1
|
Yeh SL, Deval P, Tsai WB. Fabrication of Transparent PEGylated Antifouling Coatings via One-Step Pyrogallol Deposition. Polymers (Basel) 2023; 15:2731. [PMID: 37376377 DOI: 10.3390/polym15122731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Antifouling coatings are critical for many biomedical devices. A simple and universal technique used to anchor antifouling polymers is important in order to expand its applications. In this study, we introduced the pyrogallol (PG)-assisted immobilization of poly(ethylene glycol) (PEG) to deposit a thin antifouling layer on biomaterials. Briefly, biomaterials were soaked in a PG/PEG solution and PEG was immobilized onto the biomaterial surfaces via PG polymerization and deposition. The kinetics of PG/PEG deposition started with the deposition of PG on the substrates, followed by the addition of a PEG-rich adlayer. However, prolonged coating added a top-most PG-rich layer, which deteriorated the antifouling efficacy. By controlling the amounts of PG and PEG and the coating time, the PG/PEG coating was able to reduce more than 99% of the adhesion of L929 cells and the adsorption of fibrinogen. The ultrathin (tens of nanometers) and smooth PG/PEG coating was easily deposited onto a wide variety of biomaterials, and the deposition was robust enough to survive harsh sterilization conditions. Furthermore, the coating was highly transparent and allowed most of the UV and Vis light to pass through. The technique has great potential to be applied to biomedical devices that need a transparent antifouling coating, such as intraocular lenses and biosensors.
Collapse
Affiliation(s)
- Shang-Lin Yeh
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Piyush Deval
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| |
Collapse
|
2
|
Zhang H, Zhao X, Wang X, Li Y, Wang S. Construction of Antifouling Zwitterionic Coatings on Polypropylene Microporous Membranes via N-hydroxyphthalimide(NHPI) catalysis. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
3
|
Oxley A, Livingston AG. Anti-fouling membranes for organic solvent nanofiltration (OSN) and organic solvent ultrafiltration (OSU): graft modified polybenzimidazole (PBI). J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Zainol Abidin MN, Nasef MM, Matsuura T. Fouling Prevention in Polymeric Membranes by Radiation Induced Graft Copolymerization. Polymers (Basel) 2022; 14:197. [PMID: 35012218 PMCID: PMC8747411 DOI: 10.3390/polym14010197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/20/2023] Open
Abstract
The application of membrane processes in various fields has now undergone accelerated developments, despite the presence of some hurdles impacting the process efficiency. Fouling is arguably the main hindrance for a wider implementation of polymeric membranes, particularly in pressure-driven membrane processes, causing higher costs of energy, operation, and maintenance. Radiation induced graft copolymerization (RIGC) is a powerful versatile technique for covalently imparting selected chemical functionalities to membranes' surfaces, providing a potential solution to fouling problems. This article aims to systematically review the progress in modifications of polymeric membranes by RIGC of polar monomers onto membranes using various low- and high-energy radiation sources (UV, plasma, γ-rays, and electron beam) for fouling prevention. The feasibility of the modification method with respect to physico-chemical and antifouling properties of the membrane is discussed. Furthermore, the major challenges to the modified membranes in terms of sustainability are outlined and the future research directions are also highlighted. It is expected that this review would attract the attention of membrane developers, users, researchers, and scientists to appreciate the merits of using RIGC for modifying polymeric membranes to mitigate the fouling issue, increase membrane lifespan, and enhance the membrane system efficiency.
Collapse
Affiliation(s)
- Muhammad Nidzhom Zainol Abidin
- Chemical and Environmental Engineering Department, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
| | - Mohamed Mahmoud Nasef
- Chemical and Environmental Engineering Department, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
- Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Takeshi Matsuura
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| |
Collapse
|
5
|
Xu T, Zhang J, Guo H, Zhao W, Li Q, Zhu Y, Yang J, Bai J, Zhang L. Antifouling Fibrous Membrane Enables High Efficiency and High-Flux Microfiltration for Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49254-49265. [PMID: 34633173 DOI: 10.1021/acsami.1c11316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membrane biofouling has long been a major obstacle to highly efficient water treatment. The modification of the membrane surface with hydrophilic materials can effectively enhance biofouling resistance. However, the water flux of the membranes is often compromised for the improvement of antifouling properties. In this work, a composite membrane composed of a zwitterionic hydrogel and electrospinning fibers was prepared by a spin-coating and UV cross-linking process. At the optimum conditions, the composite membrane could effectively resist the biofouling contaminations, as well as purify polluted water containing bacteria or diatoms with a high flux (1349.2 ± 85.5 L m-2 h-1 for 106 CFU mL-1 of an Escherichia coli solution). Moreover, compared with the commercial poly(ether sulfone) (PES) membrane, the membrane displayed an outstanding long-term filtration performance with a lower water flux decline. Therefore, findings in this work provide an effective antifouling modification strategy for microfiltration membranes and hold great potential for developing antifouling membranes for water treatment.
Collapse
Affiliation(s)
- Tong Xu
- Collage of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Jiamin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Hongshuang Guo
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Weiqiang Zhao
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qingsi Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yingnan Zhu
- School of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jie Bai
- Collage of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
6
|
Jiang C, Huang T, Chen Y, Su Z, Yan X, Xu Q, Jiang M, Liu P. The effect of grafting monomer charge on the antifouling performance of poly(ether ether ketone) hollow fiber membrane by ultraviolet irradiation polymerization. POLYM INT 2020. [DOI: 10.1002/pi.6159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chunhui Jiang
- College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Tingjian Huang
- College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Yuan Chen
- College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Zexi Su
- College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Xiang Yan
- College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Qibin Xu
- College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Mengjin Jiang
- College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Pengqing Liu
- College of Polymer Science and Engineering Sichuan University Chengdu China
| |
Collapse
|
7
|
Low Fouling, Peptoid-Coated Polysulfone Hollow Fiber Membranes-the Effect of Grafting Density and Number of Side Chains. Appl Biochem Biotechnol 2019; 191:824-837. [PMID: 31872336 DOI: 10.1007/s12010-019-03218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
The development of low fouling membranes to minimize protein adsorption has relevance in various biomedical applications. Here, electrically neutral peptoids containing 2-methoxyethyl glycine (NMEG) side chains were attached to polysulfone hollow fiber membranes via polydopamine. The number of side chains and grafting density were varied to determine the effect on coating properties and the ability to prevent fouling. NMEG peptoid coatings have high hydrophilicity compared to unmodified polysulfone membranes. The extent of biofouling was evaluated using bovine serum albumin, as well as platelet adhesion. The results suggest that both the number of side chains and grafting density play a role in the surface properties that drive biofouling. Protein adsorption decreased with increasing peptoid grafting density and is lowest above a critical grafting density specific to peptoid chain length. Our findings show that the optimization of grafting density and hydration of the surface are important factors for achieving the desired antifouling performance.
Collapse
|
8
|
Pinem J, Wardani A, Aryanti P, Khoiruddin K, Wenten IG. Hydrophilic Modification of Polymeric Membrane using Graft Polymerization Method: A Mini Review. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/547/1/012054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Arslan M, Acik G, Tasdelen MA. The emerging applications of click chemistry reactions in the modification of industrial polymers. Polym Chem 2019. [DOI: 10.1039/c9py00510b] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Click chemistry reactions have been applied to the modification of major industrial polymers by analysing the synthetic approaches and the resulting material properties.
Collapse
Affiliation(s)
- Mehmet Arslan
- Department of Polymer Engineering
- Faculty of Engineering
- Yalova University
- 77100 Yalova
- Turkey
| | - Gokhan Acik
- Department of Polymer Engineering
- Faculty of Engineering
- Yalova University
- 77100 Yalova
- Turkey
| | - Mehmet Atilla Tasdelen
- Department of Polymer Engineering
- Faculty of Engineering
- Yalova University
- 77100 Yalova
- Turkey
| |
Collapse
|
10
|
Microstructures and performances of pegylated polysulfone membranes from an in situ synthesized solution via vapor induced phase separation approach. J Colloid Interface Sci 2018; 515:152-159. [DOI: 10.1016/j.jcis.2018.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 01/22/2023]
|
11
|
Zhao X, Zhang R, Liu Y, He M, Su Y, Gao C, Jiang Z. Antifouling membrane surface construction: Chemistry plays a critical role. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.039] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Wu JJ, Zhou J, Rong JQ, Lu Y, Dong H, Yu HY, Gu JS. Grafting Branch Length and Density Dependent Performance of Zwitterionic Polymer Decorated Polypropylene Membrane. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2013-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Surface modification of polyvinylidene fluoride (PVDF) membrane via radiation grafting: novel mechanisms underlying the interesting enhanced membrane performance. Sci Rep 2017; 7:2721. [PMID: 28578428 PMCID: PMC5457412 DOI: 10.1038/s41598-017-02605-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/13/2017] [Indexed: 11/25/2022] Open
Abstract
This study provided the first attempt of grafting hydrophobic polyvinylidene fluoride (PVDF) membrane with hydrophilic hydroxyethyl acrylate (HEA) monomer via a radiation grafting method. This grafted membrane showed an enhanced hydrophilicity (10° decrease of water contact angle), water content ratio, settling ability and wettability compared to the control membrane. Interestingly, filtration tests showed an improved dependence of water flux of the grafted membrane on the solution pH in the acidic stage. Atomic force microscopy (AFM) analysis provided in-situ evidence that the reduced surface pore size of the grafted membrane with the solution pH governed such a dependence. It was proposed that, the reduced surface pore size was caused by the swelling of the grafted chain matrix, with the pH increase due to the chemical potential change. It was found that the grafted membrane showed a lower relative flux decreasing rate than the control membrane. Moreover, flux of the bovine serum albumin (BSA) solution was noticeably larger than that of pure water for the grafted membrane. Higher BSA flux than water flux can be explained by the effects of electric double layer compression on the polymeric swelling. This study not only provided a pH-sensitive PVDF membrane potentially useful for various applications, but also proposed novel mechanisms underlying the enhanced performance of the grafted membrane.
Collapse
|