1
|
Yu W, Xing Y, Song X, Li T, Zhang M. EGFR-Tyrosine Kinase Inhibitor Combined with Radiotherapy in 105 Patients of Lung Adenocarcinoma with Brain Metastasis: A Retrospective Study of Prognostic Factor Analysis. Oncol Res Treat 2024; 47:531-548. [PMID: 39293411 DOI: 10.1159/000541494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION This study aimed to retrospectively analyse the response and prognosis factors for patients with lung adenocarcinoma exhibiting brain metastasis and epidermal growth factor receptor (EGFR) mutations, who were treated with a combination of EGFR-tyrosine kinase inhibitor (TKI) and brain radiotherapy (RT). METHODS Clinicopathological data of patients with lung adenocarcinoma were collected from January 2021 to January 2024 at the First Affiliated Hospital of Hebei North University. Statistical analysis was performed using SPSS version 26.0, with significance set at p < 0.05. RESULTS A total of 105 patients were included. The overall survival (OS) rates at 1, 2, and 3 years were 82.9%, 61.2%, and 33.7%, respectively. The progression-free survival 1 (PFS1) rates at 1, 2, and 3 years were 62.7%, 36.6%, and 22.1%, respectively. The progression-free survival 2 (PFS2) rates at 1, 2, and 3 years were 80.8%, 54.6%, and 31.4%, respectively. The median OS, PFS1, and PFS2 were 29.8, 18.0, and 28.1 months, respectively. Cox multivariate analysis identified gene mutation status and brain radiation dose as independent prognostic factors for OS. For PFS1, gene mutation status, brain radiation dose, and initial treatment response were independent prognostic factors. Clinical stage, gene mutation status, brain radiation dose, and initial treatment response were independent prognostic factors for PFS2. CONCLUSION The combination of TKIs and brain RT is effective for patients with lung adenocarcinoma with EGFR mutations and brain metastases. Patients with exon 19 Del or exon 21 L858R mutations and brain radiation doses ≥40 Gy exhibit longer OS, PFS1, and PFS2. Additionally, complete remission + partial remission is associated with extended PFS1 and PFS2, while patients in stage IVA show longer PFS2.
Collapse
Affiliation(s)
- Wenjuan Yu
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yuan Xing
- Department of Pharmacy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xiao Song
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mi Zhang
- Department of Respiratory, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Rohilla S, Singh M, Alzarea SI, Almalki WH, Al-Abbasi FA, Kazmi I, Afzal O, Altamimi ASA, Singh SK, Chellappan DK, Dua K, Gupta G. Recent Developments and Challenges in Molecular-Targeted Therapy of Non-Small-Cell Lung Cancer. J Environ Pathol Toxicol Oncol 2023; 42:27-50. [PMID: 36734951 DOI: 10.1615/jenvironpatholtoxicoloncol.2022042983] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Treatment of lung cancer with conventional therapies, which include radiation, surgery, and chemotherapy results in multiple undesirable adverse or side effects. The major clinical challenge in developing new drug therapies for lung cancer is resistance, which involves mutations and disturbance in various signaling pathways. Molecular abnormalities related to epidermal growth factor receptor (EGFR), v-Raf murine sarcoma viral oncogene homolog B1 (B-RAF) Kirsten rat sarcoma virus (KRAS) mutations, translocation of the anaplastic lymphoma kinase (ALK) gene, mesenchymal-epithelial transition factor (MET) amplification have been studied to overcome the resistance and to develop new therapies for non-small cell lung cancer (NSCLC). But, inevitable development of resistance presents limits the clinical benefits of various new drugs. Here, we review current progress in the development of molecularly targeted therapies, concerning six clinical biomarkers: EGFR, ALK, MET, ROS-1, KRAS, and B-RAF for NSCLC treatment.
Collapse
Affiliation(s)
- Suman Rohilla
- SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, 122505, India
| | - Mahaveer Singh
- Swami Keshvanand Institute of Pharmacy (SKIP), Raiser, Bikaner, 334803, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Department of Pharmacology, Suresh GyanVihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
3
|
Li L, Li Y, Zou H. A novel role for apatinib in enhancing radiosensitivity in non-small cell lung cancer cells by suppressing the AKT and ERK pathways. PeerJ 2021; 9:e12356. [PMID: 34760374 PMCID: PMC8557687 DOI: 10.7717/peerj.12356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background Radioresistance is still the major cause of radiotherapy failure and poor prognosis in patients with non-small cell lung cancer (NSCLC). Apatinib (AP) is a highly selective inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2). Whether and how AP affects radiosensitivity in NSCLC remains unknown. The present study aimed to explore the radiosensitization effect of AP in NSCLC and its underlying mechanism as a radiosensitizer. Methods The NSCLC cell lines A549 and LK2 were treated with AP, ionizing radiation (IR), or both AP and IR. Expression of VEGFR2 was analyzed by western blot and RT-PCR. Cell proliferation was measured using CCK-8 and colony formation assays. Apoptosis and cell cycle distribution in NSCLC cells were analyzed by flow cytometry. Nuclear phosphorylated histone H2AX foci immunofluorescence staining was performed to evaluate the efficacy of the combination treatment. Western blot was used to explore the potential mechanisms of action. Results AP inhibited cell proliferation in a dose- and time-dependent manner. Flow cytometry analysis indicated that AP significantly increased radiation-induced apoptosis. Colony formation assays revealed that AP enhanced the radiosensitivity of NSCLC cells. AP strongly restored radiosensitivity by increasing IR-induced G2/M phase arrest. AP effectively inhibited repair of radiation-induced DNA double-strand breaks. Western blot analysis showed that AP enhanced radiosensitivity by downregulating AKT and extracellular signal-regulated kinase (ERK) signaling. Conclusion Our findings suggest that AP may enhance radiosensitivity in NSCLC cells by blocking AKT and ERK signaling. Therefore, AP may be a potential clinical radiotherapy synergist and a novel small-molecule radiosensitizer in NSCLC. Our study fills a gap in the field of anti-angiogenic drugs and radiosensitivity.
Collapse
Affiliation(s)
- Lin Li
- The First Oncology Department, The Fourth Hospital of China Medical University, Shenyang, Liaoning, China.,Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuexian Li
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Huawei Zou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
A novel role for NFIA in restoring radiosensitivity in radioresistant NSCLC cells by downregulating the AKT and ERK pathways. Biochem Biophys Res Commun 2019; 515:558-564. [PMID: 31178144 DOI: 10.1016/j.bbrc.2019.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/02/2019] [Indexed: 12/27/2022]
Abstract
Radioresistance remains the most challenging issue leading to radiotherapy failure in the treatment of non-small cell lung cancer (NSCLC). The nuclear factor IA (NFIA) is associated with tumor response to treatments in many cancers, but its role in NSCLC radioresistance remains unclear. Here, we established two radioresistant NSCLC cell lines, H226R and H460R, by dose-gradient irradiation to investigate the function of NFIA in NSCLC radioresistance. The results showed a dramatically reduced expression of NFIA in radioresistant cells accompanied with elevated phosphorylation of AKT and ERK, when compared with their parental cells. Overexpression of NFIA restored the sensitivity of radioresistant cells to radiation through increased ionizing radiation (IR)-induced apoptosis and DNA damage by downregulating p-AKT and p-ERK, whereas knockdown of NFIA promoted radioresistance of the parental cells. Our findings suggested that NFIA enhanced cell radiosensitivity by downregulating p-AKT and p-ERK in NSCLC. Our study fills a gap in the field of NFIA and radioresistance, and establishes a mechanistic foundation to improve radiotherapy efficiency in NSCLC patients.
Collapse
|
5
|
Arechaga-Ocampo E, Lopez-Camarillo C, Villegas-Sepulveda N, Gonzalez-De la Rosa CH, Perez-Añorve IX, Roldan-Perez R, Flores-Perez A, Peña-Curiel O, Angeles-Zaragoza O, Rangel Corona R, Gonzalez-Barrios JA, Bonilla-Moreno R, Del Moral-Hernandez O, Herrera LA, Garcia-Carranca A. Tumor suppressor miR-29c regulates radioresistance in lung cancer cells. Tumour Biol 2017; 39:1010428317695010. [PMID: 28345453 DOI: 10.1177/1010428317695010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Radiotherapy is an important treatment option for non-small cell lung carcinoma patients. Despite the appropriate use of radiotherapy, radioresistance is a biological behavior of cancer cells that limits the efficacy of this treatment. Deregulation of microRNAs contributes to the molecular mechanism underlying resistance to radiotherapy in cancer cells. Although the functional roles of microRNAs have been well described in lung cancer, their functional roles in radioresistance are largely unclear. In this study, we established a non-small cell lung carcinoma Calu-1 radioresistant cell line by continuous exposure to therapeutic doses of ionizing radiation as a model to investigate radioresistance-associated microRNAs. Our data show that 50 microRNAs were differentially expressed in Calu-1 radioresistant cells (16 upregulated and 34 downregulated); furthermore, well-known and novel microRNAs associated with resistance to radiotherapy were identified. Gene ontology and enrichment analysis indicated that modulated microRNAs might regulate signal transduction, cell survival, and apoptosis. Accordingly, Calu-1 radioresistant cells were refractory to radiation by increasing cell survival and reducing the apoptotic response. Among deregulated microRNAs, miR-29c was significantly suppressed. Reestablishment of miR-29c expression in Calu-1 radioresistant cells overcomes the radioresistance through the activation of apoptosis and downregulation of Bcl-2 and Mcl-1 target genes. Analysis of The Cancer Genome Atlas revealed that miR-29c is also suppressed in tumor samples of non-small cell lung carcinoma patients. Notably, we found that low miR-29c levels correlated with shorter relapse-free survival of non-small cell lung carcinoma patients treated with radiotherapy. Together, these results indicate a new role of miR-29c in radioresistance, highlighting their potential as a novel biomarker for outcomes of radiotherapy in lung cancer.
Collapse
Affiliation(s)
- Elena Arechaga-Ocampo
- 1 Departamento de Ciencias Naturales, Universidad Autonoma Metropolitana, Unidad Cuajimalpa, Mexico City, Mexico
| | - Cesar Lopez-Camarillo
- 2 Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico, Mexico City, Mexico
| | - Nicolas Villegas-Sepulveda
- 3 Departamento de Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | | | - Isidro X Perez-Añorve
- 1 Departamento de Ciencias Naturales, Universidad Autonoma Metropolitana, Unidad Cuajimalpa, Mexico City, Mexico
| | - Reynalda Roldan-Perez
- 1 Departamento de Ciencias Naturales, Universidad Autonoma Metropolitana, Unidad Cuajimalpa, Mexico City, Mexico
| | - Ali Flores-Perez
- 2 Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico, Mexico City, Mexico
| | - Omar Peña-Curiel
- 4 Departamento de Oncología Medica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | | | - Rosalva Rangel Corona
- 6 Laboratorio de Oncologia Celular, UMIEZ, FES Zaragoza, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | | | - Raul Bonilla-Moreno
- 3 Departamento de Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Oscar Del Moral-Hernandez
- 8 Laboratorio de Biomedicina Molecular, Unidad Academica de Ciencias Quimico Biologicas, Universidad Autonoma de Guerrero, Chilpancingo, Mexico
| | - Luis A Herrera
- 9 Unidad de Investigacion Biomedica en Cancer, Instituto Nacional de Cancerologia and Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Alejandro Garcia-Carranca
- 10 Laboratorio de Virus y Cancer, Unidad de Investigacion Biomedica en Cancer, Instituto Nacional de Cancerologia and Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| |
Collapse
|
6
|
Khalifa J, Amini A, Popat S, Gaspar LE, Faivre-Finn C. Brain Metastases from NSCLC: Radiation Therapy in the Era of Targeted Therapies. J Thorac Oncol 2016; 11:1627-43. [PMID: 27343440 DOI: 10.1016/j.jtho.2016.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/02/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
Brain metastases (BMs) will develop in a large proportion of patients with NSCLC throughout the course of their disease. Among patients with NSCLC with oncogenic drivers, mainly EGFR activating mutations and anaplastic lymphoma receptor tyrosine kinase gene (ALK) rearrangements, the presence of BM is a common secondary localization of disease both at the time of diagnosis and at relapse. Because of the limited penetration of a wide range of drugs across the blood-brain barrier, radiotherapy is considered the cornerstone of treatment of BMs. However, evidence of dramatic intracranial response rates has been reported in recent years with targeted therapies such as tyrosine kinase inhibitors and has been supported by new insights into pharmacokinetics to increase rates of tyrosine kinase inhibitors' penetration of the cerebrospinal fluid (CSF). In this context, the combination of brain radiotherapy and targeted therapies seems relevant, and there is a strong radiobiological rationale to harness the radiosentizing effect of the drugs. Nevertheless, to date, there is a paucity of high-level clinical evidence supporting the combination of brain radiotherapy and targeted therapies in patients with NSCLC and BMs, and there are often methodological biases in reported studies, such as the lack of stratification by mutation status. Moreover, among asymptomatic patients not suitable for ablative treatment, this strategy is challenged by the promising results associated with the administration of targeted therapies alone. Herein, we review the biological rationale to combine targeted therapies and brain radiotherapy for patients with NSCLC and BMs, report the clinical data available to date, and discuss future directions to improve outcome in this group of patients.
Collapse
Affiliation(s)
- Jonathan Khalifa
- Radiotherapy Related Research, The Christie National Health Service Foundation Trust, Manchester, United Kingdom.
| | - Arya Amini
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Sanjay Popat
- Lung Cancer Unit, Royal Marsden Hospital, London, United Kingdom
| | - Laurie E Gaspar
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Corinne Faivre-Finn
- Radiotherapy Related Research, The Christie National Health Service Foundation Trust, Manchester, United Kingdom; Manchester Academic Health Science Centre, Institute of Cancer Sciences, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Lehman M. Improving Therapeutic Outcomes in Non-small Cell Lung Cancer not Suitable for Curative Intent Therapy — A Review of the Role of Radiation Therapy in an Era of Increasing Systemic Therapy Options. Clin Oncol (R Coll Radiol) 2016; 28:327-33. [DOI: 10.1016/j.clon.2015.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/27/2023]
|
8
|
Couñago F, Rodríguez A, Calvo P, Luna J, Monroy JL, Taboada B, Díaz V, Rodríguez de Dios N. Targeted therapy combined with radiotherapy in non-small-cell lung cancer: a review of the Oncologic Group for the Study of Lung Cancer (Spanish Radiation Oncology Society). Clin Transl Oncol 2016; 19:31-43. [PMID: 27106020 DOI: 10.1007/s12094-016-1512-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/09/2016] [Indexed: 02/06/2023]
Abstract
In recent years, major advances in our understanding of the molecular biology of lung cancer, together with significant improvements in radiotherapy technologies, have revolutionized the treatment of non-small cell lung cancer (NSCLC). This has led to the development of new therapies that target molecular mutations specific to each tumor type, acting on the cell surface antigens or intracellular signaling pathways, or directly affecting cell survival. At the same time, ablative dose radiotherapy can be delivered safely in the context of metastatic disease. In this article, the GOECP/SEOR (Oncological Group for Study of Lung Cancer/Spanish Society of Radiation Oncology) reviews the role of new targeted therapies used in combination with radiotherapy in patients with locally advanced (stage III) NSCLC and in patients with advanced, metastatic (stage IV) NSCLC.
Collapse
Affiliation(s)
- F Couñago
- Department of Radiation Oncology, Hospital Universitario Quirón, Calle Diego de Velázquez, 1, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - A Rodríguez
- Department of Radiation Oncology, Hospital Ruber Internacional, Calle de la Masó, 38, 28034, Madrid, Spain
| | - P Calvo
- Department of Radiation Oncology, Hospital Universitario Santiago de Compostela, Travesía de Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - J Luna
- Department of Radiation Oncology, Hospital Universitario Fundación Jiménez Díaz, Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - J L Monroy
- Department of Radiation Oncology, Hospital Universitario La Ribera, Carretera de Corbera, km 1, 46600, Alzira, Valencia, Spain
| | - B Taboada
- Department of Radiation Oncology, Hospital Universitario Santiago de Compostela, Travesía de Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - V Díaz
- Department of Radiation Oncology, Hospital Universitario Puerta del Mar, Av. Ana de Viya, 21, 11009, Cádiz, Spain
| | - N Rodríguez de Dios
- Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut Mar, Barcelona, Spain. .,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,Universitat Pompeu Fabra, San josé de la Montaña 12, 08024, Barcelona, Spain.
| |
Collapse
|