1
|
Chen L, Hai P, Yang Y, Wu C, Hu Y, Rao WF. Highly efficient photocatalytic hydrogen production by platinum modified ferroelectric SrBi4Ti4O15. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
2
|
Wang K, Paszkiewicz O, Vincent M, Henkiel P, Kowalski D, Kowalska E, Markowska-Szczupak A. Evaluation of Antifungal Properties of Titania P25. MICROMACHINES 2022; 13:1851. [PMID: 36363871 PMCID: PMC9693362 DOI: 10.3390/mi13111851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Commercial titania photocatalyst—P25 was chosen for an antifungal property examination due to it exhibiting one of the highest photocatalytic activities among titania photocatalysts. Titania P25 was homogenized first (HomoP25) and then annealed at different temperatures. Additionally, HomoP25 was modified with 0.5 wt% or 2.0 wt% of platinum by a photodeposition method. The obtained samples were characterized by diffuse-reflectance spectroscopy (DRS), X-ray photoabsorption spectroscopy (XPS), X-ray diffraction (XRD) and Raman spectroscopy. Moreover, photocatalytic activity was tested for methanol dehydrogenation under UV/vis irradiation. The spore-destroying effect of photocatalysts was investigated against two mold fungal species, i.e., Aspergillus fumigatus and Aspergillus niger. Both the mycelium growth and API ZYM (estimation of enzymatic activity) tests were applied for the assessment of antifungal effect. It was found that annealing caused a change of surface properties of the titania samples, i.e., an increase in the noncrystalline part, a growth of particles and enhanced oxygen adsorption on its surface, which resulted in an increase in both the hydrogen evolution rate and the antifungal effect. Titania samples annealed at 300−500 °C were highly active during 60-min UV/vis irradiation, inhibiting the germination of both fungal spores, whereas titania modification with platinum (0.5 and 2.0 wt%) had negligible effect, despite being highly active for hydrogen evolution. The control experiments revealed the lack of titania activity in the dark, as well as high resistance of fungi for applied UV/vis irradiation in the absence of photocatalysts. Moreover, the complete inhibition of 19 hydrolases, secreted by both tested fungi, was noted under UV/vis irradiation on the annealed P25 sample. It is proposed that titania photocatalysts of large particle sizes (>150 nm) and enriched surface with oxygen might efficiently destroy fungal structures under mild irradiation conditions and, thus, be highly promising as covering materials for daily products.
Collapse
Affiliation(s)
- Kunlei Wang
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| | - Mewin Vincent
- Faculty of Chemistry & Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Patrycja Henkiel
- Faculty of Chemistry & Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Damian Kowalski
- Faculty of Chemistry & Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Ewa Kowalska
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| |
Collapse
|
3
|
Application of Spinel and Hexagonal Ferrites in Heterogeneous Photocatalysis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Semiconducting materials display unique features that enable their use in a variety of applications, including self-cleaning surfaces, water purification systems, hydrogen generation, solar energy conversion, etc. However, one of the major issues is separation of the used materials from the process suspension. Therefore, chemical compounds with magnetic properties have been proposed as crucial components of photocatalytic composites, facilitating separation and recovery of photocatalysts under magnetic field conditions. This review paper presents the current state of knowledge on the application of spinel and hexagonal ferrites in heterogeneous photocatalysis. The first part focuses on the characterization of magnetic (nano)particles. The next section presents the literature findings on the single-phase magnetic photocatalyst. Finally, the current state of scientific knowledge on the wide variety of magnetic-photocatalytic composites is presented. A key aim of this review is to indicate that spinel and hexagonal ferrites are considered as an important element of heterogeneous photocatalytic systems and are responsible for the effective recycling of the photocatalytic materials.
Collapse
|
4
|
Photocatalytic degradation of Red 2G on the suspended TiO2-hollow glass sphere. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Facile Electro-Assisted Green Synthesis of Size-Tunable Silver Nanoparticles and Its Photodegradation Activity. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02028-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Bielan Z, Kowalska E, Dudziak S, Wang K, Ohtani B, Zielińska-Jurek A. Mono- and bimetallic (Pt/Cu) titanium(IV) oxide core–shell photocatalysts with UV/Vis light activity and magnetic separability. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Bielan Z, Dudziak S, Sulowska A, Pelczarski D, Ryl J, Zielińska-Jurek A. Preparation and Characterization of Defective TiO 2. The Effect of the Reaction Environment on Titanium Vacancies Formation. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2763. [PMID: 32570821 PMCID: PMC7345791 DOI: 10.3390/ma13122763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 01/10/2023]
Abstract
Among various methods of improving visible light activity of titanium(IV) oxide, the formation of defects and vacancies (both oxygen and titanium) in the crystal structure of TiO2 is an easy and relatively cheap alternative to improve the photocatalytic activity. In the presented work, visible light active defective TiO2 was obtained by the hydrothermal reaction in the presence of three different oxidizing agents: HIO3, H2O2, and HNO3. Further study on the effect of used oxidant and calcination temperature on the physicochemical and photocatalytic properties of defective TiO2 was performed. Obtained nanostructures were characterized by X-ray diffractometry (XRD), specific surface area (BET) measurements, UV-Vis diffuse reflectance spectroscopy (DR-UV/Vis), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) spectroscopy. Degradation of phenol as a model pollutant was measured in the range of UV-Vis and Vis irradiation, demonstrating a significant increase of photocatalytic activity of defective TiO2 samples above 420 nm, comparing to non-defected TiO2. Correlation of EPR, UV-Vis, PL, and photodegradation results revealed that the optimum concentration of HIO3 to achieve high photocatalytic activity was in the range of 20-50 mol%. Above that dosage, titanium vacancies amount is too high, and the obtained materials' photoactivity was significantly decreased. Studies on the photocatalytic mechanism using defective TiO2 have also shown that •O2- radical is mainly responsible for pollutant degradation.
Collapse
Affiliation(s)
- Zuzanna Bielan
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology (GUT), G. Narutowicza 11/12, 80-233 Gdansk, Poland; (S.D.); (A.S.)
| | - Szymon Dudziak
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology (GUT), G. Narutowicza 11/12, 80-233 Gdansk, Poland; (S.D.); (A.S.)
| | - Agnieszka Sulowska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology (GUT), G. Narutowicza 11/12, 80-233 Gdansk, Poland; (S.D.); (A.S.)
| | - Daniel Pelczarski
- Department of Physics of Electronic Phenomena, Faculty of Applied Physics and Mathematics, Gdansk University of Technology (GUT), G. Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Jacek Ryl
- Department of Electrochemistry, Corrosion and Materials Engineering, Faculty of Chemistry, Gdansk University of Technology (GUT), G. Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Anna Zielińska-Jurek
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology (GUT), G. Narutowicza 11/12, 80-233 Gdansk, Poland; (S.D.); (A.S.)
| |
Collapse
|
8
|
Defective TiO2 Core-Shell Magnetic Photocatalyst Modified with Plasmonic Nanoparticles for Visible Light-Induced Photocatalytic Activity. Catalysts 2020. [DOI: 10.3390/catal10060672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the presented work, for the first time, the metal-modified defective titanium(IV) oxide nanoparticles with well-defined titanium vacancies, was successfully obtained. Introducing platinum and copper nanoparticles (NPs) as surface modifiers of defective d-TiO2 significantly increased the photocatalytic activity in both UV-Vis and Vis light ranges. Moreover, metal NPs deposition on the magnetic core allowed for the effective separation and reuse of the nanometer-sized photocatalyst from the suspension after the treatment process. The obtained Fe3O4@SiO2/d-TiO2-Pt/Cu photocatalysts were characterized by X-ray diffractometry (XRD) and specific surface area (BET) measurements, UV-Vis diffuse reflectance spectroscopy (DR-UV/Vis), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Further, the mechanism of phenol degradation and the role of four oxidative species (h+, e−, •OH, and •O2−) in the studied photocatalytic process were investigated.
Collapse
|
9
|
Morphology- and Crystalline Composition-Governed Activity of Titania-Based Photocatalysts: Overview and Perspective. Catalysts 2019. [DOI: 10.3390/catal9121054] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Titania photocatalysts have been intensively examined for both mechanism study and possible commercial applications for more than 30 years. Although various reports have already been published on titania, including comprehensive review papers, the morphology-governed activity, especially for novel nanostructures, has not been reviewed recently. Therefore, this paper presents novel, attractive, and prospective titania photocatalysts, including zero-, one-, two-, and three-dimensional titania structures. The 1D, 2D, and 3D titania structures have been mainly designed for possible applications, e.g., (i) continuous use without the necessity of particulate titania separation, (ii) efficient light harvesting (e.g., inverse opals), (iii) enhanced activity (fast charge carriers’ separation, e.g., 1D nanoplates and 2D nanotubes). It should be pointed out that these structures might be also useful for mechanism investigation, e.g., (i) 3D titania aerogels with gold either incorporated inside the 3D network or supported in the porosity, and (ii) titania mesocrystals with gold deposited either on basal or lateral surfaces, for the clarification of plasmonic photocatalysis. Moreover, 0D nanostructures of special composition and morphology, e.g., magnetic(core)–titania(shell), mixed-phase titania (anatase/rutile/brookite), and faceted titania NPs have been presented, due to their exceptional properties, including easy separation in the magnetic field, high activity, and mechanism clarification, respectively. Although anatase has been usually thought as the most active phase of titania, the co-existence of other crystalline phases accelerates the photocatalytic activity significantly, and thus mixed-phase titania (e.g., famous P25) exhibits high photocatalytic activity for both oxidation and reduction reactions. It is believed that this review might be useful for the architecture design of novel nanomaterials for broad and diverse applications, including environmental purification, energy conversion, synthesis and preparation of “intelligent” surfaces with self-cleaning, antifogging, and antiseptic properties.
Collapse
|
10
|
Size-Controlled Synthesis of Pt Particles on TiO2 Surface: Physicochemical Characteristic and Photocatalytic Activity. Catalysts 2019. [DOI: 10.3390/catal9110940] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Different TiO2 photocatalysts, i.e., commercial samples (ST-01 and P25 with minority of rutile phase), nanotubes, well-crystallized faceted particles of decahedral shape and mesoporous spheres, were used as supports for deposition of Pt nanoparticles (NPs). Size-controlled Pt NPs embedded in TiO2 were successfully prepared by microemulsion and wet-impregnation methods. Obtained photocatalysts were characterized using XRD, TEM, X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) specific surface area, DR/UV-vis and action spectrum analysis. The effect of deposition method, amount of Pt precursor and TiO2 properties on size, distribution, and chemical states of deposited Pt NPs were investigated. Finally, the correlations between the physicochemical properties and photocatalytic activities in oxidation and reduction reactions under UV and Vis light of different Pt-TiO2 photocatalysts were discussed. It was found that, regardless of preparation method, the photoactivity mainly depended on platinum and TiO2 morphology. In view of this, we claim that the tight control of NPs’ morphology allows us to design highly active materials with enhanced photocatalytic performance. Action spectrum analysis for the most active Pt-modified TiO2 sample showed that visible light-induced phenol oxidation is initiated by excitation of platinum surface plasmon, and photocatalytic activity analysis revealed that photoactivity depended strongly on morphology of the obtained Pt-modified TiO2 photocatalysts.
Collapse
|
11
|
Recent advances in photoinduced catalysis for water splitting and environmental applications. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Zhang X, Li L, Zhou Q, Cao Y, Ma F, Li Y. Three-dimensionally ordered hollow sphere array Pt/In2O3–TiO2 with improved photocatalytic efficiency. NEW J CHEM 2019. [DOI: 10.1039/c9nj01488h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using polystyrene microspheres as the template, the three-dimensionally ordered hollow sphere array Pt/In2O3–TiO2 was established, which exhibited superior photocatalytic degradation efficiency and an enhanced activity in hydrogen evolution.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Materials Science and Engineering, Qiqihar University
- Qiqihar
- China
- College of Chemistry and Chemical Engineering, Qiqihar University
- Qiqihar
| | - Li Li
- College of Materials Science and Engineering, Qiqihar University
- Qiqihar
- China
- College of Chemistry and Chemical Engineering, Qiqihar University
- Qiqihar
| | - Qianlong Zhou
- College of Chemistry and Chemical Engineering, Qiqihar University
- Qiqihar
- China
| | - Yanzhen Cao
- College of Chemistry and Chemical Engineering, Qiqihar University
- Qiqihar
- China
| | - Fengyan Ma
- College of Chemistry and Chemical Engineering, Qiqihar University
- Qiqihar
- China
| | - Yi Li
- College of Chemistry and Chemical Engineering, Qiqihar University
- Qiqihar
- China
| |
Collapse
|
13
|
Chen H, Motuzas J, Martens W, Diniz da Costa JC. Degradation of orange II dye under dark ambient conditions by MeSrCuO (Me = Mg and Ce) metal oxides. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.05.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Design and Application of Magnetic Photocatalysts for Water Treatment. The Effect of Particle Charge on Surface Functionality. Catalysts 2017. [DOI: 10.3390/catal7120360] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|