1
|
Muroga J, Kamio E, Matsuoka A, Nakagawa K, Yoshioka T, Matsuyama H. Development of an ion gel-based CO 2 separation membrane composed of Pebax 1657 and a CO 2-philic ionic liquid. RSC Adv 2024; 14:20786-20796. [PMID: 38952929 PMCID: PMC11215809 DOI: 10.1039/d3ra08730a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
A tough ion gel membrane containing a CO2-philic ionic liquid, 1-ethyl-3-methylimidazolium tricyanomethanide ([Emim][C(CN)3]), was developed, and its CO2 permeation properties were evaluated under humid conditions at elevated temperatures. Pebax 1657, which is a diblock copolymer composed of a polyamide block and a polyethylene oxide block, was used as the gel network of the ion gel membrane to prepare a tough ion gel with good ionic liquid-holding properties. The polyamide block formed a semicrystalline structure in [Emim][C(CN)3] to toughen the ion gel membrane via an energy dissipation mechanism. The polyethylene oxide block exhibited good compatibility with [Emim][C(CN)3] and contributed to the retention of the ionic liquid in the ion gel. The developed ion gel membrane showed a good CO2 separation performance of 1677 barrer CO2 permeability and 37 CO2/N2 permselectivity under humid conditions of 75% relative humidity at an elevated temperature of 50 °C, which corresponds to an exhaust gas from a coal-fired power plant.
Collapse
Affiliation(s)
- Jo Muroga
- Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Department of Chemical Science and Engineering, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Eiji Kamio
- Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Department of Chemical Science and Engineering, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Atsushi Matsuoka
- Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Department of Chemical Science and Engineering, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Keizo Nakagawa
- Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Graduate School of Science, Technology and Innovation, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Graduate School of Science, Technology and Innovation, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Department of Chemical Science and Engineering, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| |
Collapse
|
2
|
Pabst F, Kraus J, Reynolds M, Mattsson J, Blochowicz T. Preserving fast ion dynamics while introducing mechanical rigidity in gelatin-based ionogels. SOFT MATTER 2023; 19:1418-1428. [PMID: 36723269 DOI: 10.1039/d2sm01143c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ionogels are gels containing ions, often an ionic liquid (IL), and a gelling agent. They are promising candidates for applications including batteries, photovoltaics or fuel cells due to their chemical stability and high ionic conductivity. In this work we report on a thermo-irreversible ionic gel prepared from a mixture of the ionic liquid 1-butyl-3-methylimidazolium ([BMIM]) dicyanamide ([DCA]), water and gelatin, which combines the advantages of an ionic liquid with the low cost of gelatin. We use (i) dielectric spectroscopy to monitor the ion transport, (ii) dynamic light scattering techniques to access the reorientational motions of the ions, as well as fluctuations of the gel matrix, and (iii) rheology to determine the shear response from above room temperature down to the glass transition. In this way, we are able to connect the microscopic ion dynamics with the meso- and macroscopic behavior of the gelatin matrix. We show, by comparing our results to those for a IL-water mixture from a previous study, that although some weak additional slow relaxation modes are present in the gel, the overall ion dynamics is hardly changed by the presence of gelatin. The macroscopic mechanical response, as probed by rheology, is however dominated by the gel matrix. This behaviour can be highly useful e.g. in battery gel electrolytes which prevent electrolyte leakage and combine mechanical rigidity and flexibility.
Collapse
Affiliation(s)
- Florian Pabst
- TU Darmstadt, Institute for Condensed Matter Physics, 64289 Darmstadt, Germany.
| | - Jennifer Kraus
- TU Darmstadt, Institute for Condensed Matter Physics, 64289 Darmstadt, Germany.
| | - Matthew Reynolds
- School of Physics and Astronomy, University of Leeds, LS2 9JT Leeds, UK
| | - Johan Mattsson
- School of Physics and Astronomy, University of Leeds, LS2 9JT Leeds, UK
| | - Thomas Blochowicz
- TU Darmstadt, Institute for Condensed Matter Physics, 64289 Darmstadt, Germany.
| |
Collapse
|
3
|
Sanni SE, Vershima DA, Okoro EE, Oni BA. Technological advancements in the use of ionic liquid- membrane systems for CO 2 capture from biogas/flue gas - A review. Heliyon 2022; 8:e12233. [PMID: 36582712 PMCID: PMC9792796 DOI: 10.1016/j.heliyon.2022.e12233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Carbon capture has become a very important method for curbing the problems associated with the release of carbon dioxide into the atmosphere, which in turn has detrimental effects on the planet and its inhabitants. Ionic liquids and membrane separation have been explored in this review paper as effective means of capturing carbon dioxide. An innovative approach to CO2 capture is the use of Ionic liquids (ILs) since they exhibit certain significant traits such as good stability (thermal, mechanical and chemical), inflammability and high absorptive capacities. Ionic liquids (ILs) are widely regarded as nontoxic substances. Viscosity and thermal degradation of ILs at temperatures slightly above 100 °C are the major disadvantages of ILs. Membrane separation is a technique used for the effective separation of substances by materials bearing holes in a continuous structure. Membrane technology has gained significant improvements, over the years. Several ILs and membrane systems were considered in this work. Their weaknesses, strengths, permeability, selectivity, operating conditions and carbon capture efficiencies, were all highlighted in order to gain a good perspective on ways by which the individual systems can be improved upon. The study considered several polymer-Ionic liquid hybrid materials as viable options for CO2 capture from a post-combustion process. Different ILs were scrutinized for possible integration in membranes by taking full advantage of their individual properties and harnessing their tune-able characteristics in order to improve the overall carbon capture performance of the system. Several options for improving the mechanical, chemical, and thermal stabilities of the hybrid systems were considered including the use of cellulose acetate membrane, nanoparticles (graphene oxide powder) alongside potential ionic liquids. Doping membranes with ILs and nanoparticulates such as graphene oxide serves as a potential method for enhancing the CO2 capture of membranes and this review provides several evidences that serve as proofs for this concept.
Collapse
Affiliation(s)
- Samuel Eshorame Sanni
- Department of Chemical Engineering, Covenant University, Ota, Ogun, Nigeria,Corresponding author:
| | | | - Emeka Emmanuel Okoro
- Department of Petroleum Engineering, University of Port Harcourt, Choba, Rivers State, Nigeria
| | | |
Collapse
|
4
|
Shama VM, Swami AR, Aniruddha R, Sreedhar I, Reddy BM. Process and engineering aspects of carbon capture by ionic liquids. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Friess K, Izák P, Kárászová M, Pasichnyk M, Lanč M, Nikolaeva D, Luis P, Jansen JC. A Review on Ionic Liquid Gas Separation Membranes. MEMBRANES 2021; 11:97. [PMID: 33573138 PMCID: PMC7911519 DOI: 10.3390/membranes11020097] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 02/02/2023]
Abstract
Ionic liquids have attracted the attention of the industry and research community as versatile solvents with unique properties, such as ionic conductivity, low volatility, high solubility of gases and vapors, thermal stability, and the possibility to combine anions and cations to yield an almost endless list of different structures. These features open perspectives for numerous applications, such as the reaction medium for chemical synthesis, electrolytes for batteries, solvent for gas sorption processes, and also membranes for gas separation. In the search for better-performing membrane materials and membranes for gas and vapor separation, ionic liquids have been investigated extensively in the last decade and a half. This review gives a complete overview of the main developments in the field of ionic liquid membranes since their first introduction. It covers all different materials, membrane types, their preparation, pure and mixed gas transport properties, and examples of potential gas separation applications. Special systems will also be discussed, including facilitated transport membranes and mixed matrix membranes. The main strengths and weaknesses of the different membrane types will be discussed, subdividing them into supported ionic liquid membranes (SILMs), poly(ionic liquids) or polymerized ionic liquids (PILs), polymer/ionic liquid blends (physically or chemically cross-linked 'ion-gels'), and PIL/IL blends. Since membrane processes are advancing as an energy-efficient alternative to traditional separation processes, having shown promising results for complex new separation challenges like carbon capture as well, they may be the key to developing a more sustainable future society. In this light, this review presents the state-of-the-art of ionic liquid membranes, to analyze their potential in the gas separation processes of the future.
Collapse
Affiliation(s)
- Karel Friess
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Pavel Izák
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Magda Kárászová
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Mariia Pasichnyk
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Marek Lanč
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
| | - Daria Nikolaeva
- Materials & Process Engineering, UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium; (D.N.); (P.L.)
| | - Patricia Luis
- Materials & Process Engineering, UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium; (D.N.); (P.L.)
| | | |
Collapse
|
6
|
Rashid TU. Ionic liquids: Innovative fluids for sustainable gas separation from industrial waste stream. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114916] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Yan X, Anguille S, Bendahan M, Moulin P. Ionic liquids combined with membrane separation processes: A review. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.103] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Schindl A, Hagen ML, Muzammal S, Gunasekera HAD, Croft AK. Proteins in Ionic Liquids: Reactions, Applications, and Futures. Front Chem 2019; 7:347. [PMID: 31179267 PMCID: PMC6543490 DOI: 10.3389/fchem.2019.00347] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023] Open
Abstract
Biopolymer processing and handling is greatly facilitated by the use of ionic liquids, given the increased solubility, and in some cases, structural stability imparted to these molecules. Focussing on proteins, we highlight here not just the key drivers behind protein-ionic liquid interactions that facilitate these functionalities, but address relevant current and potential applications of protein-ionic liquid interactions, including areas of future interest.
Collapse
Affiliation(s)
- Alexandra Schindl
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
- Faculty of Medicine & Health Sciences, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Faculty of Science, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Matthew L. Hagen
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Shafaq Muzammal
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Henadira A. D. Gunasekera
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Anna K. Croft
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
9
|
Sasikumar B, Arthanareeswaran G, Ismail A. Recent progress in ionic liquid membranes for gas separation. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.081] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Nemestóthy N, Bakonyi P, Németh Z, Bélafi-Bakó K. Evaluation of pectin-reinforced supported liquid membranes containing carbonic anhydrase: The role of ionic liquid on enzyme stability and CO2 separation performance. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2017.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Carvalho RNL, Almeida RM, Moura JJG, Lourenço NT, Fonseca LJP, Cordas CM. Sandwich-Type Enzymatic Fuel Cell Based on a New Electro-Conductive Material - Ion Jelly. ChemistrySelect 2016. [DOI: 10.1002/slct.201601640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rui N. L. Carvalho
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico; Universidade de Lisboa; Avenida Rovisco Pais 1049-001 Lisbon Portugal
| | - Rui M. Almeida
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciência e Tecnologia; Universidade Nova de Lisboa; 2819-516 Caparica Portugal
| | - José J. G. Moura
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciência e Tecnologia; Universidade Nova de Lisboa; 2819-516 Caparica Portugal
| | - Nuno T. Lourenço
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico; Universidade de Lisboa; Avenida Rovisco Pais 1049-001 Lisbon Portugal
| | - Luís J. P. Fonseca
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico; Universidade de Lisboa; Avenida Rovisco Pais 1049-001 Lisbon Portugal
| | - Cristina M. Cordas
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciência e Tecnologia; Universidade Nova de Lisboa; 2819-516 Caparica Portugal
| |
Collapse
|
12
|
Synthesis and gas separation properties of poly(ionic liquid)-ionic liquid composite membranes containing a copper salt. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.05.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Dai Z, Noble RD, Gin DL, Zhang X, Deng L. Combination of ionic liquids with membrane technology: A new approach for CO2 separation. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.08.060] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Tomé LC, Marrucho IM. Ionic liquid-based materials: a platform to design engineered CO2 separation membranes. Chem Soc Rev 2016; 45:2785-824. [DOI: 10.1039/c5cs00510h] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review provides a judicious assessment of the CO2 separation efficiency of membranes using ionic liquid-based materials and highlights breakthroughs and key challenges in this field.
Collapse
Affiliation(s)
- Liliana C. Tomé
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
| | - Isabel M. Marrucho
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
| |
Collapse
|
15
|
Supported Ionic Liquid Membranes and Ion-Jelly® Membranes with [BMIM][DCA]: Comparison of Its Performance for CO2 Separation. MEMBRANES 2015; 5:13-21. [PMID: 25594165 PMCID: PMC4384089 DOI: 10.3390/membranes5010013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/05/2015] [Indexed: 11/17/2022]
Abstract
In this work, a supported ionic liquid membrane (SILM) was prepared by impregnating a PVDF membrane with 1-butyl-3-methylimidazolium dicyanamide ([BMIM][DCA]) ionic liquid. This membrane was tested for its permeability to pure gases (CO2, N2 and O2) and ideal selectivities were calculated. The SILM performance was also compared to that of Ion-Jelly® membranes, a new type of gelled membranes developed recently. It was found that the PVDF membrane presents permeabilities for pure gases similar or lower to those presented by the Ion-Jelly® membranes, but with increased ideal selectivities. This membrane presents also the highest ideal selectivity (73) for the separation of CO2 from N2 when compared with SILMs using the same PVDF support but with different ionic liquids.
Collapse
|
16
|
Carvalho T, Augusto V, Rocha Â, Lourenço NMT, Correia NT, Barreiros S, Vidinha P, Cabrita EJ, Dionísio M. Ion jelly conductive properties using dicyanamide-based ionic liquids. J Phys Chem B 2014; 118:9445-59. [PMID: 25059510 DOI: 10.1021/jp502870q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The thermal behavior and transport properties of several ion jellys (IJs), a composite that results from the combination of gelatin with an ionic liquid (IL), were investigated by dielectric relaxation spectroscopy (DRS), differential scanning calorimetry (DSC), and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG NMR). Four different ILs containing the dicyanamide anion were used: 1-butyl-3-methylimidazolium dicyanamide (BMIMDCA), 1-ethyl-3-methylimidazolium dicyanamide (EMIMDCA), 1-butyl-1-methylpyrrolidinium dicyanamide (BMPyrDCA), and 1-butylpyridinium dicyanamide (BPyDCA); the bulk ILs were also investigated for comparison. A glass transition was detected by DSC for all materials, ILs and IJs, allowing them to be classified as glass formers. Additionally, an increase in the glass transition temperature upon dehydration was observed with a greater extent for IJs, attributed to a greater hindrance imposed by the gelatin matrix after water removal, rendering the IL less mobile. While crystallization is observed for some ILs with negligible water content, it was never detected for any IJ upon thermal cycling, which persist always as fully amorphous materials. From DRS measurements, conductivity and diffusion coefficients for both cations (D+) and anions (D-) were extracted. D+ values obtained by DRS reveal excellent agreement with those obtained from PFG NMR direct measurements, obeying the same VFTH equation over a large temperature range (ΔT ≈ 150 K) within which D+ varies around 10 decades. At temperatures close to room temperature, the IJs exhibit D values comparable to the most hydrated (9%) ILs. The IJ derived from EMIMDCA possesses the highest conductivity and diffusion coefficient, respectively, ∼10(-2) S·cm(-1) and ∼10(-10) m(2)·s(-1). For BMPyrDCA the relaxational behavior was analyzed through the complex permittivity and modulus formalism allowing the assignment of the detected secondary relaxation to a Johari-Goldstein process. Besides the relevant information on the more fundamental nature providing physicochemical details on ILs behavior, new doorways are opened for practical applications by using IJ as a strategy to produce novel and stable electrolytes for different electrochemical devices.
Collapse
Affiliation(s)
- Tânia Carvalho
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Huang Z, Li JH, Li H, Miao H, Kawi S, Goh A. Effect of the polar modifiers on supercritical extraction efficiency for template removal from hexagonal mesoporous silica materials: Solubility parameter and polarity considerations. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.06.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|