1
|
Du Y, Huang Y, Wang W, Su S, Yang S, Sun H, Liu B, Han G. Application and development of foam extraction technology in wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172755. [PMID: 38670372 DOI: 10.1016/j.scitotenv.2024.172755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
With the advancement of technology, wastewater treatment has become a significant challenge limiting the clean and sustainable development of chemical and metallurgical industries. Foam extraction, based on interfacial separation and mineral flotation, has garnered considerable attention as a wastewater treatment technology due to its unique physicochemical properties. Although considerable excellent accomplishments were reported, there still lacks a comprehensive summary of process features and contaminant removal mechanisms via foam extraction. According to the latest research progresses, the principles and characteristics of foam extraction technology, the classification and application of flotation reagents are systematically summarized in this work. Then comprehensively commented on the application fields and prospects of iterative flotation technology such as ion flotation, adsorption flotation and floating-extraction. The shortcomings and limitations of the current foam extraction technologies were discussed, and the feasible process intensification techniques were highlighted. This review aims to enchance the understanding of the foam extraction mechanism, and provides guidance for the selection appropriate reagents and foam extraction technologies in wastewater treatment.
Collapse
Affiliation(s)
- Yifan Du
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Yanfang Huang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Henan Critical Metals Institue, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Zhongyuan Critical Metals Laboratory, Zhengzhou 450001, Henan, PR China
| | - Wenjuan Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Shengpeng Su
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Shuzhen Yang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Henan Critical Metals Institue, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Zhongyuan Critical Metals Laboratory, Zhengzhou 450001, Henan, PR China
| | - Hu Sun
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Henan Critical Metals Institue, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Zhongyuan Critical Metals Laboratory, Zhengzhou 450001, Henan, PR China
| | - Bingbing Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Henan Critical Metals Institue, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Zhongyuan Critical Metals Laboratory, Zhengzhou 450001, Henan, PR China.
| | - Guihong Han
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Henan Critical Metals Institue, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Zhongyuan Critical Metals Laboratory, Zhengzhou 450001, Henan, PR China.
| |
Collapse
|
2
|
Shen Z, Zhang WM, Shan Z, Li SF, Zhang G, Su J. Bimetal-Organic Frameworks Incorporating Both Hard and Soft Base Active Sites for Heavy Metal Ion Capture. Inorg Chem 2024; 63:8615-8624. [PMID: 38668738 DOI: 10.1021/acs.inorgchem.3c04610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The design and synthesis of stable porous materials capable of removing both hard and soft metal ions pose a significant challenge. In this study, a novel metal-organic framework (MOF) adsorbent named CdK-m-COTTTB was developed. This MOF material was constructed using sulfur-rich m-cyclooctatetrathiophene-tetrabenzoate (m-H4COTTTB) as the organic ligand and oxygen-rich bimetallic clusters as the inorganic nodes. The incorporation of both soft and hard base units within the MOF structure enables effective removal of various heavy metal ions, including both soft and hard acid species. In single-component experiments, the adsorption capacity of CdK-m-COTTTB for Pb2+, Tb3+, and Zr4+ ions reached levels of 636.94, 432.90, and 357.14 mg·g-1, respectively, which is comparable to specific MOF absorbents. The rapid adsorption process was found to be chemisorption. Furthermore, CdK-m-COTTTB exhibited the capability to remove at least 12 different metal ions in both separate and multicomponent solutions. The material demonstrated excellent acid-base stability and renewability, which are advantageous for practical applications. CdK-m-COTTTB represents the first reported pristine MOF material for the removal of both hard and soft acid metal ions. This work serves as inspiration for the design and synthesis of porous crystalline materials that can efficiently remove diverse heavy metal pollutants.
Collapse
Affiliation(s)
- Zhan Shen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Wei-Miao Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Zhen Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Shu-Fan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
3
|
Hua Q, Guo H, Wang D, Huang Y, Cao Y, Peng W, Fan G. A new strategy for selective recovery of low concentration cobalt ions from wastewater: Based on selective chelating precipitation-flotation process. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Hu N, Chen L, Li Y, Li H, Zhang Z, Lei N. Enhanced flotation of heavy metal ion by perilla seed meal protein as a novel collector: Preparation, mechanism and performance. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
6
|
Suwondo KP, Aprilita NH, Wahyuni ET. Enhancement of TiO2 photocatalytic activity under visible light by doping with Cu from electroplating wastewater. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-021-02134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Chang L, Cao Y, Peng W, Miao Y, Su S, Fan G, Huang Y, Li C, Song X. Highly efficient and selective recovery of Cu(II) from wastewater via ion flotation with amidoxime functionalized graphene oxide as nano collector. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Wang T, Chang D, Huang D, Liu Z, Wu Y, Liu H, Yuan H, Jiang Y. Application of surfactants in papermaking industry and future development trend of green surfactants. Appl Microbiol Biotechnol 2021; 105:7619-7634. [PMID: 34559284 DOI: 10.1007/s00253-021-11602-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
In this work, the application of chemical surfactants, including cooking aids, detergents, surface sizing agents, and deinking agents as core components, is introduced in the wet end of pulping and papermaking. This method for the combined application of enzymes and surfactants has expanded, promoting technological updates and improving the effect of surfactants in practical applications. Finally, the potential substitution of green surfactants for chemical surfactants is discussed. The source, classification, and natural functions of green surfactants are introduced, including plant extracts, biobased surfactants, fermentation products, and woody biomass. These green surfactants have advantages over their chemically synthesized counterparts, such as their low toxicity and biodegradability. This article reviews the latest developments in the application of surfactants in different paper industry processes and extends the methods of use. Additionally, the application potential of green surfactants in the field of papermaking is discussed. KEY POINTS: • Surfactants as important chemical additives in papermaking process are reviewed. • Deinking technologies by combined of surfactants and enzymes are reviewed. • Applications of green surfactant in papermaking industry are prospected.
Collapse
Affiliation(s)
- Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China. .,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.
| | - Dejun Chang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China. .,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.
| | - Zetong Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Yukang Wu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| |
Collapse
|
9
|
Abstract
Attachment of particles and droplets to bubbles—the latter being of various fine sizes and created by different techniques (as described in detail)—forms the basis of flotation, a process which indeed was originated from mineral processing. Nevertheless, chemistry often plays a significant role in this area, in order for separation to be effective, as stressed. This (brief) review particularly discusses wastewater treatment applications and the effect of bubble size (from nano- to micro-) on the flotation process.
Collapse
|
10
|
Fang D, Wang Y, Liu H, Zhang H, Ye X, Li Q, Li J, Wu Z. Efficient extraction of Rb+ and Cs+ by a precipitation flotation process with ammonium phosphowolframate as precipitant. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Abstract
The problem of low-rank coal flotation continues to be a challenge due to the poor hydrophobicity and abundant oxygenated functional groups on particle surfaces. In this study, carrier flotation was used to improve the flotation performance of low-rank coal with polystyrene as a carrier material. Kerosene was used as a collector and played a role in the adhesion of fine low-rank coal to polystyrene due to its hydrophobic properties. The carrier feature of polystyrene was demonstrated by Turbiscan Lab Expert stability analysis and scanning electron microscopy analysis. The flotation experiments revealed that the optimum conditions were: collector dosage 5000 g/t, pulp concentration 40 g/L, and the ratio of low-rank coal to polystyrene 100:10. Under these conditions, the combustible recovery by carrier flotation was obtained as 70.59% when the ash content was 12.32%, which increased by 25.68 points compared with the combustible recovery of conventional flotation under almost the same ash content. The fine coal particles coated the coarse polystyrene particles through hydrophobic interactions between the polystyrene and hydrocarbon chains of the kerosene adsorbed on coal particles. The results suggested that the flotation performance of low-rank coal was significantly improved by carrier flotation with polystyrene, especially for fine particles.
Collapse
|
12
|
Hoseinian FS, Rezai B, Safari M, Deglon D, Kowsari E. Effect of hydrodynamic parameters on nickel removal rate from wastewater by ion flotation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 244:408-414. [PMID: 31132622 DOI: 10.1016/j.jenvman.2019.05.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/06/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the effect of hydrodynamic parameters on the nickel ion removal in an oscillating grid flotation cell (OGC) with near ideal hydrodynamic environments. Nickel ion was removed in the OGC at various energy inputs (0-2 W/kg), using two bubble sizes (130 and 820 μm) at three surfactant concentrations (SDS/Ni(II) ratio of 1-3) and three air flow rates (1-3 L/min). The results indicated that the energy input has a considerable effect on the ion flotation kinetics and recovery and it is strongly dependent on the cell types (contact environment) and bubble size. Increasing energy input led to an increase in the nickel removal rate due to an increase in the collision rate for bigger bubbles and an optimum flotation rate for smaller bubbles. Nickel removal rate increased around 80% (1.8 times) with an increase in energy input from 0 to 2 W/kg for both bubble sizes. Increasing air flow rate generally led to an increase in the nickel removal rate. A comparison of the effect of energy input on the nickel removal separation efficiency in two different hydrodynamic environments showed that the isotropic and homogeneous contact environment in the OGC is more appropriate than anisotropic and inhomogeneous turbulence in the mechanical cell for ion removal using ion flotation.
Collapse
Affiliation(s)
- Fatemeh Sadat Hoseinian
- Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, 158754413, Iran.
| | - Bahram Rezai
- Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, 158754413, Iran
| | - Mehdi Safari
- Centre for Minerals Research, Department of Chemical Engineering, University of Cape Town, Private Bag Rondebosch, Cape Town, 7700, South Africa
| | - David Deglon
- Centre for Minerals Research, Department of Chemical Engineering, University of Cape Town, Private Bag Rondebosch, Cape Town, 7700, South Africa
| | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology, Tehran, 15916-34311, Iran
| |
Collapse
|
13
|
Peng W, Chang L, Li P, Han G, Huang Y, Cao Y. An overview on the surfactants used in ion flotation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110955] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Chang L, Cao Y, Fan G, Li C, Peng W. A review of the applications of ion floatation: wastewater treatment, mineral beneficiation and hydrometallurgy. RSC Adv 2019; 9:20226-20239. [PMID: 35514728 PMCID: PMC9065568 DOI: 10.1039/c9ra02905b] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/30/2019] [Indexed: 11/21/2022] Open
Abstract
The applications, progress and outlook of ion flotation are discussed.
Collapse
Affiliation(s)
- Luping Chang
- School of Chemical Engineering and Energy
- Zhengzhou University
- Zhengzhou
- PR China
| | - Yijun Cao
- School of Chemical Engineering and Energy
- Zhengzhou University
- Zhengzhou
- PR China
- Henan Province Industrial Technology Research Institute of Resources and Materials
| | - Guixia Fan
- School of Chemical Engineering and Energy
- Zhengzhou University
- Zhengzhou
- PR China
| | - Chao Li
- Henan Province Industrial Technology Research Institute of Resources and Materials
- Zhengzhou University
- Zhengzhou
- PR China
| | - Weijun Peng
- School of Chemical Engineering and Energy
- Zhengzhou University
- Zhengzhou
- PR China
| |
Collapse
|
15
|
Abstract
Flotation constitutes a separation process that originated from mineral processing. Nowadays, wider applications have been found and compared to flotation for water and wastewater treatment. Stress in the present review paper was mainly applied to heavy metal ions recovery by flotation and the respective mechanism followed, being either ion, precipitate, or sorptive flotation. In the latter case, the use of adsorbents is included (such as powdered activated carbon, zeolites, and goethite), as well as various biosorbents. The flotation of the following metals was reviewed: copper, zinc, nickel, lead, iron, chromium, arsenic, gold, and others. The bubble generation method could be applied for typical dispersed-air flotation column, electroflotation, or dissolved-air flotation; the latter being the most appropriate established technique in water treatment. The role of particle size (for example, studying flotation of salt-type mineral fines) was also examined.
Collapse
|