1
|
Li Y, Kang X, You Z, He T, Su T, Zhang J, Zhuang X, Zhang Z, Ragauskas AJ, Song X, Li K. Establishment of efficient system for bagasse bargaining: Combining fractionation of saccharides, recycling of high-viscosity solvent and dismantling. BIORESOURCE TECHNOLOGY 2024; 413:131482. [PMID: 39270989 DOI: 10.1016/j.biortech.2024.131482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Sugarcane bagasse (SCB) has a recalcitrant structure, which hinders its component dismantling and subsequent high value utilization. Some organic solvents are favorable to dismantle lignocellulose, but their high viscosity prevents separation of components and reuse of solvents. Herein, ethylene glycol phenyl ether (EGPE)-acid system is used as an example to develop green and efficient methods to dismantle SCB, purify polysaccharides and lignin, and reuse solvents. Results show that dismantling SCB at 130 °C, 0.5 % H2SO4, and 100 min can obtain 85.5 % cellulose recovery, 94.1 % hemicellulose removal and 83.7 % lignin removal. Different molecular weight saccharides are separated by membranes filtration and centrifugation, and lignin recovered by antisolvent precipitation. The solvent recovered by distillation, achieving high dismantling efficiency of 89.2 % cellulose recovery, 94.1 % hemicellulose removal and 94.4 % lignin removal after four recycles. Results show a promising approach for the closed-loop process of dismantling lignocellulose, fractionating saccharides, and reusing solvents in high-viscosity systems.
Collapse
Affiliation(s)
- Yihan Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, PR China
| | - Xiheng Kang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zi You
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Tieguang He
- Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, Guangxi, PR China
| | - Tianming Su
- Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, Guangxi, PR China
| | - Junhua Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xinshu Zhuang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zhanying Zhang
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Xueping Song
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Kai Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, PR China.
| |
Collapse
|
2
|
Arandia K, Balyan U, Mattsson T. Development of a fluid dynamic gauging method for the characterization of fouling behavior during cross-flow filtration of a wood extraction liquor. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Techno-economic impact of air sparging prior to purification of alkaline extracted wheat bran hemicelluloses by membrane filtration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Influence of air and nitrogen sparging on flux during ultrafiltration of hemicelluloses extracted from wheat bran. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Al-Rudainy B, Galbe M, Arcos Hernandez M, Jannasch P, Wallberg O. Impact of Lignin Content on the Properties of Hemicellulose Hydrogels. Polymers (Basel) 2018; 11:polym11010035. [PMID: 30960019 PMCID: PMC6401799 DOI: 10.3390/polym11010035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 01/20/2023] Open
Abstract
Hemicellulose is a promising renewable raw material for the production of hydrogels. This polysaccharide exists in large amounts in various waste streams, in which they are usually impure and heavily diluted. Several downstream processing methods can be combined to concentrate and purify the hemicellulose. However, such an approach can be costly; hence, the effect of impurities on the formation and properties of hydrogels must be determined. Lignin usually exists in these waste streams as a major impurity that is also difficult to separate. This compound can darken hydrogels and decrease their swellability and reactivity, as shown in many studies. Other properties and effects of lignin impurities are equally important for the end application of hydrogels and the overall process economy. In this work, we examined the feasibility of producing hydrogels from hemicelluloses that originated from sodium-based spent sulfite liquor. A combination of membrane filtration and anti-solvent precipitation was used to extract and purify various components. The influence of the purity of hemicellulose and the addition of lignosulfonates (emulated impurities in the downstream processing) to the crosslinking reaction mixture on the mechanical, thermal, and chemical properties of hydrogels was determined.
Collapse
Affiliation(s)
- Basel Al-Rudainy
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Mats Galbe
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Monica Arcos Hernandez
- Department of Chemistry, Polymer, and Materials Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Patric Jannasch
- Department of Chemistry, Polymer, and Materials Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Ola Wallberg
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
6
|
Reduction of energy demand by use of air sparging during ultrafiltration of alkali-extracted wheat bran hemicelluloses. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Ajao O, Rahni M, Marinova M, Chadjaa H, Savadogo O. Study of Separation and Fouling of Reverse Osmosis Membranes during Model Hydrolysate Solution Filtration. MEMBRANES 2017; 7:membranes7040068. [PMID: 29244761 PMCID: PMC5746827 DOI: 10.3390/membranes7040068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 11/16/2022]
Abstract
Prehydrolysate, a dilute solution consisting mainly of pentoses, hexoses, and lesser quantities of organic acids, furfural and phenolics, is generated in the Kraft dissolving pulp process. An obstacle facing the valorization of the solution in hemicellulose biorefineries, by conversion of the sugars into bioproducts such as furfural, is the low sugar concentration. Membrane filtration is typically proposed in several hemicellulose based biorefineries for concentrating the solution, although they are usually generated using different wood species, pretreatment methods, and operating conditions. However, the chemical composition of the solutions is generally not considered. Also, the combined effect of composition and operating conditions is rarely investigated for biorefinery applications. The purpose of this work was to determine the impact of the prehydrolysate composition and operating parameters on the component separation and permeate flux during membrane filtration. Using model prehydrolysate solutions, two commercial reverse osmosis (RO) membranes were screened, and one was selected for use, based on its higher sugar and acetic acid retention. A Taguchi L18 experimental design array was then applied to determine the dominant parameters and limiting factors. Results showed that the feed pressure and temperature have the highest impact on permeate flux, but the least effect on sugar retention. Further experiments to quantify flux decline, due to fouling and osmotic pressure, showed that furfural has the highest membrane fouling tendency, and can limit the lifetime of the membrane. Regeneration of the membrane by cleaning with a sodium hydroxide solution is also effective for reversing fouling. It has been demonstrated that RO can efficiently and sustainably concentrate wood prehydrolysate.
Collapse
Affiliation(s)
- Olumoye Ajao
- Research Unit on Energy Efficiency and Sustainable Development of the Forest Biorefinery, Chemical Engineering Department, Polytechnique Montreal, C.P. 6079 succ. Centre-Ville, Montréal, QC H3C 3A7, Canada.
| | - Mohamed Rahni
- Centre National en Électrochimie et en Technologies Environnementales, Shawinigan, 2263, Avenue du Collège, Shawinigan, QC G9N 6V, Canada.
| | - Mariya Marinova
- Research Unit on Energy Efficiency and Sustainable Development of the Forest Biorefinery, Chemical Engineering Department, Polytechnique Montreal, C.P. 6079 succ. Centre-Ville, Montréal, QC H3C 3A7, Canada.
| | - Hassan Chadjaa
- Centre National en Électrochimie et en Technologies Environnementales, Shawinigan, 2263, Avenue du Collège, Shawinigan, QC G9N 6V, Canada.
| | - Oumarou Savadogo
- Research Unit on Energy Efficiency and Sustainable Development of the Forest Biorefinery, Chemical Engineering Department, Polytechnique Montreal, C.P. 6079 succ. Centre-Ville, Montréal, QC H3C 3A7, Canada.
| |
Collapse
|
8
|
Al-Rudainy B, Galbe M, Wallberg O. Influence of prefiltration on membrane performance during isolation of lignin-carbohydrate complexes from spent sulfite liquor. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.06.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Mänttäri M, Al Manasrah M, Strand E, Laasonen H, Preis S, Puro L, Xu C, Kisonen V, Korpinen R, Kallioinen M. Improvement of ultrafiltration performance by oxidation treatment in the recovery of galactoglucomannan from wood autohydrolyzate. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Strand E, Kallioinen M, Reinikainen SP, Arkell A, Mänttäri M. Multivariate data examination in evaluation of the effect of the molecular mass of lignin and hemicelluloses on ultrafiltration efficiency. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Thuvander J, Arkell A, Jönsson AS. Centrifugation as pretreatment before ultrafiltration of hemicelluloses extracted from wheat bran. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Influence of heat pretreatment on ultrafiltration of a solution containing hemicelluloses extracted from wheat bran. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Arkell A, Krawczyk H, Thuvander J, Jönsson AS. Evaluation of membrane performance and cost estimates during recovery of sodium hydroxide in a hemicellulose extraction process by nanofiltration. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|