1
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
2
|
Tang Y, Zhang Y, Chen X, Xie X, Zhou N, Dai Z, Xiong Y. Up/Down Tuning of Poly(ionic liquid)s in Aqueous Two-Phase Systems. Angew Chem Int Ed Engl 2023; 62:e202215722. [PMID: 36456527 DOI: 10.1002/anie.202215722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
Thermally induced reversible up/down migration of poly(ionic liquid)s (PILs) in aqueous two-phase systems (ATPSs) was achieved for the first time in this study. Novel ATPSs were fabricated using azobenzene (Azo)- and benzyl (Bn)-modified PILs, and their upper and lower phases could be easily tuned using the grafting degree (GD) of the Azo and Bn groups. Bn-PIL with higher GDBn could go up into the upper phase and Azo-PIL come down to the lower phase when the temperature increased (>65 °C); this behavior was reversed at lower temperatures. Moreover, a reversible two-phase/single-phase transition was realized under UV irradiation. Experimental and simulation results revealed that the difference in the hydration capacity between Bn-PIL and Azo-PIL accounted for their unique phase-separation behavior. A versatile platform for fabricating ATPSs with tunable stimuli-responsive behavior can be realized based on our findings, which can broaden their applications in the fields of smart separation systems and functional material development.
Collapse
Affiliation(s)
- Yuntao Tang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yige Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Xi Chen
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Xiaowen Xie
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Ning Zhou
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yubing Xiong
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
3
|
Separation of Albumin from Bovine Serum Applying Ionic-Liquid-Based Aqueous Biphasic Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In this work, the extraction and separation of bovine serum albumin (BSA) from its original matrix, i.e., bovine serum, was performed using a novel ionic-liquid-based aqueous biphasic system (IL-based ABS). To this end, imidazolium-, phosphonium-, and ammonium-based ILs, combined with the anions’ acetate, arginate and derived from Good Buffers, were synthesized, characterized, and applied in the development of ABS with K2HPO4/KH2PO4 buffer aqueous solutions at pH 7. Initial studies with commercial BSA revealed a preferential migration of the protein to the IL-rich phase, with extraction efficiencies of 100% obtained in a single-step. BSA recovery yields ranging between 64.0% and 84.9% were achieved, with the system comprising the IL tetrabutylammonium acetate leading to the maximum recovery yield. With this IL, BSA was directly extracted and separated from bovine serum using the respective ABS. Different serum dilutions were further investigated to improve the separation performance. Under the best identified conditions, BSA can be extracted from bovine serum with a recovery yield of 85.6% and a purity of 61.2%. Moreover, it is shown that the BSA secondary structure is maintained in the extraction process, i.e., after being extracted to the IL-rich phase. Overall, the new ABS herein proposed may be used as an alternative platform for the purification of BSA from serum samples and can be applied to other added-value proteins.
Collapse
|
4
|
Nascimento PA, Alves AN, Santos KA, Veloso CM, Santos LS, Costa Ilhéu Fontan R, Santos Sampaio V, Bonomo RCF. Optimization of lipase extraction from pequi seed (
Caryocar brasiliense
Camb.). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Annie Nolasco Alves
- Process Engineering Laboratory State University of Southwest Bahia Itapetinga Brazil
| | - Karine Amaral Santos
- Process Engineering Laboratory State University of Southwest Bahia Itapetinga Brazil
| | | | - Leandro Soares Santos
- Department of Animal and Rural Technology State University of Southwest Bahia Itapetinga Brazil
| | | | | | | |
Collapse
|
5
|
Tonova K. Ionic liquid-assisted biphasic systems for downstream processing of fermentative enzymes and organic acids. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2018-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Room-temperature ionic liquids (ILs) represent molten salts entirely consisting of ions, usually a charge-stabilized organic cation and an inorganic or organic anion. ILs are liquids at ambient temperature but possess characteristics unusual for the common liquid solvents, such as negligible vapor pressure, high thermal stability and most over the ability to mix and match libraries of cations and anions in order to acquire desirable physical and chemical properties [1]. The opportunity to obtain tunable density, viscosity, polarity and miscibility with common molecular liquids gave rise to a variety of applications of the ILs [2] as environmentally benign solvents, extractants or auxiliaries. In particular, numbers of innovations in the methods for recovery and purification of biologically derived compounds involve ILs used solo or partnered with other liquids in biphasic systems [3,4,5]. It should be noted that the ILs are not intrinsically greener than the traditional solvents, given that their production is usually more resource-demanding, but the inherent potential for recycling and reuse, and for prevention of chemical accidents gives the ILs advantages ahead.
The present chapter provides a state-of-the-art overview on the basic applications of the ILs in biphasic systems aimed at downstream processing of valuable fermentative products, enzymes and organic acids. Main industrially important enzymes, lipases and carbohydrases, are considered and a description of the IL-assisted aqueous biphasic systems (ABS) and the results obtained in view of enzyme yield and purity is made. ILs serve different functions in the ABS, main phase-segregating constituents (mostly in the IL/salt ABS) or adjuvants to the polymer/salt ABS. Enzyme isolation from the contaminant proteins present in the feedstock can be carried out either in the IL-rich or in the salt-rich phase of the ABS and for the reader’s convenience the two options are described separately. Discussion on the factors and parameters affecting the enzyme partitioning in the ABS with ILs guides the reader through the ways by which the interactions between the IL and the enzyme can be manipulated in favor of the enzyme purification through the choice of the ABS composition (IL, salt, pH) and the role of the water content and the IL-rich phase structure.
The second part of the chapter is dedicated to the recovery of fermentative organic acids. Mostly hydrophobic ILs have been engaged in the studies and the biphasic systems thereof are summarized. The systems are evaluated by the extraction efficiency and partition coefficient obtained. Factors and parameters affecting the extraction of organic acids by ILs are highlighted in a way to unravel the extraction mechanism. The choice of IL and pH determines the reactive mechanism and the ion exchange, while the water content and the IL phase structure play roles in physical extraction. Procedures undertaken to enhance the efficiency and to intensify the process of extraction are also looked over.
Finally, the experimental holes that need fill up in the future studies are marked. According to the author’s opinion an intense research with hydrophobic ILs is suggested as these ILs have been proved milder to the biological structures (both the microbial producer and the enzyme product), more effective in the organic acid recovery and suitable to perform “in situ” extraction. Extractive fermentation entails validation of ecological and toxicological characteristics of the ILs. The protocols for re-extraction of fermentative products separated by IL-assisted biphasic systems should be clearly settled along with the methods for ILs recycling and reuse. Novel more flexible approaches to process intensification can be implemented in order to adopt the separation by biphasic systems for use in industry.
Collapse
Affiliation(s)
- Konstantza Tonova
- Institute of Chemical Engineering , Bulgarian Academy of Sciences , Acad. G. Bonchev Str., Bldg. 103, 1113 , Sofia , Bulgaria
| |
Collapse
|
6
|
Gutiérrez-Arnillas E, Sanromán MÁ, Longo MA, Rodríguez A, Deive FJ. Potential of cholinium glycinate for the extraction of extremophilic lipolytic biocatalysts. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Ke Y, Zhang J, Xie Y, Yang Q, Ren Q, Xing H. Aqueous Biphasic Systems Containing Customizable Poly(Ionic Liquid)s for Highly Efficient Extractions. CHEMSUSCHEM 2020; 13:1906-1914. [PMID: 31909883 DOI: 10.1002/cssc.201902214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Ionic liquid (IL)-based aqueous biphasic systems (ABSs) provide a sustainable and efficient alternative to conventional liquid-liquid extraction techniques and can be used for the extraction, recovery, and purification of diverse solutes. However, the construction of a high-performance ABS that has both excellent phase separation ability and extraction performance remains challenging. This study concerns the preparation of a family of novel ABSs based on poly(ionic liquid)s (PILs) with customized structure and controllable molecular weight for the extraction of bioactive compounds. Several tailor-made PILs consisting of a hydrophobic backbone, hydrophilic imidazolium pendant groups and strong hydrogen bonding basic counteranions are prepared by reversible addition fragmentation chain-transfer polymerization. The PILs have a perfect balance of hydrophobicity/hydrophilicity and functionality, affording outstanding phase separation, which was better than with either the IL monomer poly(1-butyl-3-vinylimidazolium bromide ([BVIm]Br) or the normal free-radical polymer P[BVIm]Br*. More importantly, PIL-based ABSs exhibited unprecedented high partition coefficients for six bioactive compounds including tryptophan, phenylalanine, and caffeine, as well as high extraction yields. The performance of the PIL-based ABSs could also be tuned by changing the molecular weight and anionic character of the PILs. This work shows that tailor-made PIL-based ABSs are a promising platform for bioactive compound extraction and provides significant clues for the design of new ABSs for various applications.
Collapse
Affiliation(s)
- Yuqi Ke
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Jingzhu Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Yuanbang Xie
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
- Institute of Zhejiang University, Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, P.R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
- Institute of Zhejiang University, Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, P.R. China
| | - Huabin Xing
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
- Institute of Zhejiang University, Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, P.R. China
| |
Collapse
|
8
|
Ramalho CC, Neves CMSS, Quental MV, Coutinho JAP, Freire MG. Separation of immunoglobulin G using aqueous biphasic systems composed of cholinium-based ionic liquids and poly(propylene glycol). JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2018; 93:1931-1939. [PMID: 30270961 PMCID: PMC6161813 DOI: 10.1002/jctb.5594] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND The use of antibodies, such as immunoglobulin G (IgG), has faced a significant growth in the past decades for biomedical and research purposes. However, antibodies are high cost biopharmaceuticals, for which the development of alternative and cost-effective purification strategies is still in high demand. RESULTS Aqueous biphasic systems (ABS) composed of poly(propylene glycol) (PPG) and cholinium-based ionic liquids (ILs) were investigated for the separation of IgG. The ABS phase diagrams were determined and characterized whenever required. Initial optimization studies with commercial IgG were carried out, followed by the extraction of IgG from rabbit serum. In all ABS, IgG preferentially partitions to the IL-rich phase, unveiling preferential interactions between IgG and ILs. Good results were obtained with commercial IgG, with extraction efficiencies ranging between 93% and 100%, and recovery yields ranging between 20% and 100%. Two of the best and two of the worst identified ABS were then evaluated in what concerns their performance to separate and recover IgG from rabbit serum. With these ABS, extraction efficiencies of 100% and recovery yields > 80% were obtained, indicating an increase in the recovery yield and extraction efficiencies when using real matrices. Under the best conditions studied, IgG with a purity level of 49% was obtained in a single-step. This purity level of IgG is higher than those previously reported using other IL-polymer ABS. CONCLUSION IgG preferentially migrates to the IL-rich phase in ABS formed by ILs and polymers, allowing the design of effective separation systems for its recovery from serum samples.
Collapse
|
9
|
Hamzehzadeh S, Touri S. The role of ionic liquid [C 4 C 1 im]Br as an adjuvant on the two-phase formation and the extraction of l-phenylalanine in ABS composed of PEG400 and potassium citrate at different temperatures. Biotechnol Prog 2018; 34:1149-1166. [PMID: 29877632 DOI: 10.1002/btpr.2657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/26/2018] [Indexed: 11/10/2022]
Abstract
The potential of {polyethylene glycol 400 + potassium citrate} aqueous biphasic system (ABS) with ionic liquid (IL) 1-butyl-3-methylimidazolium bromide ([C4 C1 im]Br) as an adjuvant is examined for the extraction of l-phenylalanine (Phe), as a model biomolecule, at different temperatures and system compositions. The binodal curves and liquid-liquid equilibrium data were determined by the addition of 5 wt% IL to investigate its effect on phase diagrams and Phe partition coefficients. The results indicate that binodal curves of systems with and without IL are more deviated from each other with decreasing temperature. Moreover, IL has a high tendency to partition into the PEG-rich phase. This tendency increases with increasing temperature and system compositions. For Phe, the partition coefficients obtained in this work (KPhe ≈ 5.5-81.2) are significantly higher than those observed in other conventional PEG-inorganic salt ABS (KPhe ≈ 0.5-2.5), water-immiscible ILs two-phase extraction systems (KPhe ≈ 0.02-1.2), or even, in the IL-based ABS with the same IL as the main phase-forming component (KPhe ≈ 3.2). The phase hydrophobicity, salting-out and π⋯π stacking seem to be the main driving forces to affect the extraction aptitude of the studied ABS for Phe. Furthermore, the performance of using [C4 C1 im]Br as adjuvant to improve the partition of Phe in the studied ABS at different temperatures seems to be ruled by the differences in the phases hydrophobicities. Finally, the experimental tie lines and partition coefficients are accurately correlated using the NRTL model. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018 © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1149-1166, 2018.
Collapse
Affiliation(s)
- Sholeh Hamzehzadeh
- Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran (CCERCI), Tehran, Iran
| | - Samira Touri
- Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran (CCERCI), Tehran, Iran
| |
Collapse
|
10
|
Ionic Liquids in Bioseparation Processes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 168:1-29. [DOI: 10.1007/10_2018_66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Lee SY, Khoiroh I, Coutinho JA, Show PL, Ventura SP. Lipase production and purification by self-buffering ionic liquid-based aqueous biphasic systems. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Taha M, Quental MV, e Silva FA, Capela EV, Freire MG, Ventura SPM, Coutinho JAP. Good's Buffer Ionic Liquids as Relevant Phase-Forming Components of Self-Buffered Aqueous Biphasic Systems. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2017; 92:2287-2299. [PMID: 30270960 PMCID: PMC6161815 DOI: 10.1002/jctb.5222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A series of new self-buffering ionic liquids (ILs) based on Good's buffers (GBs) anions and the tetrabutylphosphonium cation ([P4444]+) was here synthesized and characterized. The self-buffering behaviour of the GB-ILs was confirmed by measuring their protonation constants by potentiometry. Further, their ability to form aqueous biphasic systems with the biodegradable potassium citrate salt was evaluated, and further investigated for the extraction of proteins, using bovine serum albumin (BSA) as a model protein. If these ionic structures display self-buffering characteristics as well as a low toxicity towards the luminescent bacteria Vibrio fischeri, they were additionally found to be highly effective in the formation of ABS and in the extraction of BSA - extraction efficiencies of 100% to the IL-rich phase obtained in a single-step. The BSA secondary structure in the aqueous IL-rich solutions was evaluated through infrared spectroscopic studies revealing the protein-friendly nature of the synthesized ILs. Dynamic light scattering (DLS), "COnductor-like Screening MOdel for Real Solvents" (COSMO-RS), and molecular docking studies were finally carried out to better understand the main driving forces of the extraction process. The results suggest that van der Waals and hydrogen-bonding interactions are important driving forces of the protein migration towards the GB-IL-rich phase, while the molecular docking investigations demonstrated a stabilizing effect of the studied ILs over the protein.
Collapse
|
13
|
Nadar SS, Pawar RG, Rathod VK. Recent advances in enzyme extraction strategies: A comprehensive review. Int J Biol Macromol 2017; 101:931-957. [DOI: 10.1016/j.ijbiomac.2017.03.055] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022]
|
14
|
Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems. J Chromatogr A 2017; 1500:1-23. [DOI: 10.1016/j.chroma.2017.04.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 01/08/2023]
|
15
|
Ventura SM, e Silva FA, Quental MV, Mondal D, Freire MG, Coutinho JAP. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chem Rev 2017; 117:6984-7052. [PMID: 28151648 PMCID: PMC5447362 DOI: 10.1021/acs.chemrev.6b00550] [Citation(s) in RCA: 449] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Indexed: 12/22/2022]
Abstract
Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid-liquid extractions, IL-based liquid-liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations.
Collapse
Affiliation(s)
- Sónia
P. M. Ventura
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - Francisca A. e Silva
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria V. Quental
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - Dibyendu Mondal
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G. Freire
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - João A. P. Coutinho
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
Morandeira L, Álvarez MS, Deive FJ, Sanromán MÁ, Rodríguez A. Contriving to selectively separate drugs with a hydrophilic ionic liquid. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.08.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Lee SY, Khoiroh I, Ooi CW, Ling TC, Show PL. Recent Advances in Protein Extraction Using Ionic Liquid-based Aqueous Two-phase Systems. SEPARATION AND PURIFICATION REVIEWS 2017. [DOI: 10.1080/15422119.2017.1279628] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sze Ying Lee
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Ianatul Khoiroh
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
18
|
Effect of water activity on carbon dioxide transport in cholinium-based ionic liquids with carbonic anhydrase. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Sivapragasam M, Moniruzzaman M, Goto M. Recent advances in exploiting ionic liquids for biomolecules: Solubility, stability and applications. Biotechnol J 2016; 11:1000-13. [PMID: 27312484 DOI: 10.1002/biot.201500603] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022]
Abstract
The technological utility of biomolecules (e.g. proteins, enzymes and DNA) can be significantly enhanced by combining them with ionic liquids (ILs) - potentially attractive "green" and "designer" solvents - rather than using in conventional organic solvents or water. In recent years, ILs have been used as solvents, cosolvents, and reagents for biocatalysis, biotransformation, protein preservation and stabilization, DNA solubilization and stabilization, and other biomolecule-based applications. Using ILs can dramatically enhance the structural and chemical stability of proteins, DNA, and enzymes. This article reviews the recent technological developments of ILs in protein-, enzyme-, and DNA-based applications. We discuss the different routes to increase biomolecule stability and activity in ILs, and the design of biomolecule-friendly ILs that can dissolve biomolecules with minimum alteration to their structure. This information will be helpful to design IL-based processes in biotechnology and the biological sciences that can serve as novel and selective processes for enzymatic reactions, protein and DNA stability, and other biomolecule-based applications.
Collapse
Affiliation(s)
- Magaret Sivapragasam
- Centre of Research in Ionic Liquids (CORIL), Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Muhammad Moniruzzaman
- Centre of Research in Ionic Liquids (CORIL), Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.
- Center for Future Chemistry, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
20
|
Effect of the ionic liquid 1-butyl-3-methylimidazolium bromide as an additive on the formation of {polyethylene glycol+tri-potassium phosphate} aqueous biphasic systems: the role of polymer molecular weight. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.10.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Desai RK, Streefland M, Wijffels RH, Eppink MHM. Extraction of Proteins with ABS. GREEN CHEMISTRY AND SUSTAINABLE TECHNOLOGY 2016. [DOI: 10.1007/978-3-662-52875-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Taha M, Quental MV, Correia I, Freire MG, Coutinho JAP. Extraction and stability of bovine serum albumin (BSA) using cholinium-based Good's buffers ionic liquids. Process Biochem 2015; 50:1158-1166. [PMID: 28239260 DOI: 10.1016/j.procbio.2015.03.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Good's buffers ionic liquids (GB-ILs), composed of cholinium-based cations and Good's buffers anions, display self-buffering characteristics in the biological pH range, and their polarity and hydrophobicity can be easily tuned by a proper manipulation of their ions chemical structures. In this work, the extraction ability for bovine serum albumin (BSA) of aqueous biphasic systems (ABS) formed by polypropylene glycol 400 (PPG 400) and several GB-ILs was evaluated. ABS formed by PPG 400 and cholinium chloride ([Ch]Cl), GBs, and sucrose were also investigated for comparison purposes. It is shown that BSA preferentially migrates for the GB-IL-rich phase, with extraction efficiencies of 100%, achieved in a single-step. Dynamic light scattering, and circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopies were employed to evaluate the effect of the investigated cholinium-based GB-ILs on the BSA stability, and compared with results obtained for the respective GBs precursors, [Ch]Cl and sucrose, a well-known protein stabilizer. Molecular docking studies were also carried out to investigate on the binding sites of GB-IL ions to BSA. The experimental results confirm that BSA has a higher stability in GB-ILs than in any of the other compounds investigated.
Collapse
Affiliation(s)
- Mohamed Taha
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria V Quental
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João A P Coutinho
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
23
|
Gutiérrez-Arnillas E, Deive FJ, Sanromán MA, Rodríguez A. Ionic liquids for the concomitant use in extremophiles lysis and extremozymes extraction. BIORESOURCE TECHNOLOGY 2015; 186:303-308. [PMID: 25836039 DOI: 10.1016/j.biortech.2015.03.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
Ionic liquids have been successfully proposed to modify membrane permeability in cultures of a model extremophilic bacterium Thermus thermophilus HB27, which makes up the first time that aqueous solutions of these molten salts are applied in downstream stages of this kind of microorganisms. The presence of 1g/L of C10MIMCl entails a great solubilisation of cell biomass, thus allowing the release of intracellular and membrane-bound enzyme. The influence on the enzyme activity of two inorganic salts such as Na2CO3 and (NH4)2SO4, selected on the basis of their high salting out potential and biocompatibility with enzymes, respectively, was investigated. In parallel, their ability to trigger phase segregation was confirmed in the presence of the enzyme crude, leading to very high levels of enzyme extraction (96%). The validity of the strategy was confirmed by operating at bioreactor scale, and the main bioprocess parameters were obtained by modelling the experimental data.
Collapse
Affiliation(s)
| | - F J Deive
- Department of Chemical Engineering, Universidade de Vigo, 36310 Vigo, Spain.
| | - M A Sanromán
- Department of Chemical Engineering, Universidade de Vigo, 36310 Vigo, Spain
| | - A Rodríguez
- Department of Chemical Engineering, Universidade de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
24
|
Taha M, Almeida MR, Silva FAE, Domingues P, Ventura SPM, Coutinho JAP, Freire MG. Novel biocompatible and self-buffering ionic liquids for biopharmaceutical applications. Chemistry 2015; 21:4781-8. [PMID: 25652351 DOI: 10.1002/chem.201405693] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Indexed: 01/29/2023]
Abstract
Antibodies obtained from egg yolk of immunized hens, immunoglobulin Y (IgY), are an alternative to the most focused mammal antibodies, because they can be obtained in higher titers by less invasive approaches. However, the production cost of high-quality IgY for large-scale applications remains higher than that of other drug therapies due to the lack of efficient purification methods. The search for new purification platforms is thus vital. The solution could be liquid-liquid extraction by using aqueous biphasic systems (ABS). Herein, we report the extraction and attempted purification of IgY from chicken egg yolk by using a new ABS composed of polymers and Good's buffer ionic liquids (GB-ILs). New self-buffering and biocompatible ILs based on the cholinium cation and anions derived from Good's buffers were synthesized and the self-buffering characteristics and toxicity were characterized. Moreover, when these GB-ILs are combined with PPG 400 (poly(propylene) glycol with a molecular weight of 400 g mol(-1)) to form ABS, extraction efficiencies, of the water-soluble fraction of proteins, ranging between 79 and 94% were achieved in a single step. Based on computational investigations, we also demonstrate that the preferential partitioning of IgY for the GB-IL-rich phase is dominated by hydrogen-bonding and van der Waals interactions.
Collapse
Affiliation(s)
- Mohamed Taha
- CICECO, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro (Portugal), Fax: (+351) 234370084
| | | | | | | | | | | | | |
Collapse
|
25
|
Dworak C, Ligon SC, Tiefenthaller R, Lagref JJ, Frantz R, Cherkaoui ZM, Liska R. Imidazole-based ionic liquids for free radical photopolymerization. Des Monomers Polym 2015. [DOI: 10.1080/15685551.2014.999466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Claudia Dworak
- Department of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna 1060, Austria
| | - Samuel Clark Ligon
- Department of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna 1060, Austria
| | - Roman Tiefenthaller
- Department of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna 1060, Austria
| | | | - Richard Frantz
- Huntsman Advanced Materials, Klybeckstrasse 200, Basel 4057, Switzerland
| | | | - Robert Liska
- Department of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna 1060, Austria
| |
Collapse
|
26
|
Tan CH, Show PL, Ooi CW, Ng EP, Lan JCW, Ling TC. Novel lipase purification methods - a review of the latest developments. Biotechnol J 2014; 10:31-44. [PMID: 25273633 DOI: 10.1002/biot.201400301] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/05/2014] [Accepted: 08/28/2014] [Indexed: 11/05/2022]
Abstract
Microbial lipases are popular biocatalysts due to their ability to catalyse diverse reactions such as hydrolysis, esterification, and acidolysis. Lipases function efficiently on various substrates in aqueous and non-aqueous media. Lipases are chemo-, regio-, and enantio-specific, and are useful in various industries, including those manufacturing food, detergents, and pharmaceuticals. A large number of lipases from fungal and bacterial sources have been isolated and purified to homogeneity. This success is attributed to the development of both conventional and novel purification techniques. This review highlights the use of these techniques in lipase purification, including conventional techniques such as: (i) ammonium sulphate fractionation; (ii) ion-exchange; (iii) gel filtration and affinity chromatography; as well as novel techniques such as (iv) reverse micellar system; (v) membrane processes; (vi) immunopurification; (vi) aqueous two-phase system; and (vii) aqueous two-phase floatation. A summary of the purification schemes for various bacterial and fungal lipases are also provided.
Collapse
Affiliation(s)
- Chung Hong Tan
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Selangor Darul Ehsan, Malaysia
| | | | | | | | | | | |
Collapse
|
27
|
Álvarez MS, Gutiérrez E, Rodríguez A, Sanromán MÁ, Deive FJ. Environmentally Benign Sequential Extraction of Heavy Metals from Marine Sediments. Ind Eng Chem Res 2014. [DOI: 10.1021/ie500927q] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- María S. Álvarez
- Department of Chemical Engineering, University of Vigo, Vigo, Pontevedra 36310, Spain
| | - Esther Gutiérrez
- Department of Chemical Engineering, University of Vigo, Vigo, Pontevedra 36310, Spain
| | - Ana Rodríguez
- Department of Chemical Engineering, University of Vigo, Vigo, Pontevedra 36310, Spain
| | - M. Ángeles Sanromán
- Department of Chemical Engineering, University of Vigo, Vigo, Pontevedra 36310, Spain
| | - Francisco J. Deive
- Department of Chemical Engineering, University of Vigo, Vigo, Pontevedra 36310, Spain
| |
Collapse
|
28
|
|
29
|
Guncheva M, Dimitrov M, Napoly F, Draye M, Andrioletti B. Novel hybrid materials on the basis of nanostructured tin dioxide and a lipase from Rhizopus delemar with improved enantioselectivity. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Recent Advances in the Applications of Ionic Liquids in Protein Stability and Activity: A Review. Appl Biochem Biotechnol 2014; 172:3701-20. [DOI: 10.1007/s12010-014-0813-6] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/14/2014] [Indexed: 01/28/2023]
|
31
|
Solvent extraction of La(III) with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester (EHEHPA) by membrane dispersion micro-extractor. J RARE EARTH 2013. [DOI: 10.1016/s1002-0721(12)60413-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Abstract
This paper attempts to study and optimize the affinity partitioning conditions of papain in an aqueous two-phase system (ATPS). The effect of the amount of ionic liquids (ILs), the concentration of K2HPO4, temperature, pH, and the volume of papain solution were discussed concretely. The optimum conditions were determined as ionic liquid was 1.4 g and K2HPO4was 1.4 g, the extraction efficiency of papain could reach 98.33% with pH unadjusted. The temperature and the pH of the solution are major parameters that influence the partitioning of protein in ILs-based ATPSs. The partition of papain to the IL-rich phase was enhanced by increasing the amount of ILs, the concentration of K2HPO4, and temperature, especially at its isoelectric point.
Collapse
|
33
|
|
34
|
Freire MG, Cláudio AFM, Araújo JMM, Coutinho JAP, Marrucho IM, Lopes JNC, Rebelo LPN. Aqueous biphasic systems: a boost brought about by using ionic liquids. Chem Soc Rev 2012; 41:4966-95. [DOI: 10.1039/c2cs35151j] [Citation(s) in RCA: 621] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|