1
|
Wang J, Chen L, Qin S, Xie M, Luo SZ, Li W. Advances in biosynthesis of peptide drugs: Technology and industrialization. Biotechnol J 2024; 19:e2300256. [PMID: 37884278 DOI: 10.1002/biot.202300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Peptide drugs are developed from endogenous or synthetic peptides with specific biological activities. They have advantages of strong target specificity, high efficacy and low toxicity, thus showing great promise in the treatment of many diseases such as cancer, infections, and diabetes. Although an increasing number of peptide drugs have entered market in recent years, the preparation of peptide drug substances is yet a bottleneck problem for their industrial production. Comparing to the chemical synthesis method, peptide biosynthesis has advantages of simple synthesis, low cost, and low contamination. Therefore, the biosynthesis technology of peptide drugs has been widely used for manufacturing. Herein, we reviewed the development of peptide drugs and recent advances in peptide biosynthesis technology, in order to shed a light to the prospect of industrial production of peptide drugs based on biosynthesis technology.
Collapse
Affiliation(s)
- Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Mingyuan Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| |
Collapse
|
2
|
Economic analysis of the production and recovery of green fluorescent protein using ATPS-based bioprocesses. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117595] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Integrated strategy for the separation of endotoxins from biofluids. LPS capture on newly synthesized protein. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Oliveira Filho MA, Caldas MCB, Vasconcelos LTCDP, Ribeiro VT, Araújo JSD, de Araújo Padilha CE, de Sousa Junior FC, dos Santos ES. Partitioning and recovery of an elongation factor (1-γ) of Leishmania infantum chagasi expressed in E. coli M15 with simultaneous endotoxin removal using aqueous two-phase system. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1586727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Marcos Antônio Oliveira Filho
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Maria Cecília Bezerra Caldas
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | | | - Vitor Troccoli Ribeiro
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Jaciara Silva de Araújo
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Carlos Eduardo de Araújo Padilha
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Francisco Canindé de Sousa Junior
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Everaldo Silvino dos Santos
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
5
|
Leitão ALODS, Caldas MCB, Eduardo de Araújo Padilha C, Nogueira da Costa C, Rocha PM, Canindé de Sousa Junior F, Ribeiro de Macedo G, Silvino dos Santos E. Recovery and purification of 503 antigen from Leishmania i. chagasi with simultaneous removal of lipopolysaccharides: Influence of immobilized metals and elution strategies during expanded bed adsorption (EBA). J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1565829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | | | | | - Patrícia Maria Rocha
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Francisco Canindé de Sousa Junior
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | |
Collapse
|
6
|
Teixeira-Pinto RGR, Molino JVD, Santos-Ebinuma VC, Pessoa A, Valentini SR, Pereira JFB, Lopes AM. Effect of electrolytes as adjuvants in GFP and LPS partitioning on aqueous two-phase systems: 2. Nonionic micellar systems. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.07.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Lopes AM, Molino JVD, dos Santos-Ebinuma VC, Pessoa A, Valentini SR, Pereira JFB. Effect of electrolytes as adjuvants in GFP and LPS partitioning on aqueous two-phase systems: 1. Polymer-polymer systems. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.04.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Song CP, Liew PE, Teh Z, Lim SP, Show PL, Ooi CW. Purification of the Recombinant Green Fluorescent Protein Using Aqueous Two-Phase System Composed of Recyclable CO 2-Based Alkyl Carbamate Ionic Liquid. Front Chem 2018; 6:529. [PMID: 30430106 PMCID: PMC6220422 DOI: 10.3389/fchem.2018.00529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/11/2018] [Indexed: 02/04/2023] Open
Abstract
The formation of aqueous two-phase system (ATPS) with the environmentally friendly and recyclable ionic liquid has been gaining popularity in the field of protein separation. In this study, the ATPSs comprising N,N-dimethylammonium N′,N′-dimethylcarbamate (DIMCARB) and thermo-responsive poly(propylene) glycol (PPG) were applied for the recovery of recombinant green fluorescent protein (GFP) derived from Escherichia coli. The partition behavior of GFP in the PPG + DIMCARB + water system was investigated systematically by varying the molecular weight of PPG and the total composition of ATPS. Overall, GFP was found to be preferentially partitioned to the hydrophilic DIMCARB-rich phase. An ATPS composed of 42% (w/w) PPG 1000 and 4.4% (w/w) DIMCARB gave the optimum performance in terms of GFP selectivity (1,237) and yield (98.8%). The optimal system was also successfully scaled up by 50 times without compromising the purification performance. The bottom phase containing GFP was subjected to rotary evaporation of DIMCARB. The stability of GFP was not affected by the distillation of DIMCARB, and the DIMCARB was successfully recycled in three successive rounds of GFP purification. The potential of PPG + DIMCARB + water system as a sustainable protein purification tool is promising.
Collapse
Affiliation(s)
- Cher Pin Song
- Chemical Engineering Discipline, School of Engineering, Selangor, Malaysia.,Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Selangor, Malaysia
| | - Poh En Liew
- Chemical Engineering Discipline, School of Engineering, Selangor, Malaysia
| | - Zora Teh
- Chemical Engineering Discipline, School of Engineering, Selangor, Malaysia
| | - Schian Pei Lim
- Chemical Engineering Discipline, School of Engineering, Selangor, Malaysia
| | - Pau Loke Show
- Bioseparation Research Group, Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, Selangor, Malaysia
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Selangor, Malaysia
| |
Collapse
|
9
|
Lo SC, Ramanan RN, Tey BT, Tan WS, Show PL, Ling TC, Ooi CW. Purification of the recombinant enhanced green fluorescent protein from Escherichia coli using alcohol + salt aqueous two-phase systems. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.09.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Molino JVD, Lopes AM, Viana Marques DDA, Mazzola PG, da Silva JL, Hirata MH, Hirata RDC, Gatti MSV, Pessoa A. Application of aqueous two‐phase micellar system to improve extraction of adenoviral particles from cell lysate. Biotechnol Appl Biochem 2017; 65:381-389. [DOI: 10.1002/bab.1627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/11/2017] [Indexed: 11/10/2022]
Affiliation(s)
- João Vitor Dutra Molino
- Department of Biochemical and Pharmaceutical TechnologySchool of Pharmaceutical SciencesUniversity of São Paulo São Paulo Brazil
| | - André Moreni Lopes
- Department of Bioprocess and BiotechnologySchool of Pharmaceutical SciencesSão Paulo State University Araraquara Brazil
| | | | | | - Joas Lucas da Silva
- Department of Clinical and Toxicological AnalysisSchool of Pharmaceutical SciencesUniversity of São Paulo São Paulo Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological AnalysisSchool of Pharmaceutical SciencesUniversity of São Paulo São Paulo Brazil
| | | | | | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical TechnologySchool of Pharmaceutical SciencesUniversity of São Paulo São Paulo Brazil
| |
Collapse
|
11
|
de Sousa Junior FC, Ribeiro VT, Chibério AS, da Mata Costa LP, de Araújo Padilha CE, Martins DRA, de Macedo GR, dos Santos ES. Simultaneous recombinant 503 antigen recovery and endotoxin removal from E. coli M15 homogenate using expanded bed adsorption chromatography. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1305411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Francisco Caninde de Sousa Junior
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Vitor Troccoli Ribeiro
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Abimaelle Silva Chibério
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Laura Pires da Mata Costa
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Gorete Ribeiro de Macedo
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Everaldo Silvino dos Santos
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
12
|
Campos-Pinto I, Espitia-Saloma E, Rosa SA, Rito-Palomares M, Aguilar O, Arévalo-Rodríguez M, Aires-Barros MR, Azevedo AM. Integration of cell harvest with affinity-enhanced purification of monoclonal antibodies using aqueous two-phase systems with a dual tag ligand. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Zhang J, Zhu C, Fan D, Ma X, Mi Y, Xue W. A Two-Step Protocol to Remove Endotoxins from Human-Like Collagen. SEP SCI TECHNOL 2015. [DOI: 10.1080/01496395.2014.978467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Partitioning behavior of enhanced green fluorescent protein in nickel-chelated affinity-based aqueous two-phase micellar system and its purification from cell lysate. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Matos T, Senkbeil S, Mendonça A, Queiroz JA, Kutter JP, Bulow L. Nucleic acid and protein extraction from electropermeabilized E. coli cells on a microfluidic chip. Analyst 2014; 138:7347-53. [PMID: 24162237 DOI: 10.1039/c3an01576a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Due to the extensive use of nucleic acid and protein analysis of bacterial samples, there is a need for simple and rapid extraction protocols for both plasmid DNA and RNA molecules as well as reporter proteins like the green fluorescent protein (GFP). In this report, an electropermeability technique has been developed which is based on exposing E. coli cells to low voltages to allow extraction of nucleic acids and proteins. The flow-through electropermeability chip used consists of a microfluidic channel with integrated gold electrodes that promote cell envelope channel formation at low applied voltages. This will allow small biomolecules with diameters less than 30 A to rapidly diffuse from the permeabilized cells to the surrounding solution. By controlling the applied voltage, partial and transient to complete cell opening can be obtained. By using DC voltages below 0.5 V, cell lysis can be avoided and the transiently formed pores can be closed again and the cells survive. This method has been used to extract RNA and GFP molecules under conditions of electropermeability. Plasmid DNA could be recovered when the applied voltage was increased to 2 V, thus causing complete cell lysis.
Collapse
Affiliation(s)
- T Matos
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, PO BOX 124, S-221 00 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
16
|
Matos T, Johansson HO, Queiroz J, Bulow L. Isolation of PCR DNA fragments using aqueous two-phase systems. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2013.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Synchronous extraction of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium fermentation broth. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2013.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Wang S, Xiong N, Dong XY, Sun Y. A novel nickel-chelated surfactant for affinity-based aqueous two-phase micellar extraction of histidine-rich protein. J Chromatogr A 2013; 1320:118-24. [DOI: 10.1016/j.chroma.2013.10.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/18/2013] [Accepted: 10/23/2013] [Indexed: 11/15/2022]
|
19
|
Duque Jaramillo PM, Rocha Gomes HA, de Siqueira FG, Homem-de-Mello M, Filho EXF, Magalhães PO. Liquid–liquid extraction of pectinase produced by Aspergillus oryzae using aqueous two-phase micellar system. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Molino JVD, Viana Marques DDA, Júnior AP, Mazzola PG, Gatti MSV. Different types of aqueous two-phase systems for biomolecule and bioparticle extraction and purification. Biotechnol Prog 2013; 29:1343-53. [DOI: 10.1002/btpr.1792] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 06/28/2013] [Indexed: 12/19/2022]
Affiliation(s)
- João Vitor Dutra Molino
- Dept. of Biochemical and Pharmaceutical Technology; Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Block 16, Cidade Universitária; São Paulo 05508-000 Brazil
| | - Daniela de Araújo Viana Marques
- Dept. of Biochemical and Pharmaceutical Technology; Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Block 16, Cidade Universitária; São Paulo 05508-000 Brazil
| | - Adalberto Pessoa Júnior
- Dept. of Biochemical and Pharmaceutical Technology; Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Block 16, Cidade Universitária; São Paulo 05508-000 Brazil
| | - Priscila Gava Mazzola
- Dept. of Clinical Patology; Faculty of Medical Sciences; University of Campinas, Rua: Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz, Campinas; São Paulo 13083-887 Brazil
| | - Maria Silvia Viccari Gatti
- Genetics; Evolution and Bioagents Dept.; Biology Institute; University of Campinas, Rua: Monteiro Lobato, 255, Cidade Universitária “Zeferino Vaz,” Campinas; São Paulo 13083-862 Brazil
| |
Collapse
|
21
|
LPS–protein aggregation influences protein partitioning in aqueous two-phase micellar systems. Appl Microbiol Biotechnol 2013; 97:6201-9. [DOI: 10.1007/s00253-013-4922-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
|
22
|
Haga RB, Santos-Ebinuma VC, de Siqueira Cardoso Silva M, Pessoa A, Rangel-Yagui CO. Clavulanic acid partitioning in charged aqueous two-phase micellar systems. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2012.10.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Jozala AF, Lopes AM, de Lencastre Novaes LC, Mazzola PG, Penna TCV, Júnior AP. Aqueous Two-Phase Micellar System for Nisin Extraction in the Presence of Electrolytes. FOOD BIOPROCESS TECH 2012. [DOI: 10.1007/s11947-012-1008-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|