1
|
Sahoo P, Ramachandran AA, Sow PK. A comprehensive review of fundamentals and future trajectories in oil-water separation system designs with superwetting materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122641. [PMID: 39362169 DOI: 10.1016/j.jenvman.2024.122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
The rapid increase in the production of oily wastewater by industrial and daily activities, oil spill accidents, etc., has led to critical environmental issues. The solution to oil-induced pollution lies in developing efficient oil-water separation technologies. Recently, materials with extreme wettability, particularly those exhibiting superhydrophilic with superoleophobic or superhydrophobic with superoleophilic properties, have emerged as promising solutions for achieving highly efficient and selective oil-water separation. This review offers a comprehensive overview of system designs utilizing such materials for selective oil-water separation. Here, we discuss the rationale underlying the design strategy for the systems used for the separation process. Based on the broad scenarios utilizing oil-water separation, two primary groups of system designs are identified: those handling enclosed oil-water mixtures, such as treating oily wastewater before discharge, and those addressing open-to-air hypaethral oil-water mixtures, such as in the case of oil spills, oil on water bodies post oily wastewater discharge. The review traces the evolution of system designs from batch processing to continuous processing systems, identifies commonalities, and discusses the rationale and underlying design constraints. This analysis can guide the selection of appropriate systems for testing materials in oil-water separation and provides insights into future design development for further real-life deployment.
Collapse
Affiliation(s)
- Priyanka Sahoo
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, NH 17B, Bypass, Road, Zuarinagar, Sancoale, Goa, 403726, India.
| | - Ankitha Athreya Ramachandran
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, NH 17B, Bypass, Road, Zuarinagar, Sancoale, Goa, 403726, India.
| | - Pradeep Kumar Sow
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, NH 17B, Bypass, Road, Zuarinagar, Sancoale, Goa, 403726, India.
| |
Collapse
|
2
|
Hou M, Li Q, Che Y. Hydrophilic Modification of Polytetrafluoroethylene (PTFE) Capillary Membranes with Chemical Resistance by Constructing Three-Dimensional Hydrophilic Networks. Polymers (Basel) 2024; 16:1154. [PMID: 38675073 PMCID: PMC11053467 DOI: 10.3390/polym16081154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Polytetrafluoroethylene (PTFE) capillary membranes, known for the great chemical resistance and thermal stability, are commonly used in membrane separation technologies. However, the strong hydrophobic property of PTFE limits its application in water filtration. This study introduces a method whereby acrylamide (AM), N, N-methylene bisacrylamide (MBA), and vinyltriethoxysilane (VTES) undergo free radical copolymerization, followed by the hydrolysis-condensation of silane bonds, resulting in the formation of hydrophilic three-dimensional networks physically intertwined with the PTFE capillary membranes. The modified PTFE capillary membranes prepared through this method exhibit excellent hydrophilic properties, whose water contact angles are decreased by 24.3-61.2%, and increasing pure water flux from 0 to 1732.7-2666.0 L/m2·h. The enhancement in hydrophilicity of the modified PTFE capillary membranes is attributed to the introduction of hydrophilic groups such as amide bonds and siloxane bonds, along with an increase in surface roughness. Moreover, the modified PTFE capillary membranes exhibit chemical resistance, maintaining the hydrophilicity even after immersion in strong acidic (3 wt% HCl), alkaline (3 wt% NaOH), and oxidative (3 wt% NaClO) solutions for 2 weeks. In conclusion, this promising method yields modified PTFE capillary membranes with great hydrophilicity and chemical resistance, presenting substantial potential for applications in the field of water filtration.
Collapse
Affiliation(s)
- Mingpeng Hou
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Qiuying Li
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Yanchao Che
- Zhenjiang Fluorine Innovation Material Technology Co., Ltd., Danyang 212322, China
| |
Collapse
|
3
|
Park J, Kang S, Park E, Lee D, Park J, Kim D, Choi SQ, Kim K. A facile method for separating fine water droplets dispersed in oil through a pre-wetted mesh membrane. iScience 2024; 27:109556. [PMID: 38617558 PMCID: PMC11015444 DOI: 10.1016/j.isci.2024.109556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
To achieve the successful separation of emulsions containing fine dispersed droplets and low volume fractions, a membrane with pore sizes comparable to or smaller than the droplet size is typically required. Although this approach is effective, its utilization is limited to the separation of emulsions with relatively large droplets. To overcome this limitation, a secondary membrane can be formed on the primary membrane to reduce pore size, but this can also be time-consuming and costly. Therefore, a facile and effective method is still required to be developed for separating emulsions with fine droplets. We introduce a pre-wetted mesh membrane with a pore size significantly larger than droplets, easily fabricated by wetting a hydrophilic stainless-steel mesh with water. Applying this membrane to emulsion separation via gravity-driven flow confirms a high efficiency greater than 98%, even with droplets approximately 10 times smaller than the pore size.
Collapse
Affiliation(s)
- JiEun Park
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Republic of Korea
| | - Seunghan Kang
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - EunSol Park
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Republic of Korea
| | - Dongho Lee
- Process R&D center, Hanwha solutions R&D institute, Daejeon 34128, Republic of Korea
| | - Jeasung Park
- Green and sustainable materials R&D department, Korea institute of industrial technology (KITECH), Cheonan 31056, Republic of Korea
| | - Donghun Kim
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Siyoung Q. Choi
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - KyuHan Kim
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Republic of Korea
| |
Collapse
|
4
|
Lin Y, Xie A, Xu J, Xue C, Cui J, Pan J. One-Step Hydrothermal Strategy for Preparation of a Self-Cleaning TiO 2/SiO 2 Fiber Membrane toward Oil-Water Separation in a Complex Environment. MEMBRANES 2023; 13:membranes13050514. [PMID: 37233575 DOI: 10.3390/membranes13050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
Oil pollution caused by a large number of industrial activities and oil spill accidents has posed serious harm to the environment and human health. However, some challenges remain with the existing separation materials, such as poor stability and fouling resistance. Herein, a TiO2/SiO2 fiber membrane (TSFM) was prepared by a one-step hydrothermal method for oil-water separation in acid, alkali, and salt environments. The TiO2 nanoparticles were successfully grown on the fiber surface, endowing the membrane with superhydrophilicity/underwater superoleophobicity. The as-prepared TSFM exhibits high separation efficiency (above 98%) and separation fluxes (3016.38-3263.45 L·m-2·h-1) for various oil-water mixtures. Importantly, the membrane shows good corrosion resistance in acid, alkaline, and salt solutions and still maintains underwater superoleophobicity and high separation performance. The TSFM displays good performance after repeated separation, demonstrating its excellent antifouling ability. Importantly, the pollutants on the membrane surface can be effectively degraded under light radiation to restore its underwater superoleophobicity, showing the unique self-cleaning ability of the membrane. In view of its good self-cleaning ability and environmental stability, the membrane can be used for wastewater treatment and oil spill recovery and has a broad application prospect in water treatment in complex environments.
Collapse
Affiliation(s)
- Yinghao Lin
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Atian Xie
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Agrochem Laboratory Co., Ltd., Changzhou 213022, China
| | - Jian Xu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Changguo Xue
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Jiuyun Cui
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Coral stone-inspired superwetting membranes with anti-fouling and self-cleaning properties for highly efficient oil-water separation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Jiang Q, Wang Y, Xie Y, Zhou M, Gu Q, Zhong Z, Xing W. Silicon carbide microfiltration membranes for oil-water separation: Pore structure-dependent wettability matters. WATER RESEARCH 2022; 216:118270. [PMID: 35339967 DOI: 10.1016/j.watres.2022.118270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Both the pore size and surface properties of silicon carbide (SiC) membranes are demonstrated to significantly affect their separation efficiency when used for oily water treatment. However, the potential influences of open porosity together with the pore size of SiC membranes on their surface properties and oil-water separation performance have rarely been investigated. In this work, porous SiC ceramic membranes with tunable open porosity and pore size were purposely prepared and selected to systematically study the effect of pore structure-dependent wettability on the oil-water separation performance. The measured pure water flux of selected membranes as a function of open porosity (34-48%) and pore size (0.43-0.67 μm) was well-fitted by using a modified H-P equation. Interestingly, the hydrophilicity of SiC membranes was improved with the increase in open porosity and pore size, as evidenced by the gradually decreased dynamic water contact angle and underwater adhesion of oil droplets. Further, the open porosity of SiC membranes was found to contribute more to the improved surface wettability. As a result, the stable flux of SiC membranes in oil-in-water (O/W) emulsions was increased by 24% with the increased open porosity while the oil rejection rate remained above 90%. This work quantitatively reveals the contributions of the pore structure to the surface wettability of ceramic membranes, and thus provides an effective pathway to improve their performance in oil-water separation.
Collapse
Affiliation(s)
- Qian Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Yaxin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Yuling Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Ming Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Qilin Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China.
| | - Zhaoxiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
7
|
Liu X, Feng S, Wang C, Yan D, Chen L, Wang B. Wettability Improvement in Oil-Water Separation by Nano-Pillar ZnO Texturing. NANOMATERIALS 2022; 12:nano12050740. [PMID: 35269229 PMCID: PMC8911716 DOI: 10.3390/nano12050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023]
Abstract
The nanostructure-based surface texturing can be used to improve the materials wettability. Regarding oil−water separation, designing a surface with special wettability is as an important approach to improve the separation efficiency. Herein, a ZnO nanostructure was prepared by a two-step process for sol−gel process and crystal growth from the liquid phase to achieve both a superhydrophobicity in oil and a superoleophobic property in water. It is found that the filter material with nanostructures presented an excellent wettability. ZnO-coated stainless-steel metal fiber felt had a static underwater oil contact angle of 151.4° ± 0.8° and an underoil water contact angle of 152.7° ± 0.6°. Furthermore, to achieve water/oil separation, the emulsified impurities in both water-in-oil and oil-in-water emulsion were effectively intercepted. Our filter materials with a small pore (~5 μm diameter) could separate diverse water-in-oil and oil-in-water emulsions with a high efficiency (>98%). Finally, the efficacy of filtering quantity on separation performance was also investigated. Our preliminary results showed that the filtration flux decreased with the collection of emulsified impurities. However, the filtration flux could restore after cleaning and drying, suggesting the recyclable nature of our method. Our nanostructured filter material is a promising candidate for both water-in-oil and oil-in-water separation in industry.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China; (X.L.); (S.F.); (C.W.)
| | - Shaotong Feng
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China; (X.L.); (S.F.); (C.W.)
| | - Caihua Wang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China; (X.L.); (S.F.); (C.W.)
| | - Dayun Yan
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
- Correspondence: (D.Y.); (B.W.)
| | - Lei Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
| | - Bao Wang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China; (X.L.); (S.F.); (C.W.)
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
- Correspondence: (D.Y.); (B.W.)
| |
Collapse
|
8
|
Zhao H, He Y, Wang Z, Zhao Y, Sun L. Mussel-Inspired Fabrication of PDA@PAN Electrospun Nanofibrous Membrane for Oil-in-Water Emulsion Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3434. [PMID: 34947783 PMCID: PMC8704843 DOI: 10.3390/nano11123434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022]
Abstract
Emulsified oily wastewater threatens human health seriously, and traditional technologies are unable to separate emulsion containing small sized oil droplets. Currently, oil-water emulsions are usually separated by special wettability membranes, and researchers are devoted to developing membranes with excellent antifouling performance and high permeability. Herein, a novel, simple and low-cost method has been proposed for the separation of emulsion containing surfactants. Polyacrylonitrile (PAN) nanofibers were prepared via electrospinning and then coated by polydopamine (PDA) by using self-polymerization reactions in aqueous solutions. The morphology, structure and oil-in-water emulsion separation properties of the as-prepared PDA@PAN nanofibrous membrane were tested. The results show that PDA@PAN nanofibrous membrane has superhydrophilicity and almost no adhesion to crude oil in water, which exhibits excellent oil-water separation ability. The permeability and separation efficiency of n-hexane/water emulsion are up to 1570 Lm-2 h-1 bar-1 and 96.1%, respectively. Furthermore, after 10 cycles of separation, the permeability and separation efficiency values do not decrease significantly, indicating its good recycling performance. This research develops a new method for preparing oil-water separation membrane, which can be used for efficient oil-in-water emulsion separation.
Collapse
Affiliation(s)
- Haodong Zhao
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China; (H.Z.); (Y.H.); (Y.Z.)
| | - Yali He
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China; (H.Z.); (Y.H.); (Y.Z.)
| | - Zhihua Wang
- Henan Engineering Research Center of Industrial Circulating Water Treatment, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yanbao Zhao
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China; (H.Z.); (Y.H.); (Y.Z.)
| | - Lei Sun
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China; (H.Z.); (Y.H.); (Y.Z.)
| |
Collapse
|
9
|
Zhou X, Sun Y, Shen S, Li Y, Bai R. Highly Effective Anti-Organic Fouling Performance of a Modified PVDF Membrane Using a Triple-Component Copolymer of P(St x- co-MAA y)- g-fPEG z as the Additive. MEMBRANES 2021; 11:membranes11120951. [PMID: 34940452 PMCID: PMC8707838 DOI: 10.3390/membranes11120951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022]
Abstract
In this study, a triple-component copolymer of P(Stx-co-MAAy)-g-fPEGz containing hydrophobic (styrene, St), hydrophilic (methacrylic acid, MAA), and oleophobic (perfluoroalkyl polyethylene glycol, fPEG) segments was synthesized and used as an additive polymer to prepare modified PVDF membrane for enhanced anti-fouling performance. Two compositions of St:MAA at 4:1 and 1:1 for the additive and two blending ratios of the additive:PVDF at 1:9 and 3:7 for the modified membranes were specifically examined. The results showed that the presence of the copolymer additive greatly affected the morphology and performance of the modified PVDF membranes. Especially, in a lower ratio of St to MAA (e.g., St:MAA at 1:1 versus 4:1), the additive polymer and therefore the modified PVDF membrane exhibited both better hydrophilic as well as oleophobic surface property. The prepared membrane can achieve a water contact angle at as low as 48.80° and display an underwater oil contact angle at as high as 160°. Adsorption experiments showed that BSA adsorption (in the concentration range of 0.8 to 2 g/L) on the modified PVDF membrane can be reduced by as much as 93%. From the filtration of BSA solution, HA solution, and oil/water emulsion, it was confirmed that the obtained membrane showed excellent resistance to these organic foulants that are often considered challenging in membrane water treatment. The performance displayed slow flux decay during filtration and high flux recovery after simple water cleaning. The developed membrane can therefore have a good potential to be used in such applications as water and wastewater treatment where protein and other organic pollutants (including oils) may cause severe fouling problems to conventional polymeric membranes.
Collapse
Affiliation(s)
- Xiaoji Zhou
- Center for Separation and Purification Materials & Technologies, Suzhou University of Science and Technology, Suzhou 215009, China; (X.Z.); (Y.S.); (S.S.); (Y.L.)
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Collaborative Innovation Center for Technology and Material of Water Treatment, Suzhou 215009, China
| | - Yizhuo Sun
- Center for Separation and Purification Materials & Technologies, Suzhou University of Science and Technology, Suzhou 215009, China; (X.Z.); (Y.S.); (S.S.); (Y.L.)
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shusu Shen
- Center for Separation and Purification Materials & Technologies, Suzhou University of Science and Technology, Suzhou 215009, China; (X.Z.); (Y.S.); (S.S.); (Y.L.)
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Collaborative Innovation Center for Technology and Material of Water Treatment, Suzhou 215009, China
| | - Yan Li
- Center for Separation and Purification Materials & Technologies, Suzhou University of Science and Technology, Suzhou 215009, China; (X.Z.); (Y.S.); (S.S.); (Y.L.)
| | - Renbi Bai
- Center for Separation and Purification Materials & Technologies, Suzhou University of Science and Technology, Suzhou 215009, China; (X.Z.); (Y.S.); (S.S.); (Y.L.)
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Collaborative Innovation Center for Technology and Material of Water Treatment, Suzhou 215009, China
- Correspondence:
| |
Collapse
|
10
|
Qiu L, Zhang J, Guo Z, Liu W. Asymmetric superwetting stainless steel meshes for on-demand and highly effective oil-water emulsion separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118994] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
pH-Sensitive Membranes with Smart Cleaning Capability for Efficient Emulsion Separation and Pollutant Removal. MEMBRANES 2021; 11:membranes11030193. [PMID: 33799551 PMCID: PMC8000939 DOI: 10.3390/membranes11030193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022]
Abstract
Since anionic dyes and surfactants abundantly exist in oily wastewater, both the separation of oil/water mixture and removal of low-molecular-weight pollutants are important to realize the advanced purification of water. By grafting poly(2-dimethylaminoethyl methacrylate) (pDMAEMA) onto polyethylene (PP) membrane via ultraviolet (UV)-initiated polymerization, the obtained PP-g-pDMAEMA membrane presented positively in water and negatively in an alkaline buffer (pH 9.0), respectively. Due to the switchable surface charge, the membrane had high emulsion separation efficiency and flux recovery ratio (approximately 100%). Besides, the dye (reactive black 5, RB-5) adsorption capacity reached 140 mg/m2 in water, and approximately 90% RB-5 could be released in pH 9.0. The anionic surfactant (sodium dodecyl benzene sulfonate, SDBS) was also reversely interpreted and released by the membrane via manipulating the ambient pH. The membrane constructed in this study is supposed to realize emulsion separation with smart cleaning capability, as well as the removal of dyes and surfactants, which could be utilized for multifunctional water purification.
Collapse
|
12
|
Wan Ikhsan SN, Yusof N, Mat Nawi NI, Bilad MR, Shamsuddin N, Aziz F, Ismail AF. Halloysite Nanotube-Ferrihydrite Incorporated Polyethersulfone Mixed Matrix Membrane: Effect of Nanocomposite Loading on the Antifouling Performance. Polymers (Basel) 2021; 13:441. [PMID: 33573140 PMCID: PMC7866554 DOI: 10.3390/polym13030441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/25/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Membrane filtration is an attractive process in water and wastewater treatment, but largely restricted by membrane fouling. In this study, the membrane fouling issue is addressed by developing polyethersulfone (PES)-based mixed matrix membranes (MMMs) with the incorporation of hydrophilic nanoparticles as an additive. Ultrafiltration MMMs were successfully fabricated by incorporating different loadings of halloysite nanotube-ferrihydrates (HNT-HFO) into a polyethersulfone (PES) matrix and their performance was evaluated for the separation of bovine serum albumin (BSA) solution and oil/water emulsion. The results show that wettability is endowed to the membrane by introducing the additive aided by the presence of abundant -OH groups from the HFO. The loading of additive also leads to more heterogeneous surface morphology and higher pure water fluxes (516.33-640.82 L/m2h) more than twice that of the pristine membrane as reference (34.69 L/m2h) without affecting the rejection. The MMMs also provide much enhanced antifouling properties. The filtration results indicate that the flux recovery ratio of the modified membrane reached 100% by washing with only distilled water and a total flux recovery ratio of >98% ± 0.0471 for HNT-HFO-loaded membranes in comparison with 59% ± 0.0169 for pristine PES membrane.
Collapse
Affiliation(s)
- Syarifah Nazirah Wan Ikhsan
- Advanced Membrane Technology Research Centre (AMTEC), N29A, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (S.N.W.I.); (F.A.); (A.F.I.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Norhaniza Yusof
- Advanced Membrane Technology Research Centre (AMTEC), N29A, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (S.N.W.I.); (F.A.); (A.F.I.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Normi Izati Mat Nawi
- Department of Chemical Engineering, Universiti Teknologi Petronas (UTP), Bandar Seri Iskandar 32610, Malaysia; (N.I.M.N.); (M.R.B.)
| | - Muhammad Roil Bilad
- Department of Chemical Engineering, Universiti Teknologi Petronas (UTP), Bandar Seri Iskandar 32610, Malaysia; (N.I.M.N.); (M.R.B.)
| | - Norazanita Shamsuddin
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan BE1410, Brunei;
| | - Farhana Aziz
- Advanced Membrane Technology Research Centre (AMTEC), N29A, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (S.N.W.I.); (F.A.); (A.F.I.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), N29A, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (S.N.W.I.); (F.A.); (A.F.I.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| |
Collapse
|
13
|
Chen C, Chen L, Chen S, Yu Y, Weng D, Mahmood A, Wang G, Wang J. Preparation of underwater superoleophobic membranes via TiO2 electrostatic self-assembly for separation of stratified oil/water mixtures and emulsions. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117976] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Li Z, Xu ZL, Huang BQ, Li YX, Wang M. Three-channel stainless steel hollow fiber membrane with inner layer modified by nano-TiO2 coating method for the separation of oil-in-water emulsions. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Yu J, Zeng W, Fu X, Zheng Y, Huang J, Sun D. High-Flux and Robust Co 3O 4 Mesh for Efficient Oil/Water Separation in Harsh Environment. ACS OMEGA 2019; 4:7385-7390. [PMID: 31459837 PMCID: PMC6648672 DOI: 10.1021/acsomega.9b00415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/15/2019] [Indexed: 05/08/2023]
Abstract
Material with special wettability for oil/water separation has drawn more and more attention, since the oil spill accidents and industrial processing are growing in frequency and in volume. A superhydrophilic and underwater superoleophobic mesh was prepared by introducing Co3O4 on a stainless steel mesh, through a simple hydrothermal process and subsequent calcination. The as-prepared Co3O4 mesh can not only separate various oil/water mixtures with high efficiency and high flux, but also work effectively in harsh environment such as highly acidic, alkaline, and salty solutions. Moreover, the Co3O4 mesh can still retain good separation performance after 40 abrasion cycles with sandpaper. The outstanding anticorrosion and antiabrasion behaviors make the Co3O4 mesh promising for oil/water separation even in harsh environment.
Collapse
Affiliation(s)
| | | | | | | | | | - Daohua Sun
- E-mail: . Tel: (+86) 592-2189595. Fax: (+86)592-2184822
| |
Collapse
|
16
|
Liu S, Cui S, Qin Z, Zhang X, Zhao Y, Zhao Y, Guo H. Modification of a Poly(tetrafluoroethylene) Porous Membrane to Superhydrophilicity with Improved Durability. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shijie Liu
- Beijing University of TechnologyCollege of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education Nanmofang Street, Pingleyuan No. 100 100124 Beijing China
| | - Suping Cui
- Beijing University of TechnologyCollege of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education Nanmofang Street, Pingleyuan No. 100 100124 Beijing China
| | - Zhenping Qin
- Beijing University of TechnologyBeijing Key Laboratory for Green Catalysis and Separation, College of Environmental and Energy Engineering Nanmofang Street, Pingleyuan No. 100 100124 Beijing China
| | - Xuehong Zhang
- Beijing University of TechnologyCollege of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education Nanmofang Street, Pingleyuan No. 100 100124 Beijing China
| | - Yao Zhao
- Beijing University of TechnologyCollege of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education Nanmofang Street, Pingleyuan No. 100 100124 Beijing China
| | - Yingying Zhao
- Beijing University of TechnologyCollege of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education Nanmofang Street, Pingleyuan No. 100 100124 Beijing China
| | - Hongxia Guo
- Beijing University of TechnologyCollege of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education Nanmofang Street, Pingleyuan No. 100 100124 Beijing China
| |
Collapse
|
17
|
Puts GJ, Crouse P, Ameduri BM. Polytetrafluoroethylene: Synthesis and Characterization of the Original Extreme Polymer. Chem Rev 2019; 119:1763-1805. [DOI: 10.1021/acs.chemrev.8b00458] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gerard J. Puts
- Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa
| | - Philip Crouse
- Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa
| | - Bruno M. Ameduri
- Ingenierie et Architectures Macromoléculaires, Institut Charles Gerhardt, UMR 5253 CNRS, UM, ENSCM, Place Eugène Bataillon, 34095 Montpellier, Cedex 5, France
| |
Collapse
|
18
|
Wu J, Wei W, Li S, Zhong Q, Liu F, Zheng J, Wang J. The effect of membrane surface charges on demulsification and fouling resistance during emulsion separation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.065] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Ma X, Wang C, Wang G, Li G, Li S, Wang J, Song Y. Three narrow band-gap semiconductors modified Z-scheme photocatalysts, Er3+:Y3Al5O12@NiGa2O4/(NiS, CoS2 or MoS2)/Bi2Sn2O7, for enhanced solar-light photocatalytic conversions of nitrite and sulfite. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Shen SS, Liu KP, Yang JJ, Li Y, Bai RB, Zhou XJ. Application of a triblock copolymer additive modified polyvinylidene fluoride membrane for effective oil/water separation. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171979. [PMID: 29892385 PMCID: PMC5990766 DOI: 10.1098/rsos.171979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
A hollow fibre membrane was fabricated by blending polyvinylidene fluoride (PVDF) with a triblock copolymer additive polymer that has both hydrophilic and oleophobic surface properties. The novel membrane was characterized and examined for oil/water separation under various system conditions, including different cross-flow rate, feed temperature, trans-membrane pressure, and its rejection and cleaning efficiency, etc. By applying the membrane into the filtration of synthesized oil/water emulsion, the membrane constantly achieved an oil rejection rate of above 99%, with a relatively constant permeate flux varied in the range of 68.9-59.0 l m-2 h-1. More importantly, the fouling of the used membrane can be easily removed by simple water flushing. The membrane also demonstrated a wide adaptability for different types of real oily wastewater, even at very high feed oil concentration (approx. 115 000 mg l-1 in terms of chemical oxygen demand (COM)). Hence, the novel triblock copolymer additive-modified PVDF membrane can have a great prospect in the continuing effort to expand the engineering application of polymeric membranes for oily wastewater treatment.
Collapse
Affiliation(s)
- S. S. Shen
- Center for Separation and Purification Materials and Technologies, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215009, People's Republic of China
- Suzhou Key Laboratory of Separation and Purification Materials and Technologies, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215009, People's Republic of China
- Jiangsu Collaborative Innovation Center for Technology and Material of Water Treatment, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215009, People's Republic of China
| | - K. P. Liu
- Center for Separation and Purification Materials and Technologies, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215009, People's Republic of China
| | - J. J. Yang
- Center for Separation and Purification Materials and Technologies, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215009, People's Republic of China
- Suzhou Key Laboratory of Separation and Purification Materials and Technologies, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215009, People's Republic of China
- Jiangsu Collaborative Innovation Center for Technology and Material of Water Treatment, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215009, People's Republic of China
| | - Y. Li
- Center for Separation and Purification Materials and Technologies, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215009, People's Republic of China
| | - R. B. Bai
- Center for Separation and Purification Materials and Technologies, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215009, People's Republic of China
- Suzhou Key Laboratory of Separation and Purification Materials and Technologies, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215009, People's Republic of China
- Jiangsu Collaborative Innovation Center for Technology and Material of Water Treatment, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215009, People's Republic of China
| | - X. J. Zhou
- Center for Separation and Purification Materials and Technologies, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215009, People's Republic of China
- Suzhou Key Laboratory of Separation and Purification Materials and Technologies, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215009, People's Republic of China
- Jiangsu Collaborative Innovation Center for Technology and Material of Water Treatment, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215009, People's Republic of China
| |
Collapse
|
21
|
Cardoso VF, Correia DM, Ribeiro C, Fernandes MM, Lanceros-Méndez S. Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications. Polymers (Basel) 2018; 10:polym10020161. [PMID: 30966197 PMCID: PMC6415094 DOI: 10.3390/polym10020161] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
Fluorinated polymers constitute a unique class of materials that exhibit a combination of suitable properties for a wide range of applications, which mainly arise from their outstanding chemical resistance, thermal stability, low friction coefficients and electrical properties. Furthermore, those presenting stimuli-responsive properties have found widespread industrial and commercial applications, based on their ability to change in a controlled fashion one or more of their physicochemical properties, in response to single or multiple external stimuli such as light, temperature, electrical and magnetic fields, pH and/or biological signals. In particular, some fluorinated polymers have been intensively investigated and applied due to their piezoelectric, pyroelectric and ferroelectric properties in biomedical applications including controlled drug delivery systems, tissue engineering, microfluidic and artificial muscle actuators, among others. This review summarizes the main characteristics, microstructures and biomedical applications of electroactive fluorinated polymers.
Collapse
Affiliation(s)
- Vanessa F Cardoso
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- CMEMS-UMinho, Universidade do Minho, DEI, 4800-058 Guimaraes, Portugal.
| | - Daniela M Correia
- Departamento de Química e CQ-VR, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - Clarisse Ribeiro
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Margarida M Fernandes
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|