1
|
Ni L, Wang P, Westerhoff P, Luo J, Wang K, Wang Y. Mechanisms and Strategies of Advanced Oxidation Processes for Membrane Fouling Control in MBRs: Membrane-Foulant Removal versus Mixed-Liquor Improvement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11213-11235. [PMID: 38885125 DOI: 10.1021/acs.est.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Membrane bioreactors (MBRs) are well-established and widely utilized technologies with substantial large-scale plants around the world for municipal and industrial wastewater treatment. Despite their widespread adoption, membrane fouling presents a significant impediment to the broader application of MBRs, necessitating ongoing research and development of effective antifouling strategies. As highly promising, efficient, and environmentally friendly chemical methods for water and wastewater treatment, advanced oxidation processes (AOPs) have demonstrated exceptional competence in the degradation of pollutants and inactivation of bacteria in aqueous environments, exhibiting considerable potential in controlling membrane fouling in MBRs through direct membrane foulant removal (MFR) and indirect mixed-liquor improvement (MLI). Recent proliferation of research on AOPs-based antifouling technologies has catalyzed revolutionary advancements in traditional antifouling methods in MBRs, shedding new light on antifouling mechanisms. To keep pace with the rapid evolution of MBRs, there is an urgent need for a comprehensive summary and discussion of the antifouling advances of AOPs in MBRs, particularly with a focus on understanding the realizing pathways of MFR and MLI. In this critical review, we emphasize the superiority and feasibility of implementing AOPs-based antifouling technologies in MBRs. Moreover, we systematically overview antifouling mechanisms and strategies, such as membrane modification and cleaning for MFR, as well as pretreatment and in-situ treatment for MLI, based on specific AOPs including electrochemical oxidation, photocatalysis, Fenton, and ozonation. Furthermore, we provide recommendations for selecting antifouling strategies (MFR or MLI) in MBRs, along with proposed regulatory measures for specific AOPs-based technologies according to the operational conditions and energy consumption of MBRs. Finally, we highlight future research prospects rooted in the existing application challenges of AOPs in MBRs, including low antifouling efficiency, elevated additional costs, production of metal sludge, and potential damage to polymeric membranes. The fundamental insights presented in this review aim to elevate research interest and ignite innovative thinking regarding the design, improvement, and deployment of AOPs-based antifouling approaches in MBRs, thereby advancing the extensive utilization of membrane-separation technology in the field of wastewater treatment.
Collapse
Affiliation(s)
- Lingfeng Ni
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
2
|
PES membrane surface modification via layer-by-layer self-assembly of GO@TiO2 for improved photocatalytic performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Zhu X, Pan Z, Jiang H, Du Y, Chen R. Hierarchical Pd/UiO-66-NH2-SiO2 nanofibrous catalytic membrane for highly efficient removal of p-nitrophenol. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
The Evolution of Photocatalytic Membrane Reactors over the Last 20 Years: A State of the Art Perspective. Catalysts 2021. [DOI: 10.3390/catal11070775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The research on photocatalytic membrane reactors (PMRs) started around the year 2000 with the study of wastewater treatment by degradation reactions of recalcitrant organic pollutants, and since then the evolution of our scientific knowledge has increased significantly, broadening interest in reactions such as the synthesis of organic chemicals. In this paper, we focus on some initial problems and how they have been solved/reduced over time to improve the performance of processes in PMRs. Some know-how gained during these last two decades of research concerns decreasing/avoiding the degradation of the polymeric membranes, improving photocatalyst reuse, decreasing membrane fouling, enhancing visible light photocatalysts, and improving selectivity towards the reaction product(s) in synthesis reactions (partial oxidation and reduction). All these aspects are discussed in detail in this review. This technology seems quite mature in the case of water and wastewater treatment using submerged photocatalytic membrane reactors (SPMRs), while for applications concerning synthesis reactions, additional knowledge is required.
Collapse
|
5
|
Zhang H, Wan Y, Luo J, Darling SB. Drawing on Membrane Photocatalysis for Fouling Mitigation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14844-14865. [PMID: 33769034 DOI: 10.1021/acsami.1c01131] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Photocatalysis is an effective and environmentally friendly approach for degrading organic pollutants, particularly in scenarios where sunlight can be utilized as the energy source. Opportunities are emerging to apply materials and methods from photocatalytic pollutant degradation to address the challenge of fouling. Membrane fouling, attributed to organic foulants, is a prevalent problem for all membrane-based technologies and represents a major deleterious impact on membrane performance. Integration of tactics developed in photocatalysis more broadly to membranes reveals new strategies for membrane fouling control-an approach taken by an increasing number of researchers. This review summarizes key developments in photocatalytic materials and methods in water treatment and presents recent progress in the development of processes for photocatalytic alleviation of membrane fouling, including photocatalyst design and modification strategies aimed at enhancing photocatalytic efficiency, as well as different configurations of photocatalysis-membrane systems (PMS). Perspectives on future research and development opportunities for photocatalytic membrane fouling control are also provided.
Collapse
Affiliation(s)
- Huiru Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
- Chemical Sciences and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Seth B Darling
- Chemical Sciences and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
6
|
Abstract
Pathogenic microorganisms can spread throughout the world population, as the current COVID-19 pandemic has dramatically demonstrated. In this scenario, a protection against pathogens and other microorganisms can come from the use of photoactive materials as antimicrobial agents able to hinder, or at least limit, their spreading by means of photocatalytically assisted processes activated by light—possibly sunlight—promoting the formation of reactive oxygen species (ROS) that can kill microorganisms in different matrices such as water or different surfaces without affecting human health. In this review, we focus the attention on TiO2 nanoparticle-based antimicrobial materials, intending to provide an overview of the most promising synthetic techniques, toward possible large-scale production, critically review the capability of such materials to promote pathogen (i.e., bacteria, virus, and fungi) inactivation, and, finally, take a look at selected technological applications.
Collapse
|
7
|
Aydiner C, Mert BK, Dogan EC, Yatmaz HC, Dagli S, Aksu S, Tilki YM, Goren AY, Balci E. Novel hybrid treatments of textile wastewater by membrane oxidation reactor: Performance investigations, optimizations and efficiency comparisons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:411-426. [PMID: 31141744 DOI: 10.1016/j.scitotenv.2019.05.248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/30/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Feasible reclamation of industrial wastewaters by consuming less resource and time requires researchers to develop advanced and sophisticated solutions to meet today's versatile needs. In this respect, novel technological applications of hybrid membrane oxidation reactor (MOR) comprising of the Fenton or photo-Fenton enhanced ultrafiltration (FEUF and pFEUF), was demonstrated for treating textile washing wastewater. Their comparative hybrid performances were explored based on response surface analyses of Taguchi experimental designs that were optimized for maximized responses at minimum oxidant and acid consumptions. From eleven specific variables, those affecting the hybrid treatment performances at significant levels were found as H2O2 amount, process time, membrane type, Fe2+ concentration and temperature. The pFEUF treatment showed better and faster organics removal efficiency than by FEUF, and the UF process was seen to be more affected from changing operational conditions in pFEUF. Organic pollutants were oxidized by 56.6 ± 8.7% degradation and 31.5 ± 3.2% mineralization, while UF allowed a synergistic contribution to the hybrid MOR performance by 38.1 ± 4.7% and 17.3 ± 3.1%, respectively. Compared to simultaneous MOR and external UF after Fenton, sequential MOR was found as the best solution by an efficiency of 84.5% COD, 70.5% TOC, and 155.6 L/m2·h. The effluents could be readily produced with quality suitable for directly discharging to the sewage infrastructure system resulting in a complete treatment. This study proved that the developed MOR techniques are technologically favorable for the treatment of industrial organic wastewaters due to high treatment performances and less resource, time and land needs. It can be finally declared that they can be used as rather attractive solutions for not only wastewater reclamation but also water recovery by further handling of their effluents.
Collapse
Affiliation(s)
- Coskun Aydiner
- Gebze Technical University, Department of Environmental Engineering, 41400 Gebze, Kocaeli, Turkey.
| | - Berna Kiril Mert
- Sakarya University, Department of Environmental Engineering, 54100 Esentepe, Sakarya, Turkey
| | - Esra Can Dogan
- Kocaeli University, Department of Environmental Engineering, 41380 Izmit, Kocaeli, Turkey
| | - Huseyin Cengiz Yatmaz
- Gebze Technical University, Department of Environmental Engineering, 41400 Gebze, Kocaeli, Turkey
| | - Sonmez Dagli
- The Scientific and Technological Research Council of Turkey, Environment and Cleaner Production Institute, 41470, Gebze, Kocaeli, Turkey
| | - Seyda Aksu
- Gebze Technical University, Department of Environmental Engineering, 41400 Gebze, Kocaeli, Turkey
| | - Yasemin Melek Tilki
- Gebze Technical University, Department of Environmental Engineering, 41400 Gebze, Kocaeli, Turkey
| | - Aysegul Yagmur Goren
- Izmir Institute of Technology, Department of Chemical Engineering, 35430, Izmir, Turkey
| | - Esin Balci
- Izmir Institute of Technology, Department of Chemical Engineering, 35430, Izmir, Turkey
| |
Collapse
|
8
|
Ren G, Zhou M, Su P, Yang W, Lu X, Zhang Y. Simultaneous sulfadiazines degradation and disinfection from municipal secondary effluent by a flow-through electro-Fenton process with graphene-modified cathode. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:830-839. [PMID: 30743230 DOI: 10.1016/j.jhazmat.2019.01.109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Conventionally the deep treatment and disinfection are fulfilled by different processes for municipal wastewater treatment, this work verified a breakthrough by one process of novel flow-through electro-Fenton (EF) with graphene-modified cathode, which is usually seemed to be ineffective. This process was firstly confirmed to be cost-effective for simultaneous sulfadiazines (SDZs) degradation and disinfection from municipal secondary effluent with a very low electrical energy consumption (EEC) of 0.21 kW h/m3, attributed to the high H2O2 production of 4.41 mg/h/cm2 on the novel graphite felt cathode modified by electrochemically exfoliated graphene (EEGr) with a low EEC of 3.08 kW h/(kg H2O2). Compared with the ineffective SDZs degradation by the conventional flow EF, this process was more cost-effective and overcame the harsh requirements on electrolyte concentration. It also showed good effectiveness in the degradation of different antibiotics, and the graphene-modified cathode still kept stable performance after eight consecutive runs. Account for the combined action of OH and active chlorine, the formation of hydroxylated and chlorine containing by-products was confirmed, and a possible degradation mechanism for SDZs was proposed. This flow-through EF process provided an alternative method for the disinfection and antibiotics degradation by one process for the treatment and reuse of municipal secondary effluent.
Collapse
Affiliation(s)
- Gengbo Ren
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China.
| | - Pei Su
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China
| | - Weilu Yang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China
| | - Xiaoye Lu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China
| | - Yinqiao Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China
| |
Collapse
|
9
|
Overview of Photocatalytic Membrane Reactors in Organic Synthesis, Energy Storage and Environmental Applications. Catalysts 2019. [DOI: 10.3390/catal9030239] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This paper presents an overview of recent reports on photocatalytic membrane reactors (PMRs) in organic synthesis as well as water and wastewater treatment. A brief introduction to slurry PMRs and the systems equipped with photocatalytic membranes (PMs) is given. The methods of PM production are also presented. Moreover, the process parameters affecting the performance of PMRs are characterized. The applications of PMRs in organic synthesis are discussed, including photocatalytic conversion of CO2, synthesis of KA oil by photocatalytic oxidation, conversion of acetophenone to phenylethanol, synthesis of vanillin and phenol, as well as hydrogen production. Furthermore, the configurations and applications of PMRs for removal of organic contaminants from model solutions, natural water and municipal or industrial wastewater are described. It was concluded that PMRs represent a promising green technology; however, before the application in industry, additional studies are still required. These should be aimed at improvement of process efficiency, mainly by development and application of visible light active photocatalysts and novel membranes resistant to the harsh conditions prevailing in these systems.
Collapse
|