1
|
Chu L, Cang L, Fang G, Sun Z, Wang X, Zhou D, Gao J. A novel electrokinetic remediation with in-situ generation of H 2O 2 for soil PAHs removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128273. [PMID: 35051774 DOI: 10.1016/j.jhazmat.2022.128273] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Electrokinetic-Fenton (EK-Fenton) technology requires a high dose of H2O2 to produce •OH radicals, which adds a high cost to the remediation process and raises safety concerns during transportation and storage of H2O2. Moreover, the remediation efficiency of the conventional EK-Fenton process is low due to the meaningless consumption of H2O2 on the electrodes and the alkaline environment near the cathode. In this work, a modified CMK3-gas diffusion electrode (CMK3-GDE) is fabricated. This cathode can continuously generate H2O2, and the cumulative H2O2 concentration can reach 0.23 M during 10 days of the test. The utilization of cation exchange membranes (CEMs) efficiently restricts the decomposition of H2O2 on the electrodes and prevents the alkalization of the soil near the cathode, resulting in a 13.7-43.2% increase of the removal efficiency of polycyclic aromatic hydrocarbons (PAHs). In this new treatment process, PAHs are mainly oxidized into quinones, ketones, alcohols, and small molecule acids, and all these products have lower toxicities than PAHs. The EK-Fenton/CMK3-GDE-CEM system exhibits excellent remediation efficiency for treating PAHs polluted soil, which could be a sustainable, eco-friendly, and low-cost strategy for soil remediation.
Collapse
Affiliation(s)
- Longgang Chu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Cang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhaoyue Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinghao Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
2
|
Adhami S, Jamshidi-Zanjani A, Darban AK. Phenanthrene removal from the contaminated soil using the electrokinetic-Fenton method and persulfate as an oxidizing agent. CHEMOSPHERE 2021; 266:128988. [PMID: 33243569 DOI: 10.1016/j.chemosphere.2020.128988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Remediation of soils contaminated with hydrocarbon materials is of particular importance due to their association with food chain. One of the remediation methods, which has been taken into account in recent years by researchers, is the electrokinetic technique. In this study, the electrokinetic method was used in combination with the Fenton technique to remove phenanthrene from clay soil. Oxidizing agent and catalyst used in the Fenton technique greatly influenced the efficiency of the remediation process. To investigate the effect of these two factors on the remediation process, it was made use of three different types of electrodes as catalyst, including graphite, iron, and copper, as well as hydrogen peroxide and sodium persulfate with different concentrations as oxidizing agent. During the 9 experiments designed, factors affecting removal efficiency, such as remediation time, electric current intensity, electroosmotic flow rate, and pH of the cathode and anode reservoirs were also investigated. Overall, the use of the electrokinetic-Fenton method with 15% hydrogen peroxide and copper electrode exhibited a 100% increase in the process efficiency over the same time period required to perform the conventional electrokinetic method and removed 93% of the soil phenanthrene, these findings indicated that combining the Fenton technique with the electrokinetic method enhanced the efficiency of this method in removing organic pollutants from the soil. Also, the use of sodium persulfate as an oxidizing agent in the electrokinetic method increased the removal efficiency by more than 95% over the half time period required to perform the conventional electrokinetic method.
Collapse
Affiliation(s)
- Sajad Adhami
- Master Student of Mining Engineering, Mining and Envirronment, Tarbiat Modares University, Iran.
| | - Ahmad Jamshidi-Zanjani
- Department of Mining, Faculty of Engineering, Tarbiat Modares University, 14115-143, Tehran, Iran.
| | - Ahmad Khodadadi Darban
- Department of Mining, Faculty of Engineering, Tarbiat Modares University, 14115-143, Tehran, Iran.
| |
Collapse
|
3
|
Pan X, Wei J, Qu R, Xu S, Chen J, Al-Basher G, Li C, Shad A, Dar AA, Wang Z. Alumina-mediated photocatalytic degradation of hexachlorobenzene in aqueous system: Kinetics and mechanism. CHEMOSPHERE 2020; 257:127256. [PMID: 32531489 DOI: 10.1016/j.chemosphere.2020.127256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/23/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Five kinds of Al2O3 were characterized by SEM, TEM, FT-IR and BET surface area, and then used as carriers to investigate the photochemical removal of hexachlorobenzene (HCB) in aqueous system. The results showed that HCB coated on the surfaces of all Al2O3 could be photodegraded rapidly, and Neutral-Al2O3 presented the best performance. Meanwhile, the efficient removal of HCB in real water matrices, including tap water, river water and secondary clarifier effluent showed the potential practical application of Al2O3. EPR and theoretical calculation revealed the generation of hydroxyl radicals on Al2O3 surface under 500 W Xe lamp irradiation. Nine intermediates and a small amount of Cl- were identified by GC/MS, LC/MS and IC analysis, which was further verified by transition state calculations. These results can provide a new technique for HCB removal in water and wastewaters, and give more insights into the environmental ecological risk assessment of this pollutant.
Collapse
Affiliation(s)
- Xiaoxue Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China.
| | - Shiping Xu
- School of Environmental Science and Engineering, Shandong University, Shandong, Jinan, 250100, PR China
| | - Jing Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Ghada Al-Basher
- King Saud University, College of Science, Zoology Department, P.O. Box 2455, 10, Riyadh, 11451, Saudi Arabia
| | - Chenguang Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Asam Shad
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Afzal Ahmed Dar
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| |
Collapse
|
4
|
Barbosa Ferreira M, Sales Solano AM, Vieira dos Santos E, Martínez-Huitle CA, Ganiyu SO. Coupling of Anodic Oxidation and Soil Remediation Processes: A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4309. [PMID: 32992528 PMCID: PMC7579085 DOI: 10.3390/ma13194309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 08/10/2020] [Accepted: 09/22/2020] [Indexed: 01/16/2023]
Abstract
In recent years, due to industrial modernization and agricultural mechanization, several environmental consequences have been observed, which make sustainable development difficult. Soil, as an important component of ecosystem and a key resource for the survival of human and animals, has been under constant contamination from different human activities. Contaminated soils and sites require remediation not only because of the hazardous threat it possess to the environment but also due to the shortage of fresh land for both agriculture and urbanization. Combined or coupled remediation technologies are one of the efficient processes for the treatment of contaminated soils. In these technologies, two or more soil remediation techniques are applied simultaneously or sequentially, in which one technique complements the other, making the treatment very efficient. Coupling anodic oxidation (AO) and soil remediation for the treatment of soil contaminated with organics has been studied via two configurations: (i) soil remediation, ex situ AO, where AO is used as a post-treatment stage for the treatment of effluents from soil remediation process and (ii) soil remediation, in situ AO, where both processes are applied simultaneously. The former is the most widely investigated configuration of the combined processes, while the latter is less common due to the greater diffusion dependency of AO as an electrode process. In this review, the concept of soil washing (SW)/soil flushing (SF) and electrokinetic as soil remediation techniques are briefly explained followed by a discussion of different configurations of combined AO and soil remediation.
Collapse
Affiliation(s)
- Maiara Barbosa Ferreira
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil; (M.B.F.); (A.M.S.S.); (E.V.d.S.)
| | - Aline Maria Sales Solano
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil; (M.B.F.); (A.M.S.S.); (E.V.d.S.)
| | - Elisama Vieira dos Santos
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil; (M.B.F.); (A.M.S.S.); (E.V.d.S.)
| | - Carlos A. Martínez-Huitle
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil; (M.B.F.); (A.M.S.S.); (E.V.d.S.)
| | - Soliu O. Ganiyu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada
| |
Collapse
|
5
|
Ni M, Tian S, Huang Q, Yang Y. Electrokinetic-Fenton remediation of organochlorine pesticides from historically polluted soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12159-12168. [PMID: 29455352 DOI: 10.1007/s11356-018-1479-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
Soil contamination by persistent organic pollutants (POPs) poses a great threat to historically polluted soil worldwide. In this study, soils were characterized, and organochlorine pesticides contained in the soils were identified and quantified. Individual electrokinetic (IE), EK-Fenton-coupled technologies (EF), and enhanced EK-Fenton treatment (E-1, E-2, and E-3) were applied to remediate soils contaminated with hexachloro-cyclohexane soprocide (HCH) and dichloro-diphenyl-trichloroethane (DDT). Variation of pH, electrical conductivity, and electroosmotic flow was evaluated during the EK-Fenton process. The IE treatment showed low removal efficiency for HCHs (30.5%) and DDTs (25.9%). In the EF treatment, the highest removal level (60.9%) was obtained for α-HCH, whereas P,P-DDT was the lowest (40.0%). Low solubility of pollutants impeded the HCH and DDT removal. After enhanced EK-Fenton treatment, final removal of pollutants decreased as follows: β-HCH (82.6%) > γ-HCH (81.6%) > α-HCH (81.2%) > δ-HCH (80.0%) > P,P-DDD (73.8%) > P,P-DDE (73.1%) > P,P-DDT (72.6%) > O,P-DDT (71.5%). The results demonstrate that EK-Fenton is a promising technology for POP removal in historically polluted soil.
Collapse
Affiliation(s)
- Maofei Ni
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulei Tian
- Research Institute of Solid Waste Management, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Qifei Huang
- Research Institute of Solid Waste Management, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yanmei Yang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| |
Collapse
|
6
|
Yang S, Lin S, Fan J, Wang Y, Liu C, Yan X. Rapid, Complete Removal of Organic Pollutants from Water by a SnS2
-Modified Porous β-Cyclodextrin-Containing Polymer. Chempluschem 2017; 82:1218-1223. [DOI: 10.1002/cplu.201700323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/24/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Shun Yang
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 P. R. China
| | - Shiting Lin
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 P. R. China
| | - Jie Fan
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 P. R. China
| | - Yaru Wang
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 P. R. China
| | - Chang Liu
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 P. R. China
| | - Xiao Yan
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 P. R. China
| |
Collapse
|
7
|
Ayekoe CYP, Robert D, Lanciné DG. Combination of coagulation-flocculation and heterogeneous photocatalysis for improving the removal of humic substances in real treated water from Agbô River (Ivory-Coast). Catal Today 2017. [DOI: 10.1016/j.cattod.2016.09.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Moghadam MJ, Moayedi H, Sadeghi MM, Hajiannia A. A review of combinations of electrokinetic applications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2016; 38:1217-1227. [PMID: 26780262 DOI: 10.1007/s10653-016-9795-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
Anthropogenic activities contaminate many lands and underground waters with dangerous materials. Although polluted soils occupy small parts of the land, the risk they pose to plants, animals, humans, and groundwater is too high. Remediation technologies have been used for many years in order to mitigate pollution or remove pollutants from soils. However, there are some deficiencies in the remediation in complex site conditions such as low permeability and complex composition of some clays or heterogeneous subsurface conditions. Electrokinetic is an effective method in which electrodes are embedded in polluted soil, usually vertically but in some cases horizontally, and a low direct current voltage gradient is applied between the electrodes. The electric gradient initiates movement of contaminants by electromigration (charged chemical movement), electro-osmosis (movement of fluid), electrolysis (chemical reactions due to the electric field), and diffusion. However, sites that are contaminated with heavy metals or mixed contaminants (e.g. a combination of organic compounds with heavy metals and/or radionuclides) are difficult to remediate. There is no technology that can achieve the best results, but combining electrokinetic with other remediation methods, such as bioremediation and geosynthetics, promises to be the most effective method so far. This review focuses on the factors that affect electrokinetic remediation and the state-of-the-art methods that can be combined with electrokinetic.
Collapse
Affiliation(s)
| | - Hossein Moayedi
- Department of Civil Engineering, Kermanshah University of Technology, Kermanshah, Iran
| | | | - Alborz Hajiannia
- Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
9
|
Affiliation(s)
- Thuy Duong Pham
- Laboratory of Green Chemistry, Lappeenranta University of Technology, Mikkeli, Finland
| | - Mika Sillanpää
- Laboratory of Green Chemistry, Lappeenranta University of Technology, Mikkeli, Finland
| |
Collapse
|
10
|
Zhao F, Repo E, Yin D, Meng Y, Jafari S, Sillanpää M. EDTA-Cross-Linked β-Cyclodextrin: An Environmentally Friendly Bifunctional Adsorbent for Simultaneous Adsorption of Metals and Cationic Dyes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10570-80. [PMID: 26237660 DOI: 10.1021/acs.est.5b02227] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The discharge of metals and dyes poses a serious threat to public health and the environment. What is worse, these two hazardous pollutants are often found to coexist in industrial wastewaters, making the treatment more challenging. Herein, we report an EDTA-cross-linked β-cyclodextrin (EDTA-β-CD) bifunctional adsorbent, which was fabricated by an easy and green approach through the polycondensation reaction of β-cyclodextrin with EDTA as a cross-linker, for simultaneous adsorption of metals and dyes. In this setting, cyclodextrin cavities are expected to capture dye molecules through the formation of inclusion complexes and EDTA units as the adsorption sites for metals. The adsorbent was characterized by FT-IR, elemental analysis, SEM, EDX, ζ-potential, and TGA. In a monocomponent system, the adsorption behaviors showed a monolayer adsorption capacity of 1.241 and 1.106 mmol g(-1) for Cu(II) and Cd(II), respectively, and a heterogeneous adsorption capacity of 0.262, 0.169, and 0.280 mmol g(-1) for Methylene Blue, Safranin O, and Crystal Violet, respectively. Interestingly, the Cu(II)-dye binary experiments showed adsorption enhancement of Cu(II), but no significant effect on dyes. The simultaneous adsorption mechanism was further confirmed by FT-IR, thermodynamic study, and elemental mapping. Overall, its facile and green fabrication, efficient sorption performance, and excellent reusability indicate that EDTA-β-CD has potential for practical applications in integrative and efficient treatment of coexistenting toxic pollutants.
Collapse
Affiliation(s)
- Feiping Zhao
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology , Sammonkatu 12, FI-50130 Mikkeli, Finland
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University , 410081 Changsha, China
| | - Eveliina Repo
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology , Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Dulin Yin
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University , 410081 Changsha, China
| | - Yong Meng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University , 410081 Changsha, China
| | - Shila Jafari
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology , Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Mika Sillanpää
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology , Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
11
|
Rubio-Clemente A, Torres-Palma RA, Peñuela GA. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 478:201-225. [PMID: 24552655 DOI: 10.1016/j.scitotenv.2013.12.126] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/30/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
Due to their carcinogenic, mutagenic and teratogenic potential, the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous environment using physical, biological and chemical processes has been studied by several researchers. This paper reviews the current state of knowledge concerning PAHs including their physico-chemical properties, input sources, occurrence, adverse effects and conventional and alternative chemical processes applied for their removal from water. The mechanisms and reactions involved in each treatment method are reported, and the effects of various variables on the PAH degradation rate as well as the extent of degradation are also discussed. Extensive literature analysis has shown that an effective way to perform the conversion and mineralization of this type of substances is the application of advanced oxidation processes (AOPs). Furthermore, combined processes, particularly AOPs coupled with biological treatments, seem to be one of the best solutions for the treatment of effluents containing PAHs.
Collapse
Affiliation(s)
- Ainhoa Rubio-Clemente
- Grupo de Diagnóstico y Control de la Contaminación - GDCON, Facultad de Ingeniería, Sede de Investigaciones Universitarias (SIU), Universidad de Antioquia UdeA, Calle 70, No. 52-21, Medellín, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70, No. 52-21, Medellín, Colombia.
| | - Gustavo A Peñuela
- Grupo de Diagnóstico y Control de la Contaminación - GDCON, Facultad de Ingeniería, Sede de Investigaciones Universitarias (SIU), Universidad de Antioquia UdeA, Calle 70, No. 52-21, Medellín, Colombia
| |
Collapse
|
12
|
Tong M, Yuan S. Physiochemical technologies for HCB remediation and disposal: a review. JOURNAL OF HAZARDOUS MATERIALS 2012; 229-230:1-14. [PMID: 22709849 DOI: 10.1016/j.jhazmat.2012.05.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/15/2012] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
Hexachlorobenzene (HCB) is one of the 12 persistent organic pollutants (POPs) listed in "Stockholm Convention". It is hydrophobic, toxic and persistent in the environment. Due to extensive use in the past, HCB contamination is still a serious environmental problem. Strong adsorption on solid particles makes the remediation difficult. This paper presents an overview of the physiochemical technologies for HCB remediation and disposal. The adsorption/desorption behavior of HCB is firstly described because it comprises the fundamental for most remediation technologies. Physiochemical technologies concerned mostly for HCB remediation and disposal, i.e., chemical enhanced washing, electrokinetic remediation, reductive dechlorination and thermal decomposition, are reviewed in terms of fundamentals, state of the art and perspectives. The other physiochemical technologies including chemical oxidation, radiation induced catalytic dechlorination, ultrasonic assisted treatment and mechanochemical dechlorination are also reviewed. The pilot and large scale tests on HCB remediation or disposal are summarized in the end. This review aims to provide useful information to researchers and practitioners regarding HCB remediation and disposal.
Collapse
Affiliation(s)
- Man Tong
- State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | | |
Collapse
|
13
|
Gomes HI, Dias-Ferreira C, Ribeiro AB. Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. CHEMOSPHERE 2012; 87:1077-1090. [PMID: 22386462 DOI: 10.1016/j.chemosphere.2012.02.037] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/07/2012] [Accepted: 02/10/2012] [Indexed: 05/31/2023]
Abstract
Electrokinetic remediation has been increasingly used in soils and other matrices for numerous contaminants such as inorganic, organic, radionuclides, explosives and their mixtures. Several strategies were tested to improve this technology effectiveness, namely techniques to solubilize contaminants, control soil pH and also couple electrokinetics with other remediation technologies. This review focus in the experimental work carried out in organochlorines soil electroremediation, aiming to systemize useful information to researchers in this field. It is not possible to clearly state what technique is the best, since experimental approaches and targeted contaminants are different. Further research is needed in the application of some of the reviewed techniques. Also a number of technical and environmental issues will require evaluation for full-scale application. Removal efficiencies reported in real contaminated soils are much lower than the ones obtained with spiked kaolinite, showing the influence of other factors like aging of the contamination and adsorption to soil particles, resulting in important challenges when transferring technologies into the field.
Collapse
Affiliation(s)
- Helena I Gomes
- CENSE, Departamento de Ciências e Engenharia do Ambiente, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | | | | |
Collapse
|
14
|
Yeung AT, Gu YY. A review on techniques to enhance electrochemical remediation of contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2011; 195:11-29. [PMID: 21889259 DOI: 10.1016/j.jhazmat.2011.08.047] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/15/2011] [Accepted: 08/15/2011] [Indexed: 05/27/2023]
Abstract
Electrochemical remediation is a promising remediation technology for soils contaminated with inorganic, organic, and mixed contaminants. A direct-current electric field is imposed on the contaminated soil to extract the contaminants by the combined mechanisms of electroosmosis, electromigration, and/or electrophoresis. The technology is particularly effective in fine-grained soils of low hydraulic conductivity and large specific surface area. However, the effectiveness of the technology may be diminished by sorption of contaminants on soil particle surfaces and various effects induced by the hydrogen ions and hydroxide ions generated at the electrodes. Various enhancement techniques have been developed to tackle these diminishing effects. A comprehensive review of these techniques is given in this paper with a view to providing useful information to researchers and practitioners in this field.
Collapse
Affiliation(s)
- Albert T Yeung
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | | |
Collapse
|
15
|
Matilainen A, Sillanpää M. Removal of natural organic matter from drinking water by advanced oxidation processes. CHEMOSPHERE 2010; 80:351-65. [PMID: 20494399 DOI: 10.1016/j.chemosphere.2010.04.067] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 04/24/2010] [Accepted: 04/26/2010] [Indexed: 05/07/2023]
Abstract
Over the past 10-20years the amount of the natural organic matter (NOM) has been increased in raw water supplies on several areas. The presence of NOM causes many problems in drinking water treatment processes, including: (i) negative effect on water quality by colour, taste and odor problems, (ii) increased coagulant and disinfectant dose requirements (which in turn results increased sludge and potential harmful disinfection by-product formation), (iii) promoted biological growth in distribution system, and (iv) increased levels of complexed heavy metals and adsorbed organic pollutants. Thus, more efficient methods for the removal of NOM have emerged. Among these are advanced oxidation processes (AOPs). These include O(3)/H(2)O(2), O(3)/UV, UV/H(2)O(2), TiO(2)/UV, H(2)O(2)/catalyst, Fenton and photo-Fenton prosesses as well as ultrasound. In the present work, an overview of the recent research studies dealing with AOP methods for the removal of NOM and related compounds from drinking water is presented.
Collapse
Affiliation(s)
- Anu Matilainen
- Laboratory of Applied Environmental Chemistry, Department of Environmental Sciences, University of Eastern Finland, Patteristonkatu 1, FI-50100 Mikkeli, Finland
| | | |
Collapse
|
16
|
Kurniawan TA, Lo W, Chan G, Sillanpää MET. Biological processes for treatment of landfill leachate. ACTA ACUST UNITED AC 2010; 12:2032-47. [DOI: 10.1039/c0em00076k] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Sillanpää M, Pirkanniemi K, Sorokin A. Oxidation of EDTA with H2O2 catalysed by metallophthalocyanines. ENVIRONMENTAL TECHNOLOGY 2009; 30:1593-1600. [PMID: 20184004 DOI: 10.1080/09593330903358286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The oxidation of ethylenediaminetetraacetic acid (EDTA) and Na, Ca, Zn, Fe, and Mn EDTA complexes with hydrogen peroxide was studied in aqueous solution with the use of several metallophthalocyanines (MePcS) as catalysts. The impact of pH, temperature, and catalyst/substrate ratio were investigated. The most effective catalytic system under neutral conditions was FePcS- H2O2. In these laboratory-scale experiments, a catalyst/substrate/H2O2 molar ratio of 4:100:2000 was found to be optimal, while the effective reaction temperature was 40-60 degrees C. When the impact of metal speciation was studied, metal-specific degradation rates in the removal of these compounds were observed: all EDTA-metal complexes except Zn-EDTA were efficiently oxidized within three hours. The most degradable species was Fe(III)-EDTA. Among the catalysts, FePcS was found to be the most active in EDTA degradation. Over 90% of EDTA was removed in the presence of FePcS as catalyst within three hours of reaction time.
Collapse
Affiliation(s)
- Mika Sillanpää
- University of Kuopio, Laboratory of Applied Environmental Chemistry, Department of Environmental Sciences, Patteristonkatu 1, FIN-50100 Mikkeli, Finland.
| | | | | |
Collapse
|
18
|
Li T, Yuan S, Wan J, Lin L, Long H, Wu X, Lu X. Pilot-scale electrokinetic movement of HCB and Zn in real contaminated sediments enhanced with hydroxypropyl-beta-cyclodextrin. CHEMOSPHERE 2009; 76:1226-1232. [PMID: 19560795 DOI: 10.1016/j.chemosphere.2009.05.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/29/2009] [Accepted: 05/29/2009] [Indexed: 05/28/2023]
Abstract
This study deals with the efficiency of a pilot-scale electrokinetic (EK) treatment on real aged sediments contaminated with hexachlorobenzene (HCB) and Zn. A total of 0.5m(3) of sediments were treated under a constant voltage in a polyvinyl chloride reactor. The changes of sediment pH, electrical conductivity (EC), organic content (OC), the transport of contaminants in sediments and the consumption of electric energy were evaluated. After 100 d processing, sediment pH slightly increased compared with the initial values, particularly in the bottom layer close to cathodic section, while sediment EC in most sections significantly decreased. Sediment OC in all sections increased, which implied that hydroxypropyl-beta-cyclodextrin (HPCD) was successfully penetrated across sediments by electroosmosis. Significant movement of contaminants was observed across sediments with negligible removals. Both HCB and Zn generally moved from sections near anode and accumulated near cathode. Upon the completion of treatment, the electric energy consumption was calculated as 563 kWhm(-3). This pilot-scale EK test indicates that it is difficult to achieve great removal of hydrophobic organic compounds (HOCs), or HOCs and heavy metal mixed contaminants, by EK treatment in large scale with the use of HPCD.
Collapse
Affiliation(s)
- Taiping Li
- Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | | | | | | | | | | | | |
Collapse
|