1
|
Han J, Xie N, Ju J, Zhang Y, Wang Y, Kang W. Developments of electrospinning technology in membrane bioreactor: A review. CHEMOSPHERE 2024; 364:143091. [PMID: 39151583 DOI: 10.1016/j.chemosphere.2024.143091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The necessity for effective wastewater treatment and purification has grown as a result of the increasing pollution issues brought on by industrial and municipal wastewater. Membrane bioreactor (MBR) technology stands out when compared to other treatment methods because of its high efficiency, environmental friendliness, small footprint, and ease of maintenance. However, the development and application of membrane bioreactors has been severely constrained by the higher cost and shorter service life of these devices brought on by membrane biofouling issues resulting from contaminants and bacteria in the water. The nanoscale size of the electrospinning products provides unique microstructure, and the technology facilitates the production of structurally different membranes, or the modification and functionalization of membranes, which makes it possible to solve the membrane fouling problem. Therefore, many current studies have attempted to use electrospinning in MBRs to address membrane fouling and ultimately improve treatment efficacy. Meanwhile, in addition to solving the problem of membrane fouling, the fabrication technology of electrospinning also shows great advantages in constructing thin porous fiber membrane materials with controllable surface wettability and layered structure, which is helpful for the performance enhancement of MBR and expanding innovation. This paper systematically reviews the application and research progress of electrospinning in MBRs. Firstly, the current status of the application of electrospinning technology in various MBRs is introduced, and the relevant measures to solve the membrane fouling based on electrospinning technology are analyzed. Subsequently, some new types of MBRs and new application areas developed with the help of electrospinning technology are introduced. Finally, the limitations and challenges of merging the two technologies are presented, and pertinent recommendations are provided for future research on the use of electrospinning technology in membrane bioreactors.
Collapse
Affiliation(s)
- Jiacheng Han
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Nan Xie
- ChinaTianjin Research Institute of Construction Machinery, No.91 Huashi Road, Beichen Technology Park, Tianjin, 300409, PR China
| | - Jingge Ju
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| | - Yan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Yongcheng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| |
Collapse
|
2
|
Xiang J, Wang S, Chen N, Wen X, Tian G, Zhang L, Cheng P, Zhang J, Tang N. Study on Low Thermal-Conductivity of PVDF@SiAG/PET Membranes for Direct Contact Membrane Distillation Application. MEMBRANES 2023; 13:773. [PMID: 37755195 PMCID: PMC10535353 DOI: 10.3390/membranes13090773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
In order to enhance the separation performance and reduce the heat loss of transmembrane for membrane distillation, the thermal efficiency and hydrophobicity of the membrane distillation need to be simultaneously enhanced. In this work, a polyvinylidene difluoride/polyethylene glycol terephthalate (PVDF/PET) hydrophobic/hydrophilic membrane has been prepared by non-solvent phase induction method. Nanosized silica aerogel (SiAG) with high porosity has been added to the composite membranes. The modifying effects and operating conditions on permeate flux and thermal efficiency in direct contact membrane distillation (DCMD) are investigated. Furthermore, the latent heat of vaporization and the heat transfer across the membranes have been compared for SiAG addition, which indicates that the composite PVDF@SiAG/PET membranes demonstrate a great potential for distillation-separation application due to their high heat efficiency.
Collapse
Affiliation(s)
- Jun Xiang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Material Science, Tianjin University of Science and Technology (TUST), 13th Avenue 29, TEDA, Tianjin 300457, China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, 13th Avenue 29, TEDA, Tianjin 300457, China
| | - Sitong Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Material Science, Tianjin University of Science and Technology (TUST), 13th Avenue 29, TEDA, Tianjin 300457, China
| | - Nailin Chen
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Material Science, Tianjin University of Science and Technology (TUST), 13th Avenue 29, TEDA, Tianjin 300457, China
| | - Xintao Wen
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Material Science, Tianjin University of Science and Technology (TUST), 13th Avenue 29, TEDA, Tianjin 300457, China
| | - Guiying Tian
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Material Science, Tianjin University of Science and Technology (TUST), 13th Avenue 29, TEDA, Tianjin 300457, China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, 13th Avenue 29, TEDA, Tianjin 300457, China
| | - Lei Zhang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Material Science, Tianjin University of Science and Technology (TUST), 13th Avenue 29, TEDA, Tianjin 300457, China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, 13th Avenue 29, TEDA, Tianjin 300457, China
| | - Penggao Cheng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Material Science, Tianjin University of Science and Technology (TUST), 13th Avenue 29, TEDA, Tianjin 300457, China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, 13th Avenue 29, TEDA, Tianjin 300457, China
| | - Jianping Zhang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Material Science, Tianjin University of Science and Technology (TUST), 13th Avenue 29, TEDA, Tianjin 300457, China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, 13th Avenue 29, TEDA, Tianjin 300457, China
| | - Na Tang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Material Science, Tianjin University of Science and Technology (TUST), 13th Avenue 29, TEDA, Tianjin 300457, China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, 13th Avenue 29, TEDA, Tianjin 300457, China
| |
Collapse
|
3
|
Baroud TN. Tuning PVDF Membrane Porosity and Wettability Resistance via Varying Substrate Morphology for the Desalination of Highly Saline Water. MEMBRANES 2023; 13:395. [PMID: 37103822 PMCID: PMC10141797 DOI: 10.3390/membranes13040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Here, we report the fabrication of a series of highly efficient polyvinylidene fluoride (PVDF) membranes via substrate morphology variations. A wide range of sandpaper grit sizes (150-1200) were utilized as casting substrates. The effect of the penetration of abrasive particles present on the sandpapers on the casted polymer solution was tuned, and the impact of these particles on porosity, surface wettability, liquid entry pressure and morphology were investigated. The membrane distillation performance of the developed membrane on sandpapers was evaluated for the desalination of highly saline water (70,000 ppm). Interestingly, the utilization of cheap and widely available sandpapers as a substrate for casting can not only help in tuning the MD performance, but also in producing highly efficient membranes with stable salt rejection (up to 100%) and a 210% increase in the permeate flux over 24 h. The findings in this study will help in delineating the role of substrate nature in controlling the produced membrane characteristics and performance.
Collapse
Affiliation(s)
- Turki N. Baroud
- Materials Science & Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Interdisciplinary Research Center for Membranes & Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
4
|
Zakaria N, Zaliman S, Leo C, Ahmad A, Ooi B, Poh PE. Electrochemical cleaning of superhydrophobic polyvinylidene fluoride/polymethyl methacrylate/carbon black membrane after membrane distillation. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Wrinkled CNTs@PLLA Composite Membranes for Enhanced Separation Performance. MEMBRANES 2022; 12:membranes12030278. [PMID: 35323753 PMCID: PMC8948802 DOI: 10.3390/membranes12030278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023]
Abstract
To break the trade-off effect between permeability and selectivity in separation, wrinkled carbon nanotubes@polylactic acid (CNTs@PLLA) composite membranes were successfully fabricated in this work. On pre-deformed PLLA membranes, CNTs were loaded by filtrating their suspension, followed by releasing the PLLA upon heating based on its shape memory effect. The asynchronous deformations of CNTs and PLLA layers produced wrinkled CNTs@PLLA composite membranes. Relative to the reference without wrinkles, the attained wrinkled composite membranes exhibit much higher flux (~12 times) without any loss of rejection ratio during the separation of water-in-hexadecane emulsion. The significant improvement of separation performance can be attributed to the following issues: Firstly, the existence of wrinkles results in higher surface roughness, providing an additional driving force for separation resulting from the enlarged contact-angle difference between water and oil; Secondly, the shrinkage of the supporting PLLA layer during recovery induces the preferred alignment of CNTs along the wrinkle direction, which is the reason for the orientated slit pores with enhanced overlap of neighboring pores in the film-thickness direction; Finally, a wrinkled surface significantly increases the available area for separation. The synergism of the effects discussed above contributes to much higher permeability and comparable selectivity relative to the reference.
Collapse
|
6
|
Mat Radzi NH, Ahmad AL. Double layer PVDF blends PVDF‐HFP membrane with modified ZnO nanoparticles for direct contact membrane distillation (DCMD). ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nurul Hafifah Mat Radzi
- School of Chemical Engineering Universiti Sains Malaysia, Seri Ampangan Nibong Tebal Pulau Pinang 14300 Malaysia
| | - Abdul Latif Ahmad
- School of Chemical Engineering Universiti Sains Malaysia, Seri Ampangan Nibong Tebal Pulau Pinang 14300 Malaysia
| |
Collapse
|
7
|
Ramos RL, Lebron YAR, Moreira VR, Martins MF, Santos LVS, Amaral MCS. Direct contact membrane distillation as an approach for water treatment with phenolic compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114117. [PMID: 34838381 DOI: 10.1016/j.jenvman.2021.114117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Membrane distillation is a well-established technology for non-volatile components retention, but the removal of volatile and semi-volatile substances in trace concentration, such as phenols derivates commonly found in surface waters, requires further comprehension. In this context, the direct contact membrane distillation (DCMD) performance was assessed for the retention of fifteen phenolic compounds in surface water by different operating conditions of temperature (40, 50, and 60 °C), feed concentration (3, 5, 7, and 10 μg L-1), and permeate recovery rate (30, 50 and 70%). Kruskal Wallis confirmed a significant difference (p < 0.05) between the global removal of phenolic compounds at different temperatures. The increase in temperature led to a reduction in all compound's removal. As expected, a positive correlation (rSpearman>0.8) between the compounds' volatility and their losses was observed. Regarding the feed concentration and the recovery rate, there was no statistical difference between the removal values obtained for the phenolic compounds. This indicates the DCMD strength for that application. However, a trend for flux decay was noticed as the recovery rate (RR) increased, confirmed by temporal trend analysis and Mann-Kendall tests, although the flux decay was relatively low (J/J0 = 0.89). Aiming for a greater removal and to avoid a reduction in process performance, it is recommended to work with 40 °C as feed temperature and a RR prior to the flux decay (RR<30%). Nonetheless, the technology was efficient and did not compromise the permeate quality with >90% efficiency in pollutants removal, even for higher temperatures and RR.
Collapse
Affiliation(s)
- Ramatisa L Ramos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil.
| | - Yuri A R Lebron
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Victor R Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Mateus F Martins
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Lucilaine V S Santos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Miriam C S Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Ni T, Lin J, Kong L, Zhao S. Omniphobic membranes for distillation: Opportunities and challenges. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Liao X, Goh K, Liao Y, Wang R, Razaqpur AG. Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications. Adv Colloid Interface Sci 2021; 297:102547. [PMID: 34687984 DOI: 10.1016/j.cis.2021.102547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023]
Abstract
With the aggravation of the global water crisis, membrane distillation (MD) for seawater desalination and hypersaline wastewater treatment is highlighted due to its low operating temperature, low hydrostatic pressure, and theoretically 100% rejection. However, some issues still impede the large-scale applications of MD technology, such as membrane fouling, scaling and unsatisfactory wetting resistance. Bio-inspired super liquid-repellent membranes have progressed rapidly in the past decades and been considered as one of the most promising approaches to overcome the above problems. This review for the first time systematically summarizes and analyzes the mechanisms of different super liquid-repellent surfaces, their preparation and modification methods, and anti-wetting/fouling/scaling performances in the MD process. Firstly, the topology theories of in-air superhydrophobic, in-air omniphobic and underwater superoleophobic surfaces are illustrated using different models. Secondly, the fabrication methods of various super liquid-repellent membranes are classified. The merits and demerits of each method are illustrated. Thirdly, the anti-wetting/fouling/scaling mechanisms of super liquid-repellent membranes are summarized. Finally, the conclusions and perspectives of the bio-inspired super liquid-repellent membranes are elaborated. It is anticipated that the systematic review herein can provide readers with foundational knowledge and current progress of super liquid-repellent membranes, and inspire researchers to overcome the challenges up ahead.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
10
|
Ding Z, Liu Z, Xiao C. Fabrication of a novel one-step coating hyper-hydrophobic fluorine-free TiO 2 decorated hollow composite membrane for use in longer-term VMD with enhanced flux, rejection, anti-wetting and anti-fouling performances. NANOSCALE 2021; 13:12342-12355. [PMID: 34254632 DOI: 10.1039/d1nr02192c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite recent efforts, there are still significant challenges in preparing hyper-hydrophobic membranes using environmental-friendly materials and simple methods. In this work, using phase separation theory, we prepared a fluorine-free hyper-hydrophobic porous hollow composite membrane using one-step ultrasound dip-coating. Then, fluorine-free modified titanium dioxide, polydimethylsilane and polypropylene was used to construct the porous membrane with a water contact angle of 161°. The distribution of surface elements, morphology, wetting and the scale of titanium on the membranes was characterized using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), the water contact angle and acid-alkali stability, wetting resistance, and so on. The membrane was evaluated for desalination in the presence of organic-pollutants. Under longer-term vacuum membrane distillation, compared with the general polypropylene membrane, the flux of the hyper-hydrophobic membrane increased to 12.17 kg (m2 h)-1, and the rejection rate reached 99.99%. These results indicated that the free-fluorine hyper-hydrophobic membrane could be used for seawater desalination. Finally, our results indicate that the hyper-hydrophobic modified membrane has good potential for use in industrial desalination.
Collapse
Affiliation(s)
- Zhaokun Ding
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China.
| | | | | |
Collapse
|
11
|
Candan Eryılmaz, Ayten Genç. Review of Treatment Technologies for the Removal of Phenol from Wastewaters. J WATER CHEM TECHNO+ 2021. [DOI: 10.3103/s1063455x21020065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Tan HF, Tan WL, Ooi B, Leo C. Superhydrophobic PVDF/micro fibrillated cellulose membrane for membrane distillation crystallization of struvite. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Tan WL, Tan HF, Ahmad A, Leo C. Carbon dioxide conversion into calcium carbonate nanoparticles using membrane gas absorption. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Constructing superhydrophobic surface of PES/PES-SiO2 mixed matrix membrane contactors for efficient SO2 capture. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Chang H, Liu B, Zhang Z, Pawar R, Yan Z, Crittenden JC, Vidic RD. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1395-1418. [PMID: 33314911 DOI: 10.1021/acs.est.0c05454] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophobic membranes used in membrane distillation (MD) systems are often subject to wetting during long-term operation. Thus, it is of great importance to fully understand factors that influence the wettability of hydrophobic membranes and their impact on the overall separation efficiency that can be achieved in MD systems. This Critical Review summarizes both fundamental and applied aspects of membrane wetting with particular emphasis on interfacial interaction between the membrane and solutes in the feed solution. First, the theoretical background of surface wetting, including the relationship between wettability and interfacial interaction, definition and measurement of contact angle, surface tension, surface free energy, adhesion force, and liquid entry pressure, is described. Second, the nature of wettability, membrane wetting mechanisms, influence of membrane properties, feed characteristics and operating conditions on membrane wetting, and evolution of membrane wetting are reviewed in the context of an MD process. Third, specific membrane features that increase resistance to wetting (e.g., superhydrophobic, omniphobic, and Janus membranes) are discussed briefly followed by the comparison of various cleaning approaches to restore membrane hydrophobicity. Finally, challenges with the prevention of membrane wetting are summarized, and future work is proposed to improve the use of MD technology in a variety of applications.
Collapse
Affiliation(s)
- Haiqing Chang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhewei Zhang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ritesh Pawar
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
16
|
Tibi F, Park SJ, Kim J. Improvement of Membrane Distillation Using PVDF Membrane Incorporated with TiO 2 Modified by Silane and Optimization of Fabricating Conditions. MEMBRANES 2021; 11:membranes11020095. [PMID: 33572959 PMCID: PMC7912162 DOI: 10.3390/membranes11020095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/25/2022]
Abstract
The objectives in this study are to improve the performance of PVDF membrane by incorporating TiO2 and silane at various dosages and optimize fabricating conditions by using response surface methodology (RSM) for membrane distillation (MD) application. The PVDF membrane was synthesized by phase inversion method using various TiO2, silane and polymer concentrations. Membranes were characterized by performing contact angle measurements, SEM and FTIR observations. Ammonia rejection and permeate flux were measured by operating a direct contact distillation module treating ammonium chloride solution. A PVDF membrane created by adding TiO2 modified by silane improved membrane hydrophobicity. However, the effect of silane on membrane hydrophobicity was less pronounced at higher TiO2 concentrations. Highest ammonium rejection was associated with the highest membrane hydrophobicity. RSM analysis showed that fabricating conditions to achieve highest flux (10.10 L/m2·h) and ammonium rejection (100.0%) could be obtained at 31.3% silane, 2.50% TiO2, and 15.48% polymer concentrations. With a PVDF-TiO2 composite membrane for MD application, the effect of TiO2 was dependent upon silane concentration. Increasing silane concentration improved membrane hydrophobicity and ammonium rejection. RSM analysis was found to bea useful way to explore optimum fabricating conditions of membranes for the permeate flux and ammonium rejection in MD.
Collapse
Affiliation(s)
- Fida Tibi
- Department of Environmental Engineering, Program in Environmental and Polymer Engineering, Inha University, Inharo 100, Michuholgu, Incheon 22212, Korea;
| | - Seong-Jik Park
- Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong 17579, Korea;
| | - Jeonghwan Kim
- Department of Environmental Engineering, Program in Environmental and Polymer Engineering, Inha University, Inharo 100, Michuholgu, Incheon 22212, Korea;
- Correspondence: ; Tel.: +82-32-860-7502
| |
Collapse
|
17
|
Modification of PET Ion-Track Membranes by Silica Nanoparticles for Direct Contact Membrane Distillation of Salt Solutions. MEMBRANES 2020; 10:membranes10110322. [PMID: 33143326 PMCID: PMC7694013 DOI: 10.3390/membranes10110322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 11/23/2022]
Abstract
The paper describes desalination by membrane distillation (MD) using ion-track membranes. Poly(ethylene terephthalate) (PET) ion-track membranes were hydrophobized by the immobilization of hydrophobic vinyl-silica nanoparticles (Si NPs). Si NPs were synthesized by the sol-gel method, and the addition of the surfactant led to the formation of NPs with average size of 40 nm. The thermal initiator fixed to the surface of membranes allowed attachment of triethoxyvinyl silane Si NPs at the membrane surface. To further increase hydrophobicity, ethoxy groups were fluorinated. The morphology and chemical structure of prepared membranes were characterized by SEM, FTIR, XPS spectroscopy, and a gas permeability test. Hydrophobic properties were evaluated by contact angle (CA) and liquid entry pressure (LEP) measurements. Membranes with CA 125–143° were tested in direct contact membrane distillation (DCMD) of 30 g/L saline solution. Membranes showed water fluxes from 2.2 to 15.4 kg/(m2·h) with salt rejection values of 93–99%.
Collapse
|
18
|
Improving the performance of vacuum membrane distillation using a 3D-printed helical baffle and a superhydrophobic nanocomposite membrane. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117072] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Mat Radzi NH, Ahmad AL. Effect of ZnO nanoparticles loading in double‐layer polyvinylidene fluoride membrane for desalination via direct contact membrane distillation. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Abdul Latif Ahmad
- School of Chemical Engineering Universiti Sains Malaysia Nibong Tebal Penang 14300 Malaysia
| |
Collapse
|
20
|
Preparation of polydimethylsiloxane-SiO2/PVDF-HFP mixed matrix membrane of enhanced wetting resistance for membrane gas absorption. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116543] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Sinha Ray S, Singh Bakshi H, Dangayach R, Singh R, Deb CK, Ganesapillai M, Chen SS, Purkait MK. Recent Developments in Nanomaterials-Modified Membranes for Improved Membrane Distillation Performance. MEMBRANES 2020; 10:E140. [PMID: 32635417 PMCID: PMC7408142 DOI: 10.3390/membranes10070140] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/03/2023]
Abstract
Membrane distillation (MD) is a thermally induced membrane separation process that utilizes vapor pressure variance to permeate the more volatile constituent, typically water as vapor, across a hydrophobic membrane and rejects the less volatile components of the feed. Permeate flux decline, membrane fouling, and wetting are some serious challenges faced in MD operations. Thus, in recent years, various studies have been carried out on the modification of these MD membranes by incorporating nanomaterials to overcome these challenges and significantly improve the performance of these membranes. This review provides a comprehensive evaluation of the incorporation of new generation nanomaterials such as quantum dots, metalloids and metal oxide-based nanoparticles, metal organic frameworks (MOFs), and carbon-based nanomaterials in the MD membrane. The desired characteristics of the membrane for MD operations, such as a higher liquid entry pressure (LEPw), permeability, porosity, hydrophobicity, chemical stability, thermal conductivity, and mechanical strength, have been thoroughly discussed. Additionally, methodologies adopted for the incorporation of nanomaterials in these membranes, including surface grafting, plasma polymerization, interfacial polymerization, dip coating, and the efficacy of these modified membranes in various MD operations along with their applications are addressed. Further, the current challenges in modifying MD membranes using nanomaterials along with prominent future aspects have been systematically elaborated.
Collapse
Affiliation(s)
- Saikat Sinha Ray
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
| | - Harshdeep Singh Bakshi
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Raghav Dangayach
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Randeep Singh
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India;
| | - Chinmoy Kanti Deb
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Mahesh Ganesapillai
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India;
| |
Collapse
|
22
|
Membrane distillation: Progress in the improvement of dedicated membranes for enhanced hydrophobicity and desalination performance. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Tan WL, Tan HF, Ahmad NA, Hamzah N, Ahmad AL, Leo CP. Carbon capture by alkaline absorbent using octadecyltrichlorosilane modified PVDF/TiO2 membrane. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-019-0465-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Arumugham T, Kaleekkal NJ, Rana D, Sathiyanarayanan KI. PFOM fillers embedded PVDF/cellulose dual-layered membranes with hydrophobic-hydrophilic channels for desalination via direct contact membrane distillation process. RSC Adv 2019; 9:41462-41474. [PMID: 35541587 PMCID: PMC9076459 DOI: 10.1039/c9ra08945d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/06/2019] [Indexed: 11/21/2022] Open
Abstract
In this research work, novel perfluorooctanoic acid-modified melamine (PFOM) was synthesized as a hydrophobic filler using a facile one-pot synthesis. PFOM incorporating polyvinylidene fluoride (PVDF) solution was cast on a cellulose sheet to prepare a dual-layered membrane employing the phase-inversion technique for direct contact membrane distillation (DCMD) application. The influence of PFOM to tailor the dual-layered membrane performance was then investigated. The long perfluoro chain in PFOM hydrophobic fillers increased the surface roughness of the membranes due to its random overlapping with PVDF backbone, and these membranes exhibited a higher water contact angle value. The increase in pore size and membrane porosity did not significantly influence the liquid entry pressure of water (LEPw). The microporous membranes displayed good mechanical strength for use in the test setup. Pure water permeation was the highest (6.9 kg m-2 h-1) for membrane (M1) with 1 wt% of PFOM when tested with a simulated sea-water solution (3.5% w/v NaCl) in the direct contact distillation mode. These membranes also achieved the theoretical salt-rejection of 99.9%, thus confirming the potential of these membranes to be investigated for large scale membrane distillation (MD) applications like desalination of seawater.
Collapse
Affiliation(s)
- Thanigaivelan Arumugham
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT) Vellore Tamil Nadu India
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC) Kerala India
| | - Dipak Rana
- Department of Chemical and Biological Engineering, Industrial Membrane Research Institute, University of Ottawa 161 Louis Pasteur St. Ottawa Ontario K1N 6N5 Canada
| | - Kulathu Iyer Sathiyanarayanan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT) Vellore Tamil Nadu India
| |
Collapse
|
25
|
|
26
|
|
27
|
A low cost hydrophobic kaolin hollow fiber membrane (h-KHFM) for arsenic removal from aqueous solution via direct contact membrane distillation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.04.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Superhydrophobic PVDF/TiO2-SiO2 Membrane with Hierarchical Roughness in Membrane Distillation for Water Recovery from Phenolic Rich Solution Containing Surfactant. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2235-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
29
|
Zareei Pour F, Sabzehmeidani MM, Karimi H, Madadi Avargani V, Ghaedi M. Superhydrophobic–superoleophilic electrospun nanofibrous membrane modified by the chemical vapor deposition of dimethyl dichlorosilane for efficient oil–water separation. J Appl Polym Sci 2019. [DOI: 10.1002/app.47621] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Faride Zareei Pour
- Chemical Engineering DepartmentYasouj University Yasouj, 75918‐74831 Iran
| | | | - Hajir Karimi
- Chemical Engineering DepartmentYasouj University Yasouj, 75918‐74831 Iran
| | | | | |
Collapse
|
30
|
Khan AA, Siyal MI, Lee CK, Park C, Kim JO. Hybrid organic-inorganic functionalized polyethersulfone membrane for hyper-saline feed with humic acid in direct contact membrane distillation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.07.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Hamzah N, Nagarajah M, Leo CP. Membrane distillation of saline and oily water using nearly superhydrophobic PVDF membrane incorporated with SiO 2 nanoparticles. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:2532-2541. [PMID: 30767918 DOI: 10.2166/wst.2019.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fat, oil and grease in wastewater generated from household kitchens, restaurants and food processing plants affect sewer systems, water resources and environment adversely. Hence, membrane distillation of saline and oily water was studied using a nearly superhydrophobic membrane developed in this work. Polyvinylidene fluoride (PVDF) membrane incorporated SiO2 nanoparticles was synthesized via phase inversion with dual baths and modified using hexadecyltrimethoxy silane. The volume ratio of silane to ethanol was varied between 1:200 to 1:25. The membrane characteristics were examined using a goniometer, a porometer, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The PVDF-SiO2 membrane modified using the volume ratio of 1:50 achieved the highest water contact angle of 141.6° and LEP of 2.642 bar. This membrane was further tested in membrane distillation to observe the permeate flux of distilled water, saline solution (1 M NaCl) as well as saline and oily solution (1 M NaCl; 1,000 ppm of palm oil). The modified PVDF/SiO2 showed high permeate flux which is nearly four times of the permeate flux of neat PVDF membrane, but still susceptible of salt and oil fouling as shown in SEM images.
Collapse
Affiliation(s)
- N Hamzah
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia E-mail: chcpleousm.my
| | - M Nagarajah
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia E-mail: chcpleousm.my
| | - C P Leo
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia E-mail: chcpleousm.my
| |
Collapse
|
32
|
Salehi S, Jahanshahi M, Peyravi M. Poly(vinylidene difluoride) Membrane Assisted by Modified ZnO/ZIF Nanoparticles for Membrane Distillation. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201700496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Setareh Salehi
- Babol Noshirvani University of Technology; Department of Chemical Engineering; Shariati Av. 47148-71167 Babol Iran
| | - Mohsen Jahanshahi
- Babol Noshirvani University of Technology; Department of Chemical Engineering; Shariati Av. 47148-71167 Babol Iran
| | - Majid Peyravi
- Babol Noshirvani University of Technology; Department of Chemical Engineering; Shariati Av. 47148-71167 Babol Iran
| |
Collapse
|
33
|
Abstract
Abstract
Superhydrophobic membrane that is highly resistant to wetting by aqueous solution has gained great attention because of its potential to be applied in many emerging membrane processes such as membrane gas absorption (MGA) and membrane distillation (MD). Numerous approaches have been proposed to obtain membranes with superhydrophobic surface from materials with various degrees of hydrophobicity. This paper then reviews the progress in superhydrophobic membrane preparation and its separation properties. A brief description of superhydrophobicity is firstly presented. Preparation methods of the superhydrophobic membrane are subsequently reviewed, including direct processing method and surface modification of the existing membrane. Finally, the separation properties and challenges of superhydrophobic membranes are discussed. This article could provide an insight for further development of superhydrophobic membrane.
Collapse
|
34
|
Gao A, Liu F, Xiong Z, Yang Q. Tunable adhesion of superoleophilic/superhydrophobic poly (lactic acid) membrane for controlled-release of oil soluble drugs. J Colloid Interface Sci 2017; 505:49-58. [DOI: 10.1016/j.jcis.2017.05.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/27/2017] [Accepted: 05/21/2017] [Indexed: 01/01/2023]
|
35
|
Current applications and new opportunities for the thermal and non-thermal processing technologies to generate berry product or extracts with high nutraceutical contents. Food Res Int 2017; 100:19-30. [DOI: 10.1016/j.foodres.2017.08.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 12/19/2022]
|
36
|
Zhong W, Hou J, Yang HC, Chen V. Superhydrophobic membranes via facile bio-inspired mineralization for vacuum membrane distillation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|