrology, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Rita Leal
- Department of Nephrology, Coimbra Hospital and University Centre, Coimbra, Portugal
- University of Coimbra, Coimbra, Portugal
| | - Rui Alves
- Department of Nephrology, Coimbra Hospital and University Centre, Coimbra, Portugal
- University of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Moritz L, Schumann A, Pohl M, Köttgen A, Hannibal L, Spiekerkoetter U. A systematic review of metabolomic findings in adult and pediatric renal disease. Clin Biochem 2024; 123:110703. [PMID: 38097032 DOI: 10.1016/j.clinbiochem.2023.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023]
Abstract
Chronic kidney disease (CKD) affects over 0.5 billion people worldwide across their lifetimes. Despite a growingly ageing world population, an increase in all-age prevalence of kidney disease persists. Adult-onset forms of kidney disease often result from lifestyle-modifiable metabolic illnesses such as type 2 diabetes. Pediatric and adolescent forms of renal disease are primarily caused by morphological abnormalities of the kidney, as well as immunological, infectious and inherited metabolic disorders. Alterations in energy metabolism are observed in CKD of varying causes, albeit the molecular mechanisms underlying pathology are unclear. A systematic indexing of metabolites identified in plasma and urine of patients with kidney disease alongside disease enrichment analysis uncovered inborn errors of metabolism as a framework that links features of adult and pediatric kidney disease. The relationship of genetics and metabolism in kidney disease could be classified into three distinct landscapes: (i) Normal genotypes that develop renal damage because of lifestyle and / or comorbidities; (ii) Heterozygous genetic variants and polymorphisms that result in unique metabotypes that may predispose to the development of kidney disease via synergistic heterozygosity, and (iii) Homozygous genetic variants that cause renal impairment by perturbing metabolism, as found in children with monogenic inborn errors of metabolism. Interest in the identification of early biomarkers of onset and progression of CKD has grown steadily in the last years, though it has not translated into clinical routine yet. This systematic review indexes findings of differential concentration of metabolites and energy pathway dysregulation in kidney disease and appraises their potential use as biomarkers.
Collapse
Affiliation(s)
- Lennart Moritz
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Anke Schumann
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Pohl
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
4
|
Zhu F, Li Y, Wang Y, Yao Y, Zeng R. The same heterozygous Col4A4 mutation triggered different renal pathological changes in Chinese family members. Front Genet 2023; 14:1180149. [PMID: 37323683 PMCID: PMC10265269 DOI: 10.3389/fgene.2023.1180149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Background: Mutations in the collagen components of the glomerular basement membrane (GBM) often lead to hereditary glomerulonephritis. Previous studies have identified that autosomal dominant mutations of Col4A3, Col4A4 or Col4A5 are associated with thin basement membrane nephropathy (TBMN), Alport syndrome and other hereditary kidney diseases. However, the genetic mutations underlying other glomerulonephritis types have not been elucidated. Methods: In this study, we investigated a Chinese family with hereditary nephritis using the methods of genetic sequencing and renal biopsy. Genomic DNA was extracted from peripheral blood of the proband and her sister, and subsequently was performed genetic sequencing. They were found to have the similar mutation sites. Other family members were then validated using Sanger sequencing. The proband and her sister underwent renal puncture biopsies, and experienced pathologists performed PAS, Masson, immunofluorescence, and immunoelectron microscopic staining of the kidney tissue sections. Results: Through genetic sequencing analysis, we detected a novel heterozygous frameshift mutation c.1826delC in the COL4A4 (NM_000092.4) gene coding region, and 1 hybrid missense variation c.86G>A (p. R29Q) was also detected in the TNXB (NM_019105.6) gene coding region in several members of this Chinese family. Interestingly, we found that the same mutations caused different clinical features and distinct pathological changes in individual family members, which confirmed that pathological and genetic testing are crucial for the diagnosis and treatment of hereditary kidney diseases. Conclusion: In this study, we found a novel heterozygous mutation in Col4A4 and co-mutations of the TNXB gene in this Chinese family. Our study indicated that the same Col4A4 mutated variants produced different pathological and clinical changes in different family members. This discovery may provide novel insights into the study of hereditary kidney disease. In addition, new genetic biology techniques and renal biopsy of individual family members are essential.
Collapse
Affiliation(s)
- Fengming Zhu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueqiang Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxi Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yao
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
5
|
Fang JX, Zhang JS, Wang MM, Liu L. Novel mutation in the SALL1 gene in a four-generation Chinese family with uraemia: A case report. World J Clin Cases 2022; 10:7068-7075. [PMID: 36051141 PMCID: PMC9297417 DOI: 10.12998/wjcc.v10.i20.7068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/15/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Approximately 10% of adults and nearly all children who receive renal replacement therapy have inherited risk factors or are related to genetic factors. In the past, due to the limitations of detection technology and the nonspecific manifestations of uraemia, the etiological diagnosis is unclear. In addition to common monogenic diseases and complex disorders, advanced testing techniques have led to the recognition of more hereditary renal diseases. Here, we report a four-generation Chinese family in which four individuals had a novel SALL1 mutation and presented with uraemia or abnormal urine tests.
CASE SUMMARY A 32-year-old man presented with end-stage renal disease with a 4-year history of dialysis. His father and paternal aunt both had a history of unexplained renal failure with haemodialysis, and his 10-year-old daughter presented with proteinuria. The patient had multiple congenital abnormalities, including bilateral overlapping toes, unilateral dysplastic external ears, and sensorineural hearing loss. His family members also presented with similar defects. Genetic testing revealed that the proband carried a novel heterozygous shift mutation in SALL1_exon 2 (c.3437delG), and Sanger sequencing confirmed the same mutation in all affected family members.
CONCLUSION We report a novel SALL1 exon 2 (c.3437delG) mutation and clinical syndrome with kidney disease, bilateral overlapping toes, unilateral dysplastic external ears, and sensorineural hearing loss in a four-generation Chinese family.
Collapse
Affiliation(s)
- Jia-Xi Fang
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
- Department of Nephrology, Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou 310014, Zhejiang Province, China
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Qingdao University, Hangzhou 310014, Zhejiang Province, China
| | - Jin-Shi Zhang
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
- Department of Nephrology, Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou 310014, Zhejiang Province, China
- School of Medicine, Hangzhou Normal University, Hangzhou 310018, Zhejiang Province, China
| | - Min-Min Wang
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
- Department of Nephrology, Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou 310014, Zhejiang Province, China
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Qingdao University, Hangzhou 310014, Zhejiang Province, China
| | - Lin Liu
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
- Department of Nephrology, Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou 310014, Zhejiang Province, China
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Qingdao University, Hangzhou 310014, Zhejiang Province, China
| |
Collapse
|
6
|
Cocorpus J, Hager MM, Benchimol C, Bijol V, Salem F, Punj S, Castellanos L, Singer P, Sethna CB, Basalely A. COL4A4 variant recently identified: lessons learned in variant interpretation-a case report. BMC Nephrol 2022; 23:253. [PMID: 35842573 PMCID: PMC9287857 DOI: 10.1186/s12882-022-02866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Alport syndrome is a hereditary kidney disease characterized by hematuria and proteinuria. Although there have been reports of autosomal dominant COL4A4 variants, this is likely an underdiagnosed condition. Improved access to affordable genetic testing has increased the diagnosis of Alport syndrome. As genetic testing becomes ubiquitous, it is imperative that clinical nephrologists understand the benefits and challenges associated with clinical genetic testing. Case Presentation We present a family of Mexican descent with a heterozygous COL4A4 variant (c.5007delC, ClinVar accession numbers: SCV001580980.2, SCV001993731.1) not previously discussed in detail in the literature. The proband received a biopsy diagnosis suggestive of Fabry disease 18 years after she first developed hematuria and progressed to chronic kidney disease stage III. One year later, the proband was provisionally diagnosed with Alport syndrome after a variant of uncertain significance in the COL4A4 gene was identified following targeted family variant testing of her daughter. Upon review of the medical histories of the proband’s children and niece, all but one had the same variant. Of the four with the variant, three display clinical symptoms of hematuria, and/or proteinuria. The youngest of the four, only months old, has yet to exhibit clinical symptoms. Despite these findings there was a considerable delay in synthesizing this data, as patients were tested in different commercial genetic testing laboratories. Subsequently, understanding this family’s inheritance pattern, family history, and clinical symptoms, as well as the location of the COL4A4 variant resulted in the upgrade of the variant’s classification. Although the classification of this variant varied among different clinical genetic testing laboratories, the consensus was that this variant is likely pathogenic. Conclusions This COL4A4 variant (c.5007delC) not yet discussed in detail in the literature is associated with Alport syndrome. The inheritance pattern is suggestive of autosomal dominant inheritance. This report highlights the intricacies of variant interpretation and classification, the siloed nature of commercial genetic testing laboratories, and the importance of a thorough family history for proper variant interpretation. Additionally, the cases demonstrate the varied clinical presentations of Alport syndrome and suggest the utility of early screening, diagnosis, monitoring, and treatment.
Collapse
Affiliation(s)
- Jenelle Cocorpus
- Pediatric Nephrology, Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
| | | | | | - Vanesa Bijol
- Renal Pathology, Northwell Health, Lake Success, NY, USA
| | - Fadi Salem
- Pathology, Molecular and Cell Based Medicine, Mount Sinai, New York, NY, USA
| | | | - Laura Castellanos
- Pediatric Nephrology, Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
| | - Pamela Singer
- Pediatric Nephrology, Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
| | - Christine B Sethna
- Pediatric Nephrology, Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
| | - Abby Basalely
- Pediatric Nephrology, Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA.
| |
Collapse
|
7
|
Genetic Kidney Diseases (GKDs) Modeling Using Genome Editing Technologies. Cells 2022; 11:cells11091571. [PMID: 35563876 PMCID: PMC9105797 DOI: 10.3390/cells11091571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Genetic kidney diseases (GKDs) are a group of rare diseases, affecting approximately about 60 to 80 per 100,000 individuals, for which there is currently no treatment that can cure them (in many cases). GKDs usually leads to early-onset chronic kidney disease, which results in patients having to undergo dialysis or kidney transplant. Here, we briefly describe genetic causes and phenotypic effects of six GKDs representative of different ranges of prevalence and renal involvement (ciliopathy, glomerulopathy, and tubulopathy). One of the shared characteristics of GKDs is that most of them are monogenic. This characteristic makes it possible to use site-specific nuclease systems to edit the genes that cause GKDs and generate in vitro and in vivo models that reflect the genetic abnormalities of GKDs. We describe and compare these site-specific nuclease systems (zinc finger nucleases (ZFNs), transcription activator-like effect nucleases (TALENs) and regularly clustered short palindromic repeat-associated protein (CRISPR-Cas9)) and review how these systems have allowed the generation of cellular and animal GKDs models and how they have contributed to shed light on many still unknown fields in GKDs. We also indicate the main obstacles limiting the application of these systems in a more efficient way. The information provided here will be useful to gain an accurate understanding of the technological advances in the field of genome editing for GKDs, as well as to serve as a guide for the selection of both the genome editing tool and the gene delivery method most suitable for the successful development of GKDs models.
Collapse
|
8
|
Piras D, Lepori N, Cabiddu G, Pani A. How Genetics Can Improve Clinical Practice in Chronic Kidney Disease: From Bench to Bedside. J Pers Med 2022; 12:jpm12020193. [PMID: 35207681 PMCID: PMC8875178 DOI: 10.3390/jpm12020193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Chronic kidney disease (CKD) is considered a major global health problem with high socio-economic costs: the risk of CKD in individuals with an affected first degree relative has been found to be three times higher than in the general population. Genetic factors are known to be involved in CKD pathogenesis, both due to the possible presence of monogenic pathologies as causes of CKD, and to the role of numerous gene variants in determining susceptibility to the development of CKD. The genetic study of CKD patients can represent a useful tool in the hands of the clinician; not only in the diagnostic and prognostic field, but potentially also in guiding therapeutic choices and in designing clinical trials. In this review we discuss the various aspects of the role of genetic analysis on clinical management of patients with CKD with a focus on clinical applications. Several topics are discussed in an effort to provide useful information for daily clinical practice: definition of susceptibility to the development of CKD, identification of unrecognized monogenic diseases, reclassification of the etiological diagnosis, role of pharmacogenetics.
Collapse
Affiliation(s)
- Doloretta Piras
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
- Correspondence:
| | - Nicola Lepori
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
| | - Gianfranca Cabiddu
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09134 Cagliari, Italy
| | - Antonello Pani
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09134 Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerce (CNR), 09042 Monserrato, Italy
| |
Collapse
|
9
|
Oh J, Shin JI, Lee K, Lee C, Ko Y, Lee JS. Clinical application of a phenotype-based NGS panel for differential diagnosis of inherited kidney disease and beyond. Clin Genet 2020; 99:236-249. [PMID: 33095447 PMCID: PMC7839754 DOI: 10.1111/cge.13869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Understanding the genetic causes of kidney disease is essential for accurate diagnosis and could lead to improved therapeutic strategies and prognosis. To accurately and promptly identify the genetic background of kidney diseases, we applied a targeted next‐generation sequencing gene panel including 203 genes associated with kidney disease, as well as diseases originating in other organs with mimicking symptoms of kidney disease, to analyze 51 patients with nonspecific nephrogenic symptoms, followed by validation of its efficacy as a diagnostic tool. We simultaneously screened for copy number variants (CNVs) in each patient to obtain a higher diagnostic yield (molecular diagnostic rate: 39.2%). Notably, one patient suspected of having Bartter syndrome presented with chloride‐secreting diarrhea attributable to homozygous SLC26A3 variants. Additionally, in eight patients, NGS confirmed the genetic causes of undefined kidney diseases (8/20, 40%), and initial clinical impression and molecular diagnosis were matched in 11 patients (11/20, 55%). Moreover, we found seven novel pathogenic/likely pathogenic variants in PKD1, PKHD1, COL4A3, and SLC12A1 genes, with a possible pathogenic variant in COL4A3 (c.1229G>A) identified in two unrelated patients. These results suggest that targeted NGS‐panel testing performed with CNV analysis might be advantageous for noninvasive and comprehensive diagnosis of suspected genetic kidney diseases.
Collapse
Affiliation(s)
- Jiyoung Oh
- Division of Clinical Genetics, Department of Pediatrics, Yonsei University, College of Medicine, Severance Children's Hospital, Seoul, South Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, South Korea
| | - Keumwha Lee
- Department of Pediatrics, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, South Korea
| | - CheolHo Lee
- Division of Clinical Genetics, Department of Pediatrics, Yonsei University, College of Medicine, Severance Children's Hospital, Seoul, South Korea
| | - Younhee Ko
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Kyoungki-do, South Korea
| | - Jin-Sung Lee
- Division of Clinical Genetics, Department of Pediatrics, Yonsei University, College of Medicine, Severance Children's Hospital, Seoul, South Korea
| |
Collapse
|
10
|
Belin S, Delco C, Parvex P, Hanquinet S, Fokstuen S, Martinez de Tejada B, Eperon I. Management of delivery of a fetus with autosomal recessive polycystic kidney disease: a case report of abdominal dystocia and review of the literature. J Med Case Rep 2019; 13:366. [PMID: 31829256 PMCID: PMC6907176 DOI: 10.1186/s13256-019-2293-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
Background Autosomal recessive renal polycystic kidney disease occurs in 1 in 20,000 live births. It is caused by mutations in both alleles of the PKHD1 gene. Management of delivery in cases of suspected autosomal recessive renal polycystic kidney disease is rarely discussed, and literature concerning abdominal dystocia is extremely scarce. We present a case of a patient with autosomal recessive renal polycystic kidney disease whose delivery was complicated by abdominal dystocia, and we discuss the factors that determined the route and timing of delivery. Case presentation A 23-year-old Caucasian woman, G2 P0, with a prior unremarkable pregnancy was referred to our tertiary center at 31 weeks of gestation because of severe oligoamnios (amniotic fluid index = 2) and hyperechogenic, dedifferentiated, and enlarged fetal kidneys. She had no other genitourinary anomaly. Fetal magnetic resonance imaging showed enlarged, hypersignal kidneys and severe pulmonary hypoplasia. We had a high suspicion of autosomal recessive renal polycystic kidney disease, and after discussion with our multidisciplinary team, the parents opted for conservative care. Ultrasound performed at 35 weeks of gestation showed a fetal estimated weight of 3550 g and an abdominal circumference of 377 mm, both above the 90th percentile. Because of the very rapid kidney growth and suspected risk of abdominal dystocia, we proposed induction of labor at 36 weeks of gestation after corticosteroid administration for fetal lung maturation. Vaginal delivery was complicated by abdominal dystocia, which resolved by continuing expulsive efforts and gentle fetal traction. A 3300-g (P50–90) male infant was born with Apgar scores of 1-7-7 at 1, 5, and 10 minutes, respectively, and arterial and venous umbilical cord pH values of 7.23–7.33. Continuous peritoneal dialysis was started at day 2 of life because of anuria. Currently, the infant is 1 year old and is waiting for kidney transplant that should be performed once he reaches 10 kg. Molecular analysis of PKHD1 performed on deoxyribonucleic acid (DNA) from the umbilical cord confirmed autosomal recessive renal polycystic kidney disease. Conclusions Management of delivery in cases of suspected autosomal recessive renal polycystic kidney disease needs to be discussed because of the risk of abdominal dystocia. The route and timing of delivery depend on the size of the fetal abdominal circumference and the gestational age. The rate of kidney growth must also be taken into account.
Collapse
Affiliation(s)
- Sarah Belin
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, rue Gabriel-Perret-Gentil 14, 1205, Geneva, Switzerland
| | - Cristina Delco
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, rue Gabriel-Perret-Gentil 14, 1205, Geneva, Switzerland
| | - Paloma Parvex
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, rue Gabriel-Perret-Gentil 14, 1205, Geneva, Switzerland
| | - Sylviane Hanquinet
- Service of Radiology, Department of Diagnosis, University Hospitals of Geneva, rue Gabriel-Perret-Gentil 14, 1205, Geneva, Switzerland
| | - Siv Fokstuen
- Service of Genetic Medicine, Department of Diagnosis, University Hospitals of Geneva, rue Gabriel-Perret-Gentil 14, 1205, Geneva, Switzerland
| | - Begoña Martinez de Tejada
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, rue Gabriel-Perret-Gentil 14, 1205, Geneva, Switzerland. .,Faculty of Medicine, University of Geneva, University Hospitals of Geneva, rue Gabriel-Perret-Gentil 14, 1205, Geneva, Switzerland.
| | - Isabelle Eperon
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, rue Gabriel-Perret-Gentil 14, 1205, Geneva, Switzerland
| |
Collapse
|
11
|
Talati AN, Webster CM, Vora NL. Prenatal genetic considerations of congenital anomalies of the kidney and urinary tract (CAKUT). Prenat Diagn 2019; 39:679-692. [PMID: 31343747 DOI: 10.1002/pd.5536] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 12/20/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) constitute 20% of all congenital malformations occurring in one in 500 live births. Worldwide, CAKUT are responsible for 40% to 50% of pediatric and 7% of adult end-stage renal disease. Pathogenic variants in genes causing CAKUT include monogenic diseases such as polycystic kidney disease and ciliopathies, as well as syndromes that include isolated kidney disease in conjunction with other abnormalities. Prenatal diagnosis most often occurs using ultrasonography; however, further genetic diagnosis may be made using a variety of testing strategies. Family history and pathologic examination can also provide information to improve the ability to make a prenatal diagnosis of CAKUT. Here, we provide a comprehensive overview of genetic considerations in the prenatal diagnosis of CAKUT disorders. Specifically, we discuss monogenic causes of CAKUT, associated ultrasound characteristics, and considerations for genetic diagnosis, antenatal care, and postnatal care.
Collapse
Affiliation(s)
- Asha N Talati
- Department of Obstetrics and Gynecology, DRAFT, Division of Maternal Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Carolyn M Webster
- Department of Obstetrics and Gynecology, DRAFT, Division of Maternal Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Neeta L Vora
- Department of Obstetrics and Gynecology, DRAFT, Division of Maternal Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
12
|
Bignall ONR, Dixon BP. Management of Hematuria in Children. CURRENT TREATMENT OPTIONS IN PEDIATRICS 2018; 4:333-349. [PMID: 30128264 PMCID: PMC6097192 DOI: 10.1007/s40746-018-0134-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of Review This paper provides a review of the diagnostic evaluation of both microscopic and gross hematuria, as well as an update on the pathogenesis, clinical features, and treatment strategies for several diseases of the kidneys and urinary tract in which hematuria is a prominent finding. The goal is to provide pediatric providers with a framework through which appropriate and expeditious referral to subspecialty care may be made for definitive treatment. Recent Findings Although there has been great heterogeneity in published treatment strategies for many causes of hematuria, the Kidney Diseases Improving Global Outcomes (KDIGO) initiative has recently set forth guidelines for glomerular diseases in particular to provide evidence-based strategies for treatment. In addition, recent advances in the understanding of molecular pathogenesis and long-term clinical outcomes for other non-glomerular diseases has led to updates in treatment strategies summarized in this review. Summary As the pediatric primary care provider is often the first point of contact for children with microscopic or gross hematuria, updated knowledge as to the epidemiology and management of several of the various causes of hematuria will improve the care of children by both avoiding extraneous testing and interventions and implementing definitive care (either by expectant management and reassurance or by subspecialty referral) in a timely manner.
Collapse
Affiliation(s)
- O N Ray Bignall
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center
| | - Bradley P Dixon
- Renal Section, Department of Pediatrics, University of Colorado School of Medicine
| |
Collapse
|
13
|
Fidler AL, Boudko SP, Rokas A, Hudson BG. The triple helix of collagens - an ancient protein structure that enabled animal multicellularity and tissue evolution. J Cell Sci 2018; 131:jcs203950. [PMID: 29632050 PMCID: PMC5963836 DOI: 10.1242/jcs.203950] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cellular microenvironment, characterized by an extracellular matrix (ECM), played an essential role in the transition from unicellularity to multicellularity in animals (metazoans), and in the subsequent evolution of diverse animal tissues and organs. A major ECM component are members of the collagen superfamily -comprising 28 types in vertebrates - that exist in diverse supramolecular assemblies ranging from networks to fibrils. Each assembly is characterized by a hallmark feature, a protein structure called a triple helix. A current gap in knowledge is understanding the mechanisms of how the triple helix encodes and utilizes information in building scaffolds on the outside of cells. Type IV collagen, recently revealed as the evolutionarily most ancient member of the collagen superfamily, serves as an archetype for a fresh view of fundamental structural features of a triple helix that underlie the diversity of biological activities of collagens. In this Opinion, we argue that the triple helix is a protein structure of fundamental importance in building the extracellular matrix, which enabled animal multicellularity and tissue evolution.
Collapse
Affiliation(s)
- Aaron L Fidler
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sergei P Boudko
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Billy G Hudson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Medical Education and Administration, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|