1
|
Kreher U, Spiccia L, Hearn MTW. Interactions between an amphipathic di-histidine peptide and a metal affinity chromatographic resin derived from a bis(tacn)butane chelating ligand. J Sep Sci 2019; 42:3631-3639. [PMID: 31651081 DOI: 10.1002/jssc.201900908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 11/06/2022]
Abstract
The interactive behavior of an amphipathic peptide with the Cu2+ , Ni2+ , and Zn2+ complexes of 1,4-bis(triazacyclonon-1-yl)butane), bis(tacn)but , immobilized onto Sepharose CL-4B, has been investigated. The effects of incubation time, as well as the incubation buffer pH and ionic strength, have been examined. The binding data have been interrogated using Langmuir, Langmuir-Freundlich, bi-Langmuir, and Temkin isothermal models and Scatchard plots. These results confirm that this amphipathic peptide binds with relatively high capacities to the immobilized Cu2+ - and Ni2+ -1,4-bis(triazacyclonon-1-yl)butane)-Sepharose CL-4B sorbents via at least two discrete sites. However, the corresponding immobilized Zn2+ -sorbent had low binding capacity. Moreover, the magnitude of the binding capacities of these sorbents was dependent on the pH and ionic strength of the incubation buffer. These results are relevant to the isolation of E. coli expressed recombinant proteins that incorporate this and related amphipathic peptide tags, containing two or more histidine residues, located at the N- or C-terminus of the recombinant protein, and the co-purification of low abundance host cell proteins of diverse structure, by immobilized metal ion affinity chromatographic methods.
Collapse
Affiliation(s)
- Ute Kreher
- Centre for Green Chemistry, School of Chemistry, Monash University, Clayton, Australia
| | - Leone Spiccia
- Centre for Green Chemistry, School of Chemistry, Monash University, Clayton, Australia
| | - Milton T W Hearn
- Centre for Green Chemistry, School of Chemistry, Monash University, Clayton, Australia
| |
Collapse
|
2
|
Liu P, Lan X, Yaseen M, Wu S, Feng X, Zhou L, Sun J, Liao A, Liao D, Sun L. Purification, Characterization and Evaluation of Inhibitory Mechanism of ACE Inhibitory Peptides from Pearl Oyster ( Pinctada fucata martensii) Meat Protein Hydrolysate. Mar Drugs 2019; 17:E463. [PMID: 31398788 PMCID: PMC6723713 DOI: 10.3390/md17080463] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
Angiotensin-I-converting enzyme (ACE) inhibitory peptides derived from natural products have shown a blood pressure lowering effect with no side effects. In this study, two novel ACE inhibitory peptides (His-Leu-His-Thr, HLHT and Gly-Trp-Ala, GWA) were purified from pearl oyster (Pinctada fucata martensii) meat protein hydrolysate with alkaline protease by ultrafiltration, polyethylene glycol methyl ether modified immobilized metal ion affinity medium, and reverse-phase high performance liquid chromatography. Both peptides exhibited high ACE inhibitory activity with IC50 values of 458.06 ± 3.24 μM and 109.25 ± 1.45 μM, respectively. Based on the results of a Lineweaver-Burk plot, HLHT and GWA were found to be non-competitive inhibitor and competitive inhibitor respectively, which were confirmed by molecular docking. Furthermore, the pearl oyster meat protein hydrolysate exhibited an effective antihypertensive effect on SD rats. These results conclude that pearl oyster meat protein is a potential resource of ACE inhibitory peptides and the purified peptides, HLHT and GWA, can be exploited as functional food ingredients against hypertension.
Collapse
Affiliation(s)
- Pengru Liu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiongdiao Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Shanguang Wu
- Medical College, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Xuezhen Feng
- Medical College, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Liqin Zhou
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jianhua Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Anping Liao
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Dankui Liao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Lixia Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Amiri S, Mehrnia MR, Sobhanifard S, Pourasgharian Roudsari F, Hoseini SN. Evaluation of agarose-entrapped magnetic nanoparticles influence on protein adsorption isotherm and kinetics using nickel-iminodiacetic acid ligand. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Bo C, Wang C, Wei Y. Novel bis(5-methyltetrazolium)amine ligand-bonded stationary phase with reduced leakage of metal ions in immobilized metal affinity chromatography of proteins. Anal Bioanal Chem 2016; 408:7595-7605. [DOI: 10.1007/s00216-016-9826-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 11/29/2022]
|
5
|
Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF. Protein Expr Purif 2016; 121:61-5. [DOI: 10.1016/j.pep.2016.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/07/2015] [Accepted: 01/08/2016] [Indexed: 11/23/2022]
|
6
|
Copper(II) complexes of three isomeric bis(tacn) ligands: Syntheses, structures and properties. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Mooney JT, Fredericks DP, Christensen T, Bruun Schiødt C, Hearn MTW. N-terminal processing of affinity-tagged recombinant proteins purified by IMAC procedures. J Mol Recognit 2015; 28:401-12. [PMID: 25727088 DOI: 10.1002/jmr.2456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/09/2014] [Accepted: 11/21/2014] [Indexed: 11/07/2022]
Abstract
The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S-transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine-containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7-triazacyclononane (tacn). The use of this tag-tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli-expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP-1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI-TOF MS analysis of the cleaved products from the DAP-1 digestion of the recombinant N-terminally tagged proteins confirmed the complete removal of the tag within 4-12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn-based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli-expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes.
Collapse
Affiliation(s)
- Jane T Mooney
- Centre for Green Chemistry, School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Dale P Fredericks
- Centre for Green Chemistry, School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | | | | | - Milton T W Hearn
- Centre for Green Chemistry, School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
8
|
Lin CP, Florio P, Campi EM, Zhang C, Fredericks DP, Saito K, Jackson WR, Hearn MT. Synthesis of substituted terpyridine ligands for use in protein purification. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.09.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Mooney JT, Fredericks D, Christensen T, Hearn MTW. Removal of cleavage slow points from affinity tags used in the IMAC purification of recombinant proteins. Biotechnol J 2014; 9:1023-32. [DOI: 10.1002/biot.201300546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/07/2014] [Accepted: 06/26/2014] [Indexed: 11/06/2022]
|
10
|
Studies with an immobilized metal affinity chromatography cassette system involving binuclear triazacyclononane-derived ligands: automation of batch adsorption measurements with tagged recombinant proteins. J Chromatogr A 2014; 1351:61-9. [PMID: 24891160 DOI: 10.1016/j.chroma.2014.05.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 11/21/2022]
Abstract
This study describes the determination of the adsorption isotherms and binding kinetics of tagged recombinant proteins using a recently developed IMAC cassette system and employing automated robotic liquid handling procedures for IMAC resin screening. These results confirm that these new IMAC resins, generated from a variety of different metal-charged binuclear 1,4,7-triaza-cyclononane (tacn) ligands, interact with recombinant proteins containing a novel N-terminal metal binding tag, NT1A, with static binding capacities similar to those obtained with conventional hexa-His tagged proteins, but with significantly increased association constants. In addition, higher kinetic binding rates were observed with these new IMAC systems, an attribute that can be positively exploited to increase process productivity. The results from this investigation demonstrate that enhancements in binding capacities and affinities were achieved with these new IMAC resins and chosen NT1A tagged protein. Further, differences in the binding performances of the bis(tacn) xylenyl-bridged ligands were consistent with the distance between the metal binding centres of the two tacn moieties, the flexibility of the ligand and the potential contribution from the aromatic ring of the xylenyl group to undergo π/π stacking interactions with the tagged proteins.
Collapse
|
11
|
Gao R, Mu X, Hao Y, Zhang L, Zhang J, Tang Y. Combination of surface imprinting and immobilized template techniques for preparation of core-shell molecularly imprinted polymers based on directly amino-modified Fe 3O 4 nanoparticles for specific recognition of bovine hemoglobin. J Mater Chem B 2014; 2:1733-1741. [PMID: 32261403 DOI: 10.1039/c3tb21684e] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this work, the core-shell bovine hemoglobin (BHb)-imprinted superparamagnetic nanoparticles (Fe3O4@BHb-MIPs) were synthesized by combining for the first time a surface imprinting technique and a two-step immobilized template strategy. Initially, amino-functionalized Fe3O4 nanoparticles (Fe3O4@NH2) were synthesized directly through a facile one-pot hydrothermal method. Next, BHb was immobilized on the surface of Fe3O4@NH2 through non-covalent interactions. Then, siloxane co-polymerization on the Fe3O4@NH2-protein complex surface resulted in a polymeric network molded around BHb which then became further immobilized. Finally, a thin polymer layer with specific recognition cavities for BHb was formed on the surface of Fe3O4@NH2 after the removal of the template protein. The morphology and structure property of the prepared magnetic nanoparticles were characterized by transmission electronic microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometer (XRD), and vibrating sample magnetometer (VSM). To obtain the best selectivity and binding performance, the polymerization and adsorption conditions were investigated in detail. Under the optimized conditions, the Fe3O4@BHb-MIPs exhibited fast adsorption kinetics, large binding capacity, significant selectivity, and favorable reproducibility. The resultant Fe3O4@BHb-MIPs could not only specifically extract BHb from a mixed standard protein mixture, but also selectively enriched BHb from a real bovine blood sample. In addition, the synthetic process was quite simple and the stability and regeneration of the Fe3O4@BHb-MIPs were also satisfactory.
Collapse
Affiliation(s)
- Ruixia Gao
- Institute of Analytical Science, Faculty of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China. tyh57@ mail.xjtu.edu.cn
| | | | | | | | | | | |
Collapse
|