1
|
Zhang M, Li Y, Ma Y, Jin Y, Gou X, Yuan Y, Xu F, Wu X. The toxicity of cisplatin derives from effects on renal organic ion transporters expression and serum endogenous substance levels. Food Chem Toxicol 2024; 192:114949. [PMID: 39182635 DOI: 10.1016/j.fct.2024.114949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Acute kidney injury (AKI) is a worldwide public health problem with high morbidity and mortality. Cisplatin is a widely used chemotherapeutic agent for treating solid tumors, but the induction of AKI restricts its clinical application. In this study, the effect of cisplatin on the expression of organic ion transporters was investigated through in vivo and in vitro experiments. Targeted metabolomics techniques were used to measure the levels of selected endogenous substances in serum. Transmission electron microscopy was used to observe the microstructure of renal tubular epithelial cells. Our results show that the toxicity of cisplatin on HK-2 cells or HEK-293 cells was time- and dose-dependent. Administration of cisplatin decreased the expression of OAT1/3 and OCT2 and increased the expression of MRP2/4. Mitochondrial damage induced by cisplatin lead to renal tubular epithelial cell injury. In addition, administration of cisplatin resulted in significant changes in endogenous substance levels in serum, including amino acids, carnitine, and fatty acids. These serum amino acids and metabolites (α-aminobutyric acid, proline, and alanine), carnitines (tradecanoylcarnitine, hexanylcarnitine, octanoylcarnitine, 2-methylbutyroylcarnitine, palmitoylcarnitine, and linoleylcarnitine) and fatty acids (9E-tetradecenoic acid) represent endogenous substances with diagnostic potential for cisplatin-induced AKI.
Collapse
Affiliation(s)
- Mingkang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Yile Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Yanrong Ma
- Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Yongwen Jin
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Xueyan Gou
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Yufan Yuan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Fen Xu
- Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Xin'an Wu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China.
| |
Collapse
|
2
|
Gao J, Deng Q, Yu J, Wang C, Wei W. Role of renal tubular epithelial cells and macrophages in cisplatin-induced acute renal injury. Life Sci 2024; 339:122450. [PMID: 38262575 DOI: 10.1016/j.lfs.2024.122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a sudden and continuous decline in renal function. The drug cisplatin is commonly used as chemotherapy for solid tumors, and cisplatin-induced acute kidney injury (CI-AKI), which is characterized by acute tubular necrosis and inflammation, frequently occurs in tumor patients. Renal tubular epithelial cells (RTECs) are severely damaged early in this process and play an important role in renal tubular injury and the recruitment of immune cells. Macrophages are the most common infiltrating immune cells in the kidney and have a significant impact on CI-AKI and subsequent repair. This article reviews the latest research progress on the effects of RTECs and macrophages on CI-AKI and their interactions in AKI to provide a direction for identifying therapeutic targets for treating AKI.
Collapse
Affiliation(s)
- Jinzhang Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Qinxiang Deng
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Third Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jun Yu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Alqahtani NF, Alfaifi MY, Shati AA, Elbehairi SEI, Elshaarawy RFM, Serag WM, Hassan YA, El-Sayed WN. Exploring the chondroitin sulfate nanogel's potential in combating nephrotoxicity induced by cisplatin and doxorubicin-An in-vivo study on rats. Int J Biol Macromol 2024; 258:128839. [PMID: 38134998 DOI: 10.1016/j.ijbiomac.2023.128839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
In this study, we aim to unveil the potential of itaconyl chondroitin sulfate nanogel (ICSNG) in tackling chronic kidney diseases triggered by the administration of CDDP and doxorubicin (Adriamycin, ADR). To that end, the new drug delivery system (ICSNG) was initially prepared, characterized, and loaded with the target drugs. Thereafter, the in-vivo studies were performed using five equally divided groups of 100 male Sprague-Dawley (SD) rats. Biochemical evaluation and immunohistochemistry studies have revealed the renal toxicity and the ameliorative effects of ICSNG on renal function. When ICSNG-based treatments were contrasted with the CDDP and ADR infected groups, they significantly increased paraoxonase-1 (PON-1), superoxide dismutase (SOD), catalase (CAT) and albumin activity and significantly decreased nitric oxide (NO), tumor necrosis factor alpha (TNF-α), creatinine, urea, and cyclooxygenase-2 (COX-2) activity (p < 0.001). The findings of the current study imply that ICSNG may be able to lessen renal inflammation and damage in chronic kidney disorders brought on by the administration of CDDP and ADR. Interestingly, according to the estimated selectivity indices, the ICSNG-encapsulated drugs have demonstrated superior selectivity for cancer MCF-7 cells, over healthy HSF cells, in comparison to the bare drugs.
Collapse
Affiliation(s)
- Norah F Alqahtani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - Ali A Shati
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | | | - Reda F M Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| | - Waleed M Serag
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt
| | - Yasser A Hassan
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Kirkuk, Iraq; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Qalam University College, Kirkuk, Iraq; Department of pharmaceutics and Pharmaceutical Technology, Faculty of pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - W N El-Sayed
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Džidić-Krivić A, Sher EK, Kusturica J, Farhat EK, Nawaz A, Sher F. Unveiling drug induced nephrotoxicity using novel biomarkers and cutting-edge preventive strategies. Chem Biol Interact 2024; 388:110838. [PMID: 38104745 DOI: 10.1016/j.cbi.2023.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Drug-induced nephrotoxicity is still a significant obstacle in pharmacotherapy of various diseases and it accounts for around 25 % of serious side-effects reported after drug administration. Furthermore, some groups of drugs such as nonsteroidal anti-inflammatory drugs, antibiotics, antiviral drugs, antifungal drugs, immunosuppressants, and chemotherapeutic drugs have the "preference" for damaging the kidney and are often referred to as the kidney's "silent killer". Clinically, the onset of acute kidney injury associated with drug administration is registered in approximately 20 % of patients and many of them develop chronic kidney disease vulnerability. However, current knowledge about the mechanisms underlying this dangerous phenomenon is still insufficient with many unknowns. Hence, the valuable use of these drugs in clinical practice is significantly limited. The main aim of this study is to draw attention to commonly prescribed nephrotoxic drugs by clinicians or drugs bought over the counter. In addition, the complex relationship between immunological, vascular and inflammatory events that promote kidney damage is discussed. The practical use of this knowledge could be implemented in the engineering of novel biomarkers for early detection of drug-associated kidney damage such as Kidney Injury Molecule (KIM-1), lipocalin associated with neutrophil gelatinase (NGAL) and various microRNAs. In addition, the utilization of artificial intelligence (AI) for the development of computer algorithms that could detect kidney damage at an early stage should be further explored. Therefore, this comprehensive review provides a new outlook on drug nephrotoxicity that opens the door for further clinical research of novel potential drugs or natural products for the prevention of drug-induced nephrotoxicity and accessible education.
Collapse
Affiliation(s)
- Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, Zenica, 72000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina K Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| | - Jasna Kusturica
- Faculty of Medicine,Univerisity of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Esma K Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Food and Nutrition Research, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Osijek, 31000, Croatia
| | - Asma Nawaz
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
5
|
Qi J, Luo Q, Zhang Q, Wu M, Zhang L, Qin L, Xue Q, Nie X. Yi-Shen-Xie-Zhuo formula alleviates cisplatin-induced AKI by regulating inflammation and apoptosis via the cGAS/STING pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116327. [PMID: 36889420 DOI: 10.1016/j.jep.2023.116327] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yi-Shen-Xie-Zhuo formula (YSXZF) is a traditional Chinese medicine prescription developed from the classic prescription Mulizexie powder documented in the book of Golden Chamber Synopsis and the Buyanghuanwu Decoction recorded in the book of Correction of Errors in Medical Classics. According to our years of clinical experience, YSXZF can effectively improve qi deficiency and blood stasis in kidney disease. However, its mechanisms need further clarification. AIM OF THE STUDY Apoptosis and inflammation play key roles in acute kidney disease (AKI). The Yi-Shen-Xie-Zhuo formula, consisting of four herbs, is commonly used for treating renal disease. However, the underlying mechanism and bioactive components remain unexplored. This study aimed to investigate the protective effects of YSXZF against apoptosis and inflammation in a cisplatin-treated mouse model, and identify the main bioactive components of YSXZF. MATERIALS AND METHODS C57BL/6 mice were administered cisplatin (15 mg/kg) with or without YSXZF (11.375 or 22.75 g/kg/d). HKC-8 cells were treated with cisplatin (20 μM) with or without YSXZF (5% or 10%) for 24 h. Renal function, morphology, and cell damage were evaluated. UHPLC-MS was used to analyze the herbal components and metabolites in the YSXZF-containing serum. RESULTS Blood urea nitrogen (BUN), serum creatinine, serum and urine neutrophil gelatinase-associated lipocalin (NGAL) levels were clearly increased in the cisplatin-treated group. Administration of YSXZF reversed these changes; it improved renal histology, downregulated kidney injury molecule 1 (KIM-1) expression, and lowered the number of TdT-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells. YSXZF significantly downregulated cleaved caspase-3 and BAX, and upregulated BCL-2 proteins in renal tissues. YSXZF suppressed increase in cGAS/STING activation and inflammation. In vitro treatment with YSXZF markedly reduced cisplatin-induced HKC-8 cell apoptosis, relieved cGAS/STING activation and inflammation, improved mitochondrial membrane potential (MMP), and lowered reactive oxygen species (ROS) overgeneration. Small RNA interference (siRNA)-mediated silencing of cGAS or STING inhibited the protective effects of YSXZF. Twenty-three bioactive constituents from the YSXZF-containing serum were identified as key components. CONCLUSION This is the first study to demonstrate that YSXZF protects against AKI by suppressing inflammation and apoptosis via the cGAS/STING signaling pathway.
Collapse
Affiliation(s)
- Jieying Qi
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Qin Luo
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Qiaoying Zhang
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Mengni Wu
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Lili Zhang
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Linsen Qin
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Qi Xue
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| | - Xiaoli Nie
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
6
|
Yang J, Gan Y, Feng X, Chen X, Wang S, Gao J. Effects of melatonin against acute kidney injury: A systematic review and meta-analysis. Int Immunopharmacol 2023; 120:110372. [PMID: 37279642 DOI: 10.1016/j.intimp.2023.110372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Melatonin is a hormone synthesized by the pineal gland, and has antioxidative effects in reducing acute kidney injury (AKI). In the past three years, an increasing number of studies have evaluated whether melatonin has a protective effect on AKI. The study systematically reviewed and assessed the efficacy and safety of melatonin in preventing AKI. MATERIAL AND METHODS A systematic literature search was conducted in the PubMed, Embase, and Web of Science databases on February 15, 2023. Eligible records were screened according to the inclusion and exclusion criteria. The odds ratio and Hedges' gwith the corresponding 95% confidence intervals were selected to evaluate the effects of melatonin on AKI. We pooled extracted data using a fixed- or random-effects model based on a heterogeneity test. RESULTS There were five studies (one cohort study and four randomized controlled trials) included in the meta-analysis. Although the glomerular filtration rate (GFR) may be significantly improved by melatonin, the incidence of AKI was not significantly decreased in the melatonin group compared with the control group in randomized controlled trials (RCTs). CONCLUSIONS In our study, the present results do not support a direct effect of melatonin use on the reduction of AKI. More well-designed clinical studies with larger sample size are required in the future.
Collapse
Affiliation(s)
- Jianhua Yang
- Department of Intensive Care Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing 400016, China.
| | - Yuanxiu Gan
- Department of Intensive Care Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400016, China.
| | - Xuanyun Feng
- Department of Intensive Care Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400016, China.
| | - Xiangyu Chen
- Department of Emergency, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Shu Wang
- Department of Intensive Care Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing 400016, China.
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
7
|
Shati AA, Alkabli J, Alfaifi MY, Elbehairi SEI, Elshaarawy RFM, Serag WM, Hassan YA. Comparison of the ameliorative roles of crab chitosan nanoparticles and mesenchymal stem cells against cisplatin-triggered nephrotoxicity. Int J Biol Macromol 2023:124985. [PMID: 37230447 DOI: 10.1016/j.ijbiomac.2023.124985] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
AIM In the present investigation, we compared the effects of mesenchymal stem cells extracted from bone marrow (BMSCs) and crab chitosan nanoparticles (CCNPs) on renal fibrosis in cisplatin (CDDP)-induced kidney injury rats. MATERIAL AND METHODS 90 male Sprague-Dawley (SD) rats were divided into two equal groups and alienated. Group I was set into three subgroups: the control subgroup, the CDDP-infected subgroup (acute kidney injury), and the CCNPs-treated subgroup. Group II was also divided into three subgroups: the control subgroup, the CDDP-infected subgroup (chronic kidney disease), and the BMSCs-treated subgroup. Through biochemical analysis and immunohistochemical research, the protective effects of CCNPs and BMSCs on renal function have been identified. RESULTS CCNPs and BMSC treatment resulted in a substantial rise in GSH and albumin and a decrease in KIM-1, MDA, creatinine, urea, and caspase-3 when compared to the infected groups (p < 0.05). CONCLUSION According to the current research, chitosan nanoparticles and BMSCs may be able to reduce renal fibrosis in acute and chronic kidney diseases caused by CDDP administration, with more improvement of kidney damage resembling normal cells after CCNPs administration.
Collapse
Affiliation(s)
- Ali A Shati
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - J Alkabli
- Department of Chemistry, College of Sciences and Arts - Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - Serag Eldin I Elbehairi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt
| | - Reda F M Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| | - Waleed M Serag
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt
| | - Yasser A Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
8
|
Saif-Elnasr M, El-Ghlban S, Bayomi AI, El-Sayyad GS, Maghraby MS. Gallic acid and/or cerium oxide nanoparticles synthesized by gamma-irradiation protect cisplatin-induced nephrotoxicity via modulating oxidative stress, inflammation and apoptosis. Arch Biochem Biophys 2023; 740:109594. [PMID: 37023935 DOI: 10.1016/j.abb.2023.109594] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Cisplatin is one of the most significant anticancer. However, its use is associated with numerous toxicities especially nephrotoxicity. The main aim of this work was to examine the protective effect of Gallic acid (GA) and/or cerium oxide nanoparticles (CONPs) synthesized by gamma-irradiation on cisplatin-induced nephrotoxicity in rats. To do that, 48 adult male albino rats were separated into eight groups and received GA (100 mg/kg orally) and/or CONPs (15 mg/kg i. p.) for 10 days before injection with a single dose of cisplatin (7.5 mg/kg i. p.). The findings showed that cisplatin treatment impaired kidney functioning as shown by elevated serum levels of urea and creatinine. Additionally, the oxidative stress indicators (MDA and NO), levels of NF-kB, pro-inflammatory cytokines (IL1-and TNF-) and pro-apoptotic proteins (BAX and caspase-3) were raised after cisplatin injection, while levels of intrinsic anti-oxidants (CAT, SOD, and GSH) and anti-apoptotic protein (Bcl-2) were reduced. Moreover, renal toxicity was confirmed by alteration in normal histological architecture of the kidneys. On the other hand, pretreatment with CONPs and/or GA ameliorated cisplatin-induced nephrotoxicity as evidenced by improvement of renal function parameters and levels of oxidative stress, inflammatory and apoptotic markers in renal tissue along with the renal histopathological changes. This study clarifies how GA and CONPs protect against cisplatin-induced nephrotoxicity and demonstrates any potential synergism between them. Therefore, they can be considered as promising nephroprotective agents during chemotherapy.
Collapse
Affiliation(s)
- Mostafa Saif-Elnasr
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Samah El-Ghlban
- Biochemistry Division, Department of Chemistry, Faculty of Science, El Menoufia University, Shebin El-kom, Egypt
| | - Asmaa I Bayomi
- Zoology Department, Faculty of Science, Menoufia University, Menoufia, Egypt
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt; Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Mohamed Said Maghraby
- Biochemistry Division, Department of Chemistry, Faculty of Science, El Menoufia University, Shebin El-kom, Egypt.
| |
Collapse
|
9
|
Wu H, Wahane A, Alhamadani F, Zhang K, Parikh R, Lee S, McCabe EM, Rasmussen TP, Bahal R, Zhong XB, Manautou JE. Nephrotoxicity of marketed antisense oligonucleotide drugs. CURRENT OPINION IN TOXICOLOGY 2022; 32:100373. [PMID: 37193356 PMCID: PMC10174585 DOI: 10.1016/j.cotox.2022.100373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The field of antisense oligonucleotide (ASO)-based therapies have been making strides in precision medicine due to their potent therapeutic application. Early successes in treating some genetic diseases are now attributed to an emerging class of antisense drugs. After two decades, the US Food and Drug Administration (FDA) has approved a considerable number of ASO drugs, primarily to treat rare diseases with optimal therapeutic outcomes. However, safety is one of the biggest challenges to the therapeutic utility of ASO drugs. Due to patients' and health care practitioners' urgent demands for medicines for untreatable conditions, many ASO drugs have been approved. However, a complete understanding of the mechanisms of adverse drug reactions (ADRs) and toxicities of ASOs still need to be resolved. The range of ADRs is unique to a specific drug, while few ADRs are common to a section of drugs as a whole. Nephrotoxicity is an important concern that needs to be addressed considering the clinical translation of any drug candidates ranging from small molecules to ASO-based drugs. This article encompasses what is known about the nephrotoxicity of ASO drugs, the potential mechanisms of action(s), and recommendations for future investigations on the safety of ASO drugs.
Collapse
Affiliation(s)
- Hangyu Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Aniket Wahane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Feryal Alhamadani
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Kristy Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Rajvi Parikh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - SooWan Lee
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Evan M McCabe
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
10
|
Nazeer HY, Iqbal MO, Mumtaz A, Ahmed MM, Riaz R, Rasool MF. In vivo antioxidants, chemical characterization and biochemical and MedicinalPotential of Murraya koenigii inCisplatin-induced nephrotoxicity. Drug Dev Ind Pharm 2022; 48:566-574. [DOI: 10.1080/03639045.2022.2140352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong-266003, China
- Royal Institute of Medical Sciences (RIMS), Multan, Pakistan
| | - Asma Mumtaz
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Multan Medical and Dental College, Multan 60000, Pakistan
| | - Muhammad Masood Ahmed
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Faculty of Pharmaceutical Sciences, Times Institute Multan, Multan 60000, Pakistan
| | - Romana Riaz
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, 60800, Multan, Pakistan
| |
Collapse
|
11
|
Cui B, Hou X, Liu M, Li Q, Yu C, Zhang S, Wang Y, Wang J, Zhuang S, Liu F. Pharmacological inhibition of SMYD2 protects against cisplatin-induced acute kidney injury in mice. Front Pharmacol 2022; 13:829630. [PMID: 36046818 PMCID: PMC9421052 DOI: 10.3389/fphar.2022.829630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The histone methyltransferase SET and MYND domain protein 2 (SMYD2) has been implicated in tumorigenesis through methylating histone H3 at lysine36 (H3K36) and some non-histone substrates. Currently, the role of SMYD2 in acute kidney injury (AKI) remains unknown. Here, we investigated the effects of AZ505, a highly selective inhibitor of SMYD2, on the development of AKI and the mechanisms involved in a murine model of cisplatin-induced AKI. SMYD2 and trimethylated histone H3K36 (H3K36Me3) were highly expressed in the kidney following cisplatin treatment; administration of AZ505 remarkedly inhibited their expression, along with improving kidney function and ameliorating kidney damage. AZ505 also attenuated kidney tubular cell injury and apoptosis as evidenced by diminished the expression of neutrophil gelatinase associated lipocalin (NGAL) and kidney injury molecule (Kim-1), reduced the number of TUNEL positive cells, decreased the expression of cleaved caspase-3 and the BAX/BCL-2 ratio in injured kidneys. Moreover, AZ505 inhibited cisplatin-induced phosphorylation of p53, a key driver of kidney cell apoptosis and reduced expression of p21, a cell cycle inhibitor. Meanwhile, AZ505 promoted expression of proliferating cell nuclear antigen and cyclin D1, two markers of cell proliferation. Furthermore, AZ505 was effective in suppressing the phosphorylation of STAT3 and NF-κB, two transcriptional factors associated with kidney inflammation, attenuating the expression of monocyte chemoattractant protein-1 and intercellular cell adhesion molecule-1 and reducing infiltration of F4/80+ macrophages to the injured kidney. Finally, in cultured HK-2 cells, silencing of SMYD2 by specific siRNA inhibited cisplatin-induced apoptosis of kidney tubular epithelial cells. Collectively, these results suggests that SMYD2 is a key determinant of cisplatin nephrotoxicity and targeting SMYD2 protects against cisplatin-induced AKI by inhibiting apoptosis and inflammation and promoting cell proliferation.
Collapse
Affiliation(s)
- Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiying Hou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengjun Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Li
- Department of Pathology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shenglei Zhang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
- *Correspondence: Shougang Zhuang, ; Feng Liu,
| | - Feng Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Shougang Zhuang, ; Feng Liu,
| |
Collapse
|
12
|
Zhou J, Xiao C, Zheng S, Wang Q, Zhu H, Zhang Y, Wang R. MicroRNA-214-3p aggravates ferroptosis by targeting GPX4 in cisplatin-induced acute kidney injury. Cell Stress Chaperones 2022; 27:325-336. [PMID: 35366755 PMCID: PMC9346014 DOI: 10.1007/s12192-022-01271-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/13/2022] [Accepted: 03/28/2022] [Indexed: 01/03/2023] Open
Abstract
Acute kidney injury (AKI) induced by cisplatin (cis-AKI) involves indicators such as inflammation and oxidative stress (OS) in proximal tubules, although its underlying mechanisms remain largely unknown so far. Exploration of the molecular mechanisms underlying cisplatin-induced AKI is of great significance for AKI prevention and also for preventing its progression into chronic kidney disease (CKD) or end-stage renal disease (ESRD). OS and ferroptosis are mutually causal; they finally lead to the regulatory cell injury and death induced by the accumulation of reactive oxygen species (ROS). GPX4 is critical not only in OS, but studies established as the key regulator of ferroptosis. In this context, the present study focused on determining the biological function of miR-214-3p in the cisplatin-induced ferroptosis of tubular epithelial cell (TEC) and the underlying molecular mechanism. The relationship between TEC ferroptosis and cisplatin-induced AKI was investigated in vitro and in vivo. Ferrostatin-1(Fer-1), an inhibitor of ferroptosis, was observed to confer a protective effect against the renal tubular injury and renal failure induced by cisplatin. MicroRNAs (miRNAs) regulate the genes that have important functions in the development of cis-AKI. In the present study, GPX4 was predicted as a target of miR-214-3p. Moreover, inhibiting miR-214-3p enhanced the expressions of GPX4 and SLC7A11 while decreasing the ACSL4 expression. Furthermore, miR-214-3p down-regulation protected against TEC death and renal tubule damage both in vitro and in vivo. According to these findings, inhibiting miR-214-3p would alleviate TEC ferroptosis in cis-AKI via GPX4.
Collapse
Affiliation(s)
- Junran Zhou
- Department of Thoracic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chengcheng Xiao
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shuaishuai Zheng
- Department of Urology, Qingdao Chengyang People's Hospital, Qingdao, China
| | - Qian Wang
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yingyu Zhang
- Department of Traditional Chinese Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Renhe Wang
- Department of Traditional Chinese Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
13
|
Liu Z, Xu Y, Bai X, Guo L, Li X, Gao J, Teng Y, Yu P. Prediction of the mechanisms of action of Zhibai Dihaung Granule in cisplatin-induced acute kidney injury: A network pharmacology study and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115241. [PMID: 35351575 DOI: 10.1016/j.jep.2022.115241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhibai Dihuang Granule (ZDG) is known as traditional Chinese patent medicine with the functions of "Ziyin decrease internal heat" in Traditional Chinses medicine. In clinical, it is also used to treat various kidney diseases. AIM OF THE STUDY We aimed to provide a basis for the curative effect of ZDG on acute kidney injury induced by cisplatin (CIAKI). MATERIALS AND METHODS The active compounds and protein targets of ZDG, as well as the potential targets of the CIAKI were searched from the database. The protein-protein interaction (PPI) network diagram and the drug-compounds-targets-disease network were constructed. Enrichment analysis was performed by Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, the effect of ZDG on the prevention and treatment of CIAKI was experimentally validated in vivo and in vitro. RESULTS From the database, we screened 22 active compounds of ZDG and 226 related targets. We obtained 498 gene targets related to CIAKI, among which 40 genes overlapped with ZDG-related targets. Go enrichment and KEGG analysis got 339 terms and 64 pathways, respectively. Based on the above study, we speculated that ZDG has the potential effect on treatment CIAKI, and the mechanism may be related to cell apoptosis and inflammation. The results in vitro experiments showed that ZDG reduced the cytotoxicity of cisplatin to HK-2 and 293T cells, but did not affect the antitumor effect of cisplatin. Moreover, in vivo experiments further proved that ZDG effectively controlled kidney damage caused by cisplatin in SD rats. The results showed that ZDG could regulate the expression of CASP3, p65 and MAPK pathway related proteins, suggesting that ZDG's prevention of CIAKI may be related to apoptosis and inflammatory response. CONCLUSIONS Our study showed that ZDG could prevent and treat CIAKI by inhibiting cell apoptosis and inflammation, which provided a new efficacy and clinical application for ZDG.
Collapse
Affiliation(s)
- Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Ye Xu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Xinming Bai
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Lvqian Guo
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Xinran Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Junling Gao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| |
Collapse
|
14
|
Iqbal MO, Ahmed MM, Arshad S, Javaid U, Khan IA, Manzoor M, Andleeb S, Riaz R, Munawar SH, Manzoor Z, Mumtaz A. Nephroprotective Effects of Alhagi camelorum against Cisplatin-Induced Nephrotoxicity in Albino Wistar Rats. Molecules 2022; 27:molecules27030941. [PMID: 35164206 PMCID: PMC8838076 DOI: 10.3390/molecules27030941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/16/2022] Open
Abstract
Alhagi camelorum (AC) is an old plant with a significant therapeutic value throughout Africa, Asia, and Latin America. The overuse of cisplatin (Cis > 50 mg/m2) is associated with observed nephrotoxicity, ototoxicity, gastrotoxicity, myelosuppression, and allergic reactions. Remedial measures are needed for the protection of nephrotoxicity against cisplatin. Thus, we investigated the nephroprotective effects of AC plant extract to prevent cisplatin-induced nephrotoxicity in albino Wistar rats. The presence of polyphenols, phenolic compounds, tannins, and saponins was revealed during phytochemical investigation, and a significantly intense antioxidant activity was recorded. There were no toxicological symptoms in the treated rats, and no anatomical, physiological, or histological abnormalities were found compared to the control rats. The results of correcting cisplatin-induced nephrotoxicity revealed that the extract has a significant ability to treat kidney damage, with most parameters returning to normal after only three weeks of therapy. It is concluded that co-administration of cisplatin with AC extract showed exceptional nephroprotective effects at a dose of 600 mg/kg for Cis-induced nephrotoxicity.
Collapse
Affiliation(s)
- Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Fatima Tu Zahara Department of Life Sciences, Muhammad Institute of Medical and Allied Sciences, Multan 60000, Pakistan
- Correspondence: (M.O.I.); (I.A.K.); (S.H.M.)
| | - Muhammad Masood Ahmed
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (M.M.A.); (M.M.)
- Faculty of Pharmaceutical Sciences, Times Institute Multan, Multan 60000, Pakistan
| | - Shafia Arshad
- Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 93100, Pakistan;
| | - Usman Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Imran Ahmad Khan
- Fatima Tu Zahara Department of Life Sciences, Muhammad Institute of Medical and Allied Sciences, Multan 60000, Pakistan
- Department of Pharmacology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (M.O.I.); (I.A.K.); (S.H.M.)
| | - Majid Manzoor
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (M.M.A.); (M.M.)
| | - Shumaila Andleeb
- Southern Punjab Institute of Health Sciences, Multan 60800, Pakistan;
| | - Romana Riaz
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (R.R.); (A.M.)
| | - Shaukat Hussain Munawar
- Department of Pharmacology and Toxicology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
- Correspondence: (M.O.I.); (I.A.K.); (S.H.M.)
| | - Zahid Manzoor
- Department of Pharmacology and Toxicology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Asma Mumtaz
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (R.R.); (A.M.)
- Multan Medical and Dental College, Multan 60000, Pakistan
| |
Collapse
|
15
|
Xiang X, Dong G, Zhu J, Zhang G, Dong Z. Inhibition of HDAC3 protects against kidney cold storage/transplantation injury and allograft dysfunction. Clin Sci (Lond) 2022; 136:45-60. [PMID: 34918039 DOI: 10.1042/cs20210823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022]
Abstract
Cold storage/rewarming is an inevitable process for kidney transplantation from deceased donors, which correlates closely with renal ischemia-reperfusion injury (IRI) and the occurrence of delayed graft function. Histone deacetylases (HDAC) are important epigenetic regulators, but their involvement in cold storage/rewarming injury in kidney transplantation is unclear. In the present study, we showed a dynamic change of HDAC3 in a mouse model of kidney cold storage followed by transplantation. We then demonstrated that the selective HDAC3 inhibitor RGFP966 could reduce acute tubular injury and cell death after prolonged cold storage with transplantation. RGFP966 also improved renal function, kidney repair and tubular integrity when the transplanted kidney became the sole life-supporting graft in the recipient mouse. In vitro, cold storage of proximal tubular cells followed by rewarming induced remarkable cell death, which was suppressed by RGFP966 or knockdown of HDAC3 with shRNA. Inhibition of HDAC3 decreased the mitochondrial pathway of apoptosis and preserved mitochondrial membrane potential. Collectively, HDAC3 plays a pathogenic role in cold storage/rewarming injury in kidney transplantation, and its inhibition may be a therapeutic option.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, U.S.A
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, U.S.A
| | - Jiefu Zhu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
- Center of Nephrology and Dialysis, Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Zhang
- Center of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, U.S.A
| |
Collapse
|
16
|
Iqbal MO, Sial AS, Akhtar I, Naeem M, Hazafa A, Ansari RA, Rizvi SAA. The nephroprotective effects of Daucus carota and Eclipta prostrata against cisplatin-induced nephrotoxicity in rats. Bioengineered 2021; 12:12702-12721. [PMID: 34949157 PMCID: PMC8810007 DOI: 10.1080/21655979.2021.2009977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
The overuse of cisplatin (>50 mg/m2) is limited to nephrotoxicity, ototoxicity, gastrotoxicity, myelosuppression, and allergic reactions. The objective of this study was to investigate the nephroprotective effects of Daucus carota and Eclipta prostrata extracts on cisplatin-induced nephrotoxicity in Wistar albino rats. The study involved male Wistar albino rats of 8 weeks weighing 220-270 g. A single injection of 5 mg/kg was injected into the rats for nephrotoxicity. Rats were divided into four groups based on dose conentrations. Blood and urine samples of rats were collected on the 0, 7th, 14th, and 21st days for nephrological analysis. The results showed that Cis + DC/Cis + EP (600 mg/kg) significantly (p < 0.001) increased the body weight and reduced the kidney weight of cisplatin-induced nephrotoxicity in rats (p < 0.001) as compared to Cis group. The results showed that 600 mg/kg administration of Cis + DC/Cis +EP successfully (p < 0.005) improved the urine and plasmin creatinine, Na, and K level compared to the Cis group. Histopathological results confirmed that Cis + EP/Cis + DC effectively improved the renal abnormalities. It is concluded that the co-administration of Cis + EP extract showed exceptional nephroprotective effects at a dose rate of 600 mg/kg.
Collapse
Affiliation(s)
- Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Asad Saleem Sial
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Imran Akhtar
- Department of Pharmacology, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Rais A. Ansari
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Syed A. A. Rizvi
- Department of Pharmaceutical Sciences, Hampton University School of Pharmacy, Hampton, VA, USA
| |
Collapse
|
17
|
Li CM, Li M, Zhao WB, Ye ZC, Peng H. Alteration of N6-Methyladenosine RNA Profiles in Cisplatin-Induced Acute Kidney Injury in Mice. Front Mol Biosci 2021; 8:654465. [PMID: 34307448 PMCID: PMC8299335 DOI: 10.3389/fmolb.2021.654465] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Aim: To identify the alterations of N6-methyladenosine (m6A) RNA profiles in cisplatin-induced acute kidney injury (Cis-AKI) in mice. Materials and Methods: The total level of m6A and the expression of methyltransferases and demethylases in the kidneys were measured. The profiles of methylated RNAs were determined by the microarray method. Bioinformatics analysis was performed to predict the functions. Results: Global m6A levels were increased after cisplatin treatment, accompanied by the alterations of Mettl3, Mettl14, Wtap, Fto, and Alkbh5. A total of 618 mRNAs and 98 lncRNAs were significantly differentially methylated in response to cisplatin treatment. Bioinformatics analysis indicated that the methylated mRNAs predominantly acted on the metabolic process. Conclusion: M6A epitranscriptome might be significantly altered in Cis-AKI, which is potentially implicated in the development of nephrotoxicity.
Collapse
Affiliation(s)
- Can-Ming Li
- Department of Nephrology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Li
- Department of Nephrology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wen-Bo Zhao
- Department of Nephrology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zeng-Chun Ye
- Department of Nephrology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Peng
- Department of Nephrology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Loren P, Saavedra N, Saavedra K, Zambrano T, Moriel P, Salazar LA. Epigenetic Mechanisms Involved in Cisplatin-Induced Nephrotoxicity: An Update. Pharmaceuticals (Basel) 2021; 14:ph14060491. [PMID: 34063951 PMCID: PMC8223972 DOI: 10.3390/ph14060491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is an antineoplastic drug used for the treatment of many solid tumors. Among its various side effects, nephrotoxicity is the most detrimental. In recent years, epigenetic regulation has emerged as a modulatory mechanism of cisplatin-induced nephrotoxicity, involving non-coding RNAs, DNA methylation and histone modifications. These epigenetic marks alter different signaling pathways leading to damage and cell death. In this review, we describe how different epigenetic modifications alter different pathways leading to cell death by apoptosis, autophagy, necroptosis, among others. The study of epigenetic regulation is still under development, and much research remains to fully determine the epigenetic mechanisms underlying cell death, which will allow leading new strategies for the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (N.S.); (K.S.)
| | - Nicolás Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (N.S.); (K.S.)
| | - Kathleen Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (N.S.); (K.S.)
| | - Tomás Zambrano
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Patricia Moriel
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083970, SP, Brazil;
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (N.S.); (K.S.)
- Correspondence: ; Tel.: +56-452-596-724
| |
Collapse
|
19
|
HIF in Nephrotoxicity during Cisplatin Chemotherapy: Regulation, Function and Therapeutic Potential. Cancers (Basel) 2021; 13:cancers13020180. [PMID: 33430279 PMCID: PMC7825709 DOI: 10.3390/cancers13020180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cisplatin is a widely used chemotherapy drug, but its use and efficacy are limited by its nephrotoxicity. HIF has protective effects against kidney injury during cisplatin chemotherapy, but it may attenuate the anti-cancer effect of cisplatin. In this review, we describe the role and regulation of HIF in cisplatin-induced nephrotoxicity and highlight the therapeutic potential of targeting HIF in chemotherapy. Abstract Cisplatin is a highly effective, broad-spectrum chemotherapeutic drug, yet its clinical use and efficacy are limited by its side effects. Particularly, cancer patients receiving cisplatin chemotherapy have high incidence of kidney problems. Hypoxia-inducible factor (HIF) is the “master” transcription factor that is induced under hypoxia to trans-activate various genes for adaptation to the low oxygen condition. Numerous studies have reported that HIF activation protects against AKI and promotes kidney recovery in experimental models of cisplatin-induced acute kidney injury (AKI). In contrast, little is known about the effects of HIF on chronic kidney problems following cisplatin chemotherapy. Prolyl hydroxylase (PHD) inhibitors are potent HIF inducers that recently entered clinical use. By inducing HIF, PHD inhibitors may protect kidneys during cisplatin chemotherapy. However, HIF activation by PHD inhibitors may reduce the anti-cancer effect of cisplatin in tumors. Future studies should test PHD inhibitors in tumor-bearing animal models to verify their effects in kidneys and tumors.
Collapse
|
20
|
Taha MM, Shahy EM, Mahdy-Abdallah H, Ibrahim KS, El Tahlawy EM. Evaluation of the effect of serum cystatin-C and ACE I/D and ACE G2350A polymorphisms on kidney function among hypertensive sewage workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1619-1626. [PMID: 32851527 DOI: 10.1007/s11356-020-10579-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) as nephrotoxicant metal exerts its potent effect mainly on renal tubules disturbing its functions. A cross-sectional study was conducted on 55 sewage workers occupationally exposed to Cd and 50 control subjects. The study aimed to assess the effect of low-level Cd exposure on blood pressure and renal function in terms of serum cystatin-C levels. The associations between genetic polymorphisms of ACEI/D and ACE G2350A and hypertension and tubular injury among workers were studied. We analyzed blood and urine Cd concentration (U-Cd), serum cystatin-C, ACE I/D polymorphisms, and ACE G2350A, and blood pressure was measured. Results recorded a significant rise in serum and U-Cd and cystatin-C levels in sewage workers compared with controls. Significant distribution in genotype frequency of ACE I/D and ACE G2350A gene was detected. An association in DD genotype of ACE I/D with a rise in serum and U-Cd was observed in workers. In wild type genotype GG of ACE G2350A gene, a significant rise in serum cystatin-C levels and diastolic pressure was found while in heterozygote genotype GA significant rise in U-Cd levels was detected. Also, the association of AA genotype of ACE G2350A gene with a significant rise in serum and U-Cd and cystatin-C levels was shown among workers compared with control groups. Our findings indicated an association of ACE DD polymorphism in conjugation with GG genotype of ACE2 with hypertension and tubular injury in sewage workers.
Collapse
Affiliation(s)
- Mona M Taha
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Centre, Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Eman M Shahy
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Centre, Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Heba Mahdy-Abdallah
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Centre, Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Khadiga S Ibrahim
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Centre, Buhouth Street, Dokki, Cairo, 12622, Egypt.
| | - Eman M El Tahlawy
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Centre, Buhouth Street, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
21
|
A A Aly H, G Eid B. Cisplatin induced testicular damage through mitochondria mediated apoptosis, inflammation and oxidative stress in rats: impact of resveratrol. Endocr J 2020; 67:969-980. [PMID: 32507773 DOI: 10.1507/endocrj.ej20-0149] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The target of this study was to explore the role of mitochondria mediated apoptosis and inflammation in cisplatin-induced testicular damage and to evaluate the ameliorative effect of resveratrol. Adult male Wistar rats were randomly allocated to 4 groups. Group I (Control) received normal saline, Group II (Resveratrol) received resveratrol (50 mg/kg/day), Group III (Cisplatin) received cisplatin (7.5 mg/kg/week, i.p.) and Group IV (Resveratrol + Cisplatin) received resveratrol and cisplatin in the same regimen of treatment. Treatment with resveratrol in Groups II and IV started 48h before cisplatin injection and continued for further 4 successive weeks. Cisplatin-treated rats showed reduced body weight, absolute testes weight and sperm count, motility and viability. On the other hand, cisplatin treatment increased the percentage of sperm abnormalities. It also decreased serum testosterone level, mitochondrial membrane potential while, increased cytochrome C liberation from the mitochondria into the cytosol. The activities of caspase-3 & -9 were increased. The level of TNF-α, IL-6 and Bax were increased whereas Bcl-2 was decreased. Oxidative stress markers were found to increase with a concomitant reduction in the antioxidant enzymes and GSH levels. These results were confirmed by immunohistochemical and histopathological analysis. Contrary to all these results, there were improvements in cisplatin induced testicular damage through attenuation of mitochondria mediated apoptosis, inflammation, and oxidative stress owing to resveratrol pretreatment. Thus, resveratrol, as a potential therapeutic agent, may hold promise in preventing mitochondria mediated apoptosis and inflammation in cisplatin-induced testicular damage in rats.
Collapse
Affiliation(s)
- Hamdy A A Aly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Othman S, Elsaed W, Gabr S, Al-Fassam H, Gabr N, Eldesouqui M, Alwaele M, Al-Harbi H, Abo-Elenee R, Allam A, Mahmoud A. Camel Urine Prevents Cisplatin-induced Nephrotoxicity in Rats by Attenuating Oxidative Stress and Apoptosis. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.257.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Holditch SJ, Brown CN, Lombardi AM, Nguyen KN, Edelstein CL. Recent Advances in Models, Mechanisms, Biomarkers, and Interventions in Cisplatin-Induced Acute Kidney Injury. Int J Mol Sci 2019; 20:ijms20123011. [PMID: 31226747 PMCID: PMC6627318 DOI: 10.3390/ijms20123011] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/31/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is a widely used chemotherapeutic agent used to treat solid tumours, such as ovarian, head and neck, and testicular germ cell. A known complication of cisplatin administration is acute kidney injury (AKI). The development of effective tumour interventions with reduced nephrotoxicity relies heavily on understanding the molecular pathophysiology of cisplatin-induced AKI. Rodent models have provided mechanistic insight into the pathophysiology of cisplatin-induced AKI. In the subsequent review, we provide a detailed discussion of recent advances in the cisplatin-induced AKI phenotype, principal mechanistic findings of injury and therapy, and pre-clinical use of AKI rodent models. Cisplatin-induced AKI murine models faithfully develop gross manifestations of clinical AKI such as decreased kidney function, increased expression of tubular injury biomarkers, and tubular injury evident by histology. Pathways involved in AKI include apoptosis, necrosis, inflammation, and increased oxidative stress, ultimately providing a translational platform for testing the therapeutic efficacy of potential interventions. This review provides a discussion of the foundation laid by cisplatin-induced AKI rodent models for our current understanding of AKI molecular pathophysiology.
Collapse
Affiliation(s)
- Sara J Holditch
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| | - Carolyn N Brown
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| | - Andrew M Lombardi
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| | - Khoa N Nguyen
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| |
Collapse
|