1
|
Kim HJ, Shin HA, Chung WK, Om AS, Jeon A, Kang EK, An W, Kang JS. Analyses of the Chemical Composition of Plasma-Activated Water and Its Potential Applications for Vaginal Health. Biomedicines 2023; 11:3121. [PMID: 38137342 PMCID: PMC10740551 DOI: 10.3390/biomedicines11123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to elucidate the unique chemical compositions of plasma-activated water (PAW) and the potential antibacterial efficacy of PAW as a novel vaginal cleanser. We analyzed the ion compositions (four anions: F-, Cl-, NO3-, SO42-; five cations: Na+, NH4+, K+, Mg2+, Ca2+) of several formulations of PAW generated at different electrical powers (12 and 24 V) at various treatment time points (1, 10, and 20 min), and stay durations (immediate, 30, and 60 min). As treatment duration increased, hypochlorous acid (HOCl), Ca2+, and Mg2+ concentrations increased and Cl- concentration decreased. Higher electrical power and longer treatment duration resulted in increased HOCl levels, which acts to prevent the growth of general microorganisms. Notably, PAW had no antibacterial effects against the probiotic, Lactobacillus reuteri, which produces lactic acid and is important for vaginal health. These findings indicate that PAW contains HOCl and some cations (Ca2+ and Mg2+), which should help protect against pathogens of the vaginal mucosa and have a cleansing effect within the vaginal environment while not harming beneficial bacteria.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea; (H.-J.K.); (H.-A.S.); (A.J.); (E.-K.K.); (W.A.)
| | - Hyun-A Shin
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea; (H.-J.K.); (H.-A.S.); (A.J.); (E.-K.K.); (W.A.)
| | - Woo-Kyung Chung
- Department of Food and Nutrition, Hanyang University, Seoul 04736, Republic of Korea; (W.-K.C.); (A.-S.O.)
| | - Ae-Son Om
- Department of Food and Nutrition, Hanyang University, Seoul 04736, Republic of Korea; (W.-K.C.); (A.-S.O.)
| | - Areum Jeon
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea; (H.-J.K.); (H.-A.S.); (A.J.); (E.-K.K.); (W.A.)
| | - Eun-Kyung Kang
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea; (H.-J.K.); (H.-A.S.); (A.J.); (E.-K.K.); (W.A.)
| | - Wen An
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea; (H.-J.K.); (H.-A.S.); (A.J.); (E.-K.K.); (W.A.)
| | - Ju-Seop Kang
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea; (H.-J.K.); (H.-A.S.); (A.J.); (E.-K.K.); (W.A.)
| |
Collapse
|
2
|
Human Trial for the Effect of Plasma-Activated Water Spray on Vaginal Cleaning in Patients with Bacterial Vaginosis. Med Sci (Basel) 2022; 10:medsci10020033. [PMID: 35736353 PMCID: PMC9227462 DOI: 10.3390/medsci10020033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
Underwater plasma discharge temporally produces several reactive radicals and/or free chlorine molecules in water, which is responsible for antimicrobial activity. Hence, it can simply sanitize tap water without disinfectant treatment. Additionally, the spraying technique using cleaning water exploits deep application in the narrow and curved vaginal tract of patients. Herein, we attempted a clinical trial to evaluate the vaginal cleaning effect of spraying plasma-activated water (PAW) to patients with vaginitis (46 patients). The efficacy was compared with treatment with betadine antiseptics used to treat bacterial vaginosis (40 patients). To evaluate the cleaning effect, Gram staining of the vaginal secretions was conducted before and after spraying PAW or betadine treatment (BT). Consequently, PAW-sprayed (PAWS) patients (22.3%) showed a better vaginal cleaning effect against Gram-positive and -negative bacteria than BT patients (14.4%). Moreover, 18 patients in the BT group showed worsened vaginal contamination, whereas five patients in the PAWS group showed worsened vaginal contamination. Taken together, the noncontact method of spraying cleaning water to the vagina exhibited a reliable vaginal cleaning effect without further bacterial infection compared with BT. Therefore, we suggest a clinical application of the spraying method using PAW for vaginal cleaning to patients with vaginitis without disinfectants and antibiotics.
Collapse
|
3
|
PFAS Degradation in Ultrapure and Groundwater Using Non-Thermal Plasma. Molecules 2021; 26:molecules26040924. [PMID: 33572434 PMCID: PMC7916234 DOI: 10.3390/molecules26040924] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Perfluoroalkyl substances (PFAS) represent one of the most recalcitrant class of compounds of emerging concern and their removal from water is a challenging goal. In this study, we investigated the removal efficiency of three selected PFAS from water, namely, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA) and pefluorooctanesulfonic acid (PFOS) using a custom-built non-thermal plasma generator. A modified full factorial design (with 2 levels, 3 variables and the central point in which both quadratic terms and interactions between couple of variables were considered) was used to investigate the effect of plasma discharge frequency, distance between the electrodes and water conductivity on treatment efficiency. Then, the plasma treatment running on optimized conditions was used to degrade PFAS at ppb level both individually and in mixture, in ultrapure and groundwater matrices. PFOS 1 ppb exhibited the best degradation reaching complete removal after 30 min of treatment in both water matrices (first order rate constant 0.107 min-1 in ultrapure water and 0.0633 min-1 in groundwater), while the degradation rate of PFOA and PFHxA was slower of around 65% and 83%, respectively. During plasma treatment, the production of reactive species in the liquid phase (hydroxyl radical, hydrogen peroxide) and in the gas phase (ozone, NOx) was investigated. Particular attention was dedicated to the nitrogen balance in solution where, following to NOx hydrolysis, total nitrogen (TN) was accumulated at the rate of up to 40 mgN L-1 h-1.
Collapse
|
4
|
Ma S, Lee S, Kim K, Im J, Jeon H. Purification of organic pollutants in cationic thiazine and azo dye solutions using plasma-based advanced oxidation process via submerged multi-hole dielectric barrier discharge. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117715] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Zhao YM, Patange A, Sun DW, Tiwari B. Plasma-activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Compr Rev Food Sci Food Saf 2020; 19:3951-3979. [PMID: 33337045 DOI: 10.1111/1541-4337.12644] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022]
Abstract
Novel nonthermal inactivation technologies have been increasingly popular over the traditional thermal food processing methods due to their capacity in maintaining microbial safety and other quality parameters. Plasma-activated water (PAW) is a cutting-edge technology developed around a decade ago, and it has attracted considerable attention as a potential washing disinfectant. This review aims to offer an overview of the fundamentals and potential applications of PAW in the agri-food sector. A detailed description of the interactions between plasma and water can help to have a better understanding of PAW, hence the physicochemical properties of PAW are discussed. Further, this review elucidates the complex inactivation mechanisms of PAW, including oxidative stress and physical effect. In particular, the influencing factors on inactivation efficacy of PAW, including processing factors, characteristics of microorganisms, and background environment of water are extensively described. Finally, the potential applications of PAW in the food industry, such as surface decontamination for various food products, including fruits and vegetables, meat and seafood, and also the treatment on quality parameters are presented. Apart from decontamination, the applications of PAW for seed germination and plant growth, as well as meat curing are also summarized. In the end, the challenges and limitations of PAW for scale-up implementation, and future research efforts are also discussed. This review demonstrates that PAW has the potential to be successfully used in the food industry.
Collapse
Affiliation(s)
- Yi-Ming Zhao
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Belfield, Dublin, Ireland.,Food Chemistry and Technology Department, Teagasc Food Research Centre Ashtown, Dublin, Ireland
| | - Apurva Patange
- Food Chemistry and Technology Department, Teagasc Food Research Centre Ashtown, Dublin, Ireland
| | - Da-Wen Sun
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Belfield, Dublin, Ireland
| | - Brijesh Tiwari
- Food Chemistry and Technology Department, Teagasc Food Research Centre Ashtown, Dublin, Ireland
| |
Collapse
|
6
|
Removal of Microcystis aeruginosa through the Combined Effect of Plasma Discharge and Hydrodynamic Cavitation. WATER 2019. [DOI: 10.3390/w12010008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cyanobacterial water blooms represent toxicological, ecological and technological problems around the globe. When present in raw water used for drinking water production, one of the best strategies is to remove the cyanobacterial biomass gently before treatment, avoiding cell destruction and cyanotoxins release. This paper presents a new method for the removal of cyanobacterial biomass during drinking water pre-treatment that combines hydrodynamic cavitation with cold plasma discharge. Cavitation produces press stress that causes Microcystis gas vesicles to collapse. The cyanobacteria then sink, allowing for removal by sedimentation. The cyanobacteria showed no signs of revitalisation, even after seven days under optimal conditions with nutrient enrichment, as photosynthetic activity is negatively affected by hydrogen peroxide produced by plasma burnt in the cavitation cloud. Using this method, cyanobacteria can be removed in a single treatment, with no increase in microcystin concentration. This novel technology appears to be highly promising for continual treatment of raw water inflow in drinking water treatment plants and will also be of interest to those wishing to treat surface waters without the use of algaecides.
Collapse
|
7
|
Estifaee P, Su X, Yannam SK, Rogers S, Thagard SM. Mechanism of E. coli Inactivation by Direct-in-liquid Electrical Discharge Plasma in Low Conductivity Solutions. Sci Rep 2019; 9:2326. [PMID: 30787358 PMCID: PMC6382884 DOI: 10.1038/s41598-019-38838-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/10/2019] [Indexed: 01/30/2023] Open
Abstract
This work investigates and reveals the main mechanism(s) responsible for inactivation of E. coli by in-liquid pulsed electrical discharge plasma in low conductivity solutions. Experiments were designed and performed to explore the effects of plasma-emitted UV light, oxidative radicals, and electric field on E. coli inactivation curves, rate of DNA leakage and visual appearance of the treated microorganisms. Results showed that electric field had the main role in inactivation; scanning electron microscopy images revealed that both plasma and the isolated electric field result in extensive cell wall disruptions. While this damage in the case of plasma treatment was extensive and distributed randomly along the envelope, the electric field-induced damage resulted in disruption primarily at the poles of the bacterial rods. Subsequent experiments conducted with an oxidative radical scavenger suggested that plasma-generated radicals do not contribute directly to the inactivation but assist in cell wall deterioration and extension of the ruptures first generated by the electric field.
Collapse
Affiliation(s)
- P Estifaee
- Clarkson University, Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
| | - X Su
- Clarkson University, Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
| | - S K Yannam
- Clarkson University, Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
| | - S Rogers
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, 13699-5710, USA
| | - S Mededovic Thagard
- Clarkson University, Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Potsdam, NY, 13699, USA.
| |
Collapse
|