1
|
Lin C, Liu Z, Zhao Y, Song C, Meng F, Song B, Zuo G, Qi Q, Wang Y, Yu L, Song M. Oxygen-mediated dielectric barrier discharge plasma for enhanced degradation of chlorinated aromatic compounds. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
2
|
Aka RJN, Wu S, Mohotti D, Bashir MA, Nasir A. Evaluation of a liquid-phase plasma discharge process for ammonia oxidation in wastewater: Process optimization and kinetic modeling. WATER RESEARCH 2022; 224:119107. [PMID: 36122445 DOI: 10.1016/j.watres.2022.119107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/18/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Removing ammonia-nitrogen (NH3N) from wastewater is of paramount importance for wastewater treatment. In this study, a novel continuous liquid plasma process (CLPD) was evaluated to remove NH3N from synthetic wastewater. The Box-Behnken experimental design was used to optimize the main process parameters, including the initial NH3N concentration (50-200 mg/L), power input (150-300 W), and gas-flow rate (1.5-2.5 L/min), for efficient NH3N removal from wastewater. The gas-flow rate and power input were found to be significant factors affecting the removal efficiency of NH3N, whereas the initial concentration of NH3N played a vital role in determining the energy efficiency of the process. Under the optimal conditions of an initial NH3N concentration of 200 mg/L, applied power of 223 W, and gas-flow rate of 2.4 L/min, 98.91% of NH3N could be removed with a N2 selectivity of 92.91%, and the corresponding energy efficiency was 0.527 g/kWh after 2 hrs of treatment. A small fraction of undesirable NO3--N (7.05 mg/L) and NO2--N (2.83 mg/L) were also produced. Kinetic modeling revealed that NH3N degradation by the CLPD followed a pseudo-first-order reaction model, with a rate constant (k) of 0.03522 min-1. Optical emission spectroscopy (OES) was used to gather information about the active chemical species produced during the plasma discharge. The obtained spectra revealed the presence of several highly oxidative radicals, including ‧OH, ‧O, and ‧O2+. These results demonstrate the potential of liquid phase plasma discharge as a highly efficient technology for removing ammonia from aqueous solutions.
Collapse
Affiliation(s)
| | - Sarah Wu
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844, United States.
| | - Dinithi Mohotti
- Environmental Science Program, University of Idaho, Moscow, ID 83844, United States
| | - Muhammad Aamir Bashir
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844, United States; Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, United States
| | - Alia Nasir
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844, United States
| |
Collapse
|
3
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
4
|
Structure-Degradation efficiency studies in the remediation of aqueous solutions of dyes using nanosecond-pulsed DBD plasma. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Fan J, Wu H, Liu R, Meng L, Sun Y. Review on the treatment of organic wastewater by discharge plasma combined with oxidants and catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2522-2548. [PMID: 33105014 DOI: 10.1007/s11356-020-11222-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Discharge plasma technology is a new advanced oxidation technology for water treatment, which includes the effects of free radical oxidation, high energy electron radiation, ultraviolet light hydrolysis, and pyrolysis. In order to improve the energy efficiency in the plasma discharge processes, many efforts have been made to combine catalysts with discharge plasma technology. Some heterogeneous catalysts (e.g., activated carbon, zeolite, TiO2) and homogeneous catalysts (e.g., Fe2+/Fe3+, etc.) have been used to enhance the removal of pollutants by discharge plasma. In addition, some reagents of in situ chemical oxidation (ISCO) such as persulfate and percarbonate are also discussed. This article introduces the research progress of the combined systems of discharge plasma and catalysts/oxidants, and explains the different reaction mechanisms. In addition, physical and chemical changes in the plasma catalytic oxidation system, such as the effect of the discharge process on the catalyst, and the changes in the discharge state and solution conditions caused by the catalysts/oxidants, were also investigated. At the same time, the potential advantages of this system in the treatment of different organic wastewater were briefly reviewed, covering the degradation of phenolic pollutants, dyes, and pharmaceuticals and personal care products. Finally, some suggestions for future water treatment technology of discharge plasma are put forward. This review aims to provide researchers with a deeper understanding of plasma catalytic oxidation system and looks forward to further development of its application in water treatment.
Collapse
Affiliation(s)
- Jiawei Fan
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Haixia Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Ruoyu Liu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Liyuan Meng
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
6
|
Abedi-Firoozjah R, Ghasempour Z, Khorram S, Khezerlou A, Ehsani A. Non-thermal techniques: a new approach to removing pesticide residues from fresh products and water. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1786704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Reza Abedi-Firoozjah
- Students Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Ghasempour
- Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sirous Khorram
- Physics Faculty, Photonics and Plasma Technology groups, University of Tabriz, Tabriz, Iran
- Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran
| | - Arezou Khezerlou
- Students Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Sahu D. Degradation of Industrial Phenolic Wastewater Using Dielectric Barrier Discharge Plasma Technique. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s107042722006018x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Hasani M, Khani MR, Karimaei M, Yaghmaeian K, Shokri B. Degradation of 4-chlorophenol in aqueous solution by dielectric barrier discharge system: effect of fed gases. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:1185-1194. [PMID: 32030184 PMCID: PMC6985379 DOI: 10.1007/s40201-019-00433-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 12/23/2019] [Indexed: 06/05/2023]
Abstract
A dielectric barrier discharge system with a discharging zone where degradation processes happen is designed to remove 4-chlorophenol from water. The removal of 4-chlorophenol was influenced by the processing parameters such as gas flow rate, flow ratio of oxygen and argon, applied voltage and total applied power. Increasing the power or gas flow rates within a certain range enhanced the removal efficiency. 99% of 4-chlorophenol was removed in 6.5 min at reactor's efficient point which is set by adjusting the flow ratio of introduced gases and voltage. The removal percent was about 95% at 5 min of non-thermal plasma treatment with peak voltage of 10 kV and oxygen and argon flow rate of 20 SCCM and 200 SCCM respectively. Then by adjusting the flow ratios in order to find the optimum point. At this point the efficiency reached its peak due to excessive introduction oxygen gas which results in production of more oxidative agents. HPLC and GC-MS analysis have been carried out in order to investigate the by-products of degradation process. After 6.5 min of treatment at efficient point of degradation reactor, a 64% decrease in COD index has been indicated.
Collapse
Affiliation(s)
- Mohammad Hasani
- Department of Physics, Shahid Beheshti University, Tehran, 19839-63113 Iran
| | - Mohammad-Reza Khani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839-63113 Iran
| | - Mostafa Karimaei
- Department of Environmental Health Engineering, School of Public Health, Semnan University of Medical Sciences, Semnan, Iran
| | - Kamyar Yaghmaeian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Shokri
- Department of Physics, Shahid Beheshti University, Tehran, 19839-63113 Iran
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839-63113 Iran
| |
Collapse
|
9
|
Wang J, Shih Y, Wang PY, Yu YH, Su JF, Huang CP. Hazardous waste treatment technologies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1177-1198. [PMID: 31433896 DOI: 10.1002/wer.1213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This is a review of the literature published in 2018 on topics related to hazardous waste management in water, soils, sediments, and air. The review covers treatment technologies applying physical, chemical, and biological principles for contaminated water, soils, sediments, and air. PRACTITIONER POINTS: The management of waters, wastewaters, and soils contaminated by various hazardous chemicals including inorganic (e.g., oxyanions, salts, and heavy metals), organic (e.g., halogenated, pharmaceuticals and personal care products, pesticides, and persistent organic chemicals) was reviewed according to the technology applied, namely, physical, chemical and biological methods. Physical methods for the management of hazardous wastes including adsorption, coagulation (conventional and electrochemical), sand filtration, electrosorption (or CDI), electrodialysis, electrokinetics, membrane (RO, NF, MF), photocatalysis, photoelectrochemical oxidation, sonochemical, non-thermal plasma, supercritical fluid, electrochemical oxidation, and electrochemical reduction processes were reviewed. Chemical methods including ozone-based, hydrogen peroxide-based, persulfate-based, Fenton and Fenton-like, and potassium permanganate processes for the management of hazardous were reviewed. Biological methods such as aerobic, anaerobic, bioreactor, constructed wetlands, soil bioremediation and biofilter processes for the management of hazardous wastes, in mode of consortium and pure culture were reviewed.
Collapse
Affiliation(s)
- Jianmin Wang
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science & Technology, Rolla, Missouri
| | - Yujen Shih
- Graduate Institute of Environmental Engineering, National Sun yat-sen University, Kaohsiung, Taiwan
| | - Po Yen Wang
- Department of Civil Engineering, Weidner University, Chester, Pennsylvania
| | - Yu Han Yu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Jenn Fang Su
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
10
|
Çimen Mutlu Y, Günay Semerci T, Türk H. Oxidation of 2,6-di-tert-butylphenol with tert-butyl hydroperoxide catalyzed by iron porphyrin tetrasulfonate, iron porphyrin tetracarboxylate and their supported analogues in a water-methanol mixture. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:280-287. [PMID: 30856438 DOI: 10.1016/j.jhazmat.2019.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/30/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
In this study, two water-soluble iron porphyrins bearing sulfonate and carboxylate functionalities (FePTS and FePTC, respectively) and their supported analogues were used as catalysts for the oxidation of 2,6-di-tert-butylphenol (DTBP) in a water-methanol mixture. tert-Butyl hydroperoxide (TBHP) was the oxidant and the volume ratio of water to methanol in the mixture was 1-8. The major products of the DTBP oxidation were 3,3',5,5'-tetra-tert-butyl-4,4'-diphenoquinone (DPQ) and 4,4'-dihydroxy-3,3',5,5'-tetra-tert- butylbiphenyl (H2DPQ). Also 2,6-di-tert-butyl-1,4-benzoquinone (BQ) was the minor product of the oxidation. The results showed that FePTC was more catalytically active than FePTS in the oxidation and gave the highest TON and TOF values in comparison to those for metalloporphyrin and metallophthalocyanine based catalysts in the DTBP oxidation given in the literature. In addition, the ecotoxicity tests of the DTBP oxidation mixtures before and after oxidative catalytic treatment toward Artemia salina were performed. It was found that the toxicity of the catalytically treated DTBP mixture containing residual DTBP and products was lower than the catalytically untreated DTBP mixture.
Collapse
Affiliation(s)
- Yasemin Çimen Mutlu
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, 26470 Eskişehir, Turkey; Department of Chemistry, Faculty of Sciences, Anadolu University, 26470 Eskişehir, Turkey.
| | - Tuğçe Günay Semerci
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, 26470 Eskişehir, Turkey; Department of Chemistry, Faculty of Sciences, Anadolu University, 26470 Eskişehir, Turkey
| | - Hayrettin Türk
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, 26470 Eskişehir, Turkey; Department of Chemistry, Faculty of Sciences, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
11
|
Iervolino G, Vaiano V, Palma V. Enhanced removal of water pollutants by dielectric barrier discharge non-thermal plasma reactor. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Sun Z, Zhang J, Yang J, Li J, Wang J, Hu X. Acclimation of 2-chlorophenol-biodegrading activated sludge and microbial community analysis. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:273-280. [PMID: 30913366 DOI: 10.1002/wer.1049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/19/2017] [Accepted: 07/23/2018] [Indexed: 06/09/2023]
Abstract
Using glucose as cosubstrate, activated sludge that could effectively biodegrade 40 mg/L 2-chlorophenol was successfully domesticated in sequencing batch reactors. To acclimate the sludge, 2-chlorophenol was increased stepwise from 0 to 40 mg/L. High-throughput sequencing revealed that the microbial community richness increased during the first 5 days of acclimation to 5 mg/L 2-chlorophenol and then decreased after another 20 days as 2-chlorophenol was increased. The original sludge obtained from a water resource recovery facility had the highest microbial diversity. As the acclimation continued further, community richness and diversity both increased, but they decreased again, significantly, when 2-chlorophenol reached 40 mg/L. Saccharibacteria_norank, Bacillus, Saprospiraceae_uncultured, and Lactococcus were the dominant bacteria. Bacillus and Pseudomonas were the main known chlorophenol-degrading bacteria. WCHB1-60_norank, Tetrasphaera, Comamonadaceae_unclassified, and Haliangium showed poor tolerance to 2-chlorophenol. Higher bacterial tolerance to chlorophenols does not mean higher degrading capability. The degradation of chlorophenols was not positively correlated with the detected abundance of known 2-chlorophenol-degrading bacteria. PRACTITIONER POINTS: Activated sludge that could effectively biodegrade 40 mg/L 2-chlorophenol was successfully domesticated using glucose as cosubstrate in sequencing batch reactors. Saccharibacteria_norank, Bacillus, Saprospiraceae_uncultured, and Lactococcus were the dominant bacteria. Bacillus and Pseudomonas were the main known chlorophenol-degrading bacteria detected in this study. The degrading capability and tolerance of bacteria to chlorophenols were relatively independent and the degradation of chlorophenols may be the synergistic effect of various bacteria.
Collapse
Affiliation(s)
- Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, China
| | - Jinwei Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, China
| | - Jie Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, China
| | - Jiangyang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, China
| | - Jianguang Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, China
| | - Xiang Hu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
13
|
Zhang H, Zhang Q, Miao C, Huang Q. Degradation of 2, 4-dichlorophenol in aqueous solution by dielectric barrier discharge: Effects of plasma-working gases, degradation pathways and toxicity assessment. CHEMOSPHERE 2018; 204:351-358. [PMID: 29674147 DOI: 10.1016/j.chemosphere.2018.04.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 05/16/2023]
Abstract
Chlorinated phenols are a class of contaminants found in water and have been regarded as a great potential risk to environment and human health. It is thus urgent to develop effective techniques to remove chlorinated phenols in wastewater. For this purpose, we employed dielectric barrier discharge (DBD) in this work and studied the efficiency of DBD for the degradation of 2,4-dichlorophenol (2,4-DCP), one of the most typical chlorophenols in the environment. The effects of pH value, applied voltage and plasma-working gases on the dichlorophenol-removal efficiency were investigated. The results demonstrate that DBD plasma could successfully degrade 2,4-DCP, achieving efficiency of 98.16% (k = 1.09 min-1) in the Ar-DBD system, and 77.60% (k = 0.48 min-1) in the N2-DBD system, with the process following the first-order kinetics. The removal efficiency was reduced in the presence of radical scavengers, confirming that hydroxyl radicals played a key role in the degradation process, while other active substances were also found such as nitrogen radicals in the N2-DBD system, which was found to have also contribution to the degradation of 2,4-DCP. The intermediates and final products generated in the degradation process were analyzed using gas chromatography-mass spectrometry (GC-MS). Based on the identification of intermediates, the degradation pathways and mechanism were proposed and discussed. Besides, the toxicity of the DBD treated 2,4-DCP solution was also assessed using GFP-expressing recombinant Escherichia coli (E. coli) as the testing organism, showing that plasma treatment could substantially reduce the toxic effect of 2,4-DCP.
Collapse
Affiliation(s)
- Hong Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Qifu Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China; Department of Modern Mechanics and School of Life Science, University of Science & Technology of China, Hefei, China
| | - Chunguang Miao
- Department of Modern Mechanics and School of Life Science, University of Science & Technology of China, Hefei, China
| | - Qing Huang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China; Department of Modern Mechanics and School of Life Science, University of Science & Technology of China, Hefei, China.
| |
Collapse
|
14
|
Visible-Light-Driven Photocatalytic Fuel Cell with an Ag-TiO2 Carbon Foam Anode for Simultaneous 4-Chlorophenol Degradation and Energy Recovery. CHEMENGINEERING 2018. [DOI: 10.3390/chemengineering2020020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Wang Y, Pan Z, Qin D, Bai S, Peng Q. Preparation of Ce-TiO 2 /carbon aerogel electrode and its performance in degradation of 4-chlorophenol. J RARE EARTH 2018. [DOI: 10.1016/j.jre.2017.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Hama Aziz KH, Miessner H, Mueller S, Mahyar A, Kalass D, Moeller D, Khorshid I, Rashid MAM. Comparative study on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor. JOURNAL OF HAZARDOUS MATERIALS 2018; 343:107-115. [PMID: 28942183 DOI: 10.1016/j.jhazmat.2017.09.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Ozonation and advanced oxidation processes based on photocatalysis (P.C.) and non-thermal plasma generated in a dielectric barrier discharge (DBD) in different gas atmospheres were compared for the degradation and mineralization of 2,4-dichlorophenoxy acetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP) in aqueous solutions, using a planar falling film reactor with comparable design. The energetic yields (G50) as measure of the efficiencies of the different methods are for 2,4-D in the order DBD/Ar-Fenton>ozonation>DBD/Ar>P.C.ozonation>DBD/Ar:O2≫DBD/Air>P.C.oxidation. For 2,4-DCP the order is ozonation≫DBD/Ar-Fenton>P.C.ozonation>DBD/Ar>DBD/Ar:O2≫P.C.oxidation>DBD/Air. The degradation by using ozone is very effective, but it should be noted that the mineralization measured by the total organic carbon (TOC) removal is low. The reason is the formation of stable towards ozone intermediates, especially low chain carboxylic acids. The fate of these intermediates during the degradation with the different methods has been followed and discussed.
Collapse
Affiliation(s)
- Kosar Hikmat Hama Aziz
- Laboratory of Atmospheric Chemistry and Air Quality, Brandenburg University of Technology (BTU Cottbus-Senftenberg), D-12489 Berlin, Germany; Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Region, Iraq.
| | - Hans Miessner
- Laboratory of Atmospheric Chemistry and Air Quality, Brandenburg University of Technology (BTU Cottbus-Senftenberg), D-12489 Berlin, Germany
| | - Siegfried Mueller
- Laboratory of Atmospheric Chemistry and Air Quality, Brandenburg University of Technology (BTU Cottbus-Senftenberg), D-12489 Berlin, Germany
| | - Ali Mahyar
- Laboratory of Atmospheric Chemistry and Air Quality, Brandenburg University of Technology (BTU Cottbus-Senftenberg), D-12489 Berlin, Germany
| | - Dieter Kalass
- Laboratory of Atmospheric Chemistry and Air Quality, Brandenburg University of Technology (BTU Cottbus-Senftenberg), D-12489 Berlin, Germany
| | - Detlev Moeller
- Laboratory of Atmospheric Chemistry and Air Quality, Brandenburg University of Technology (BTU Cottbus-Senftenberg), D-12489 Berlin, Germany
| | - Ibrahim Khorshid
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Region, Iraq
| | - Muhammad Amin M Rashid
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Region, Iraq
| |
Collapse
|
17
|
Miran W, Nawaz M, Jang J, Lee DS. Chlorinated phenol treatment and in situ hydrogen peroxide production in a sulfate-reducing bacteria enriched bioelectrochemical system. WATER RESEARCH 2017; 117:198-206. [PMID: 28399481 DOI: 10.1016/j.watres.2017.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/16/2017] [Accepted: 04/03/2017] [Indexed: 05/15/2023]
Abstract
Wastewaters are increasingly being considered as renewable resources for the sustainable production of electricity, fuels, and chemicals. In recent years, bioelectrochemical treatment has come to light as a prospective technology for the production of energy from wastewaters. In this study, a bioelectrochemical system (BES) enriched with sulfate-reducing bacteria (SRB) in the anodic chamber was proposed and evaluated for the biodegradation of recalcitrant chlorinated phenol, electricity generation (in the microbial fuel cell (MFC)), and production of hydrogen peroxide (H2O2) (in the microbial electrolysis cell (MEC)), which is a very strong oxidizing agent and often used for the degradation of complex organics. Maximum power generation of 253.5 mW/m2, corresponding to a current density of 712.0 mA/m2, was achieved in the presence of a chlorinated phenol pollutant (4-chlorophenol (4-CP) at 100 mg/L (0.78 mM)) and lactate (COD of 500 mg/L). In the anodic chamber, biodegradation of 4-CP was not limited to dechlorination, and further degradation of one of its metabolic products (phenol) was observed. In MEC operation mode, external voltage (0.2, 0.4, or 0.6 V) was added via a power supply, with 0.4 V producing the highest concentration of H2O2 (13.3 g/L-m2 or 974 μM) in the cathodic chamber after 6 h of operation. Consequently, SRB-based bioelectrochemical technology can be applied for chlorinated pollutant biodegradation in the anodic chamber and either net current or H2O2 production in the cathodic chamber by applying an optimum external voltage.
Collapse
Affiliation(s)
- Waheed Miran
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Mohsin Nawaz
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jiseon Jang
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
18
|
Shape-controlled synthesis of one-dimensional α-MnO 2 nanocrystals for organic detection and pollutant degradation. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.01.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|