1
|
Li Y, Li SH, Xu LH, Mao H, Zhang AS, Zhao ZP. Highly selective PDMS membranes embedded with ILs-decorated halloysite nanotubes for ethyl acetate pervaporation separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Recent Progress in the Membrane Distillation and Impact of Track-Etched Membranes. Polymers (Basel) 2021; 13:polym13152520. [PMID: 34372131 PMCID: PMC8347132 DOI: 10.3390/polym13152520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022] Open
Abstract
Membrane distillation (MD) is a rapidly developing field of research and finds applications in desalination of water, purification from nonvolatile substances, and concentration of various solutions. This review presents data from recent studies on the MD process, MD configuration, the type of membranes and membrane hydrophobization. Particular importance has been placed on the methods of hydrophobization and the use of track-etched membranes (TeMs) in the MD process. Hydrophobic TeMs based on poly(ethylene terephthalate) (PET), poly(vinylidene fluoride) (PVDF) and polycarbonate (PC) have been applied in the purification of water from salts and pesticides, as well as in the concentration of low-level liquid radioactive waste (LLLRW). Such membranes are characterized by a narrow pore size distribution, precise values of the number of pores per unit area and narrow thickness. These properties of membranes allow them to be used for more accurate water purification and as model membranes used to test theoretical models (for instance LEP prediction).
Collapse
|
3
|
Backes CW, Weibel DE. Enhanced glycerol dehydration of pervaporation cross‐linked
PVA
membranes modified by
VUV
/
UV‐C
treatments. J Appl Polym Sci 2021. [DOI: 10.1002/app.50723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Claudio W. Backes
- Chemistry Institute Universidade Federal do Rio Grande do Sul‐UFRGS Porto Alegre Brazil
| | - Daniel E. Weibel
- Chemistry Institute Universidade Federal do Rio Grande do Sul‐UFRGS Porto Alegre Brazil
| |
Collapse
|
4
|
Preparation and Characterization of a Novel Poly(vinylidene fluoride-co-hexafluoropropylene)/Poly(ethersulfone) Blend Membrane Fabricated Using an Innovative Method of Mixing Electrospinning and Phase Inversion. Polymers (Basel) 2021; 13:polym13050790. [PMID: 33806655 PMCID: PMC7961782 DOI: 10.3390/polym13050790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 11/22/2022] Open
Abstract
In this work, a novel polymeric membrane was innovated in terms of composition and preparation techniques. A blend of poly(vinylidene fluoride-co-hexafluoropropylene) (PcH) and poly(ethersulfone) (PES) (18 wt.% total polymer concentration) was prepared using a N-methylpyrrolidone (NMP) and N, N-Dimethylformamide (DMF) solvents mixture, while Lithium chloride (0.05–0.5 wt.%) was used as an additive. The electrospinning and phase inversion techniques were used together to obtain a novel membrane structure. The prepared membranes were characterized using scanning electron microscope imaging, energy dispersive X-Ray, differential scanning calorimeter, thermogravimetric analysis, and Fourier transfer infrared spectroscopy-attenuated total reflectance analyses. Moreover, the static water contact angle, membrane thickness, porosity, surface roughness as well as water vapor permeability were determined. ImageJ software was used to estimate the average fiber diameter. Additionally, the effect of the change of PcH concentration and coagulation bath temperature on the properties of the fabricated membrane was studied. The novel developed membrane has shown a good efficiency in terms of properties and features, as a membrane suitable for membrane distillation (MD); a high porosity (84.4% ± 0.6), hydrophobic surface (136.39° ± 3.1 static water contact angle), and a water vapor permeability of around 4.37 × 10−5 g·m/m2·day·Pa were obtained. The prepared membrane can be compared to the MD membranes commercially available in terms of properties and economic value.
Collapse
|
5
|
oulad F, Zinadini S, Zinatizadeh AA, Derakhshan AA. Novel (4,4-diaminodiphenyl sulfone coupling modified PES/PES) mixed matrix nanofiltration membranes with high permeability and anti-fouling property. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Tshwenya L, Marken F, Mathwig K, Arotiba OA. Switching Anionic and Cationic Semipermeability in Partially Hydrolyzed Polyacrylonitrile: A pH-Tunable Ionic Rectifier. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3214-3224. [PMID: 31850740 DOI: 10.1021/acsami.9b18583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Membrane materials with semipermeability for anions or for cations are of interest in electrochemical and nanofluidic separation and purification technologies. In this study, partially hydrolyzed polyacrylonitrile (phPAN) is investigated as a pH-switchable anion/cation conductor. When switching from anionic to cationic semipermeability, also the ionic current rectification effect switches for phPAN materials deposited asymmetrically onto a 5, 10, 20, or 40 μm diameter microhole in a 6 μm thick polyethylene-terephthalate (PET) film substrate. Therefore, ionic rectifier behavior can be tuned and used to monitor and characterize semipermeability. Effects of electrolyte type and concentration and pH (relative to the zeta potential at approximately 3.1) are investigated by voltammetry, chronoamperometry, and impedance spectroscopy. A computational model provides good qualitative agreement with the observed electrolyte concentration data. High rectification effects are observed for both cations (pH > 3.1) and anions (pH < 3.1) but only at relatively low ionic strengths.
Collapse
Affiliation(s)
- Luthando Tshwenya
- Department of Chemical Sciences Formerly known as the Department of Applied Chemistry, University of Johannesburg , Doornfontein 2028 , South Africa
| | - Frank Marken
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| | - Klaus Mathwig
- Groningen Institute of Pharmacy, Pharmaceutical Analysis , The University of Groningen , P.O. Box 196, AD Groningen 9700 , The Netherlands
| | - Omotayo A Arotiba
- Department of Chemical Sciences Formerly known as the Department of Applied Chemistry, University of Johannesburg , Doornfontein 2028 , South Africa
- Centre for Nanomaterials Science Research , University of Johannesburg , Doornfontein 2028 , Johannesburg , South Africa
| |
Collapse
|
7
|
Wang X, Pan S, Zhang M, Qi J, Sun X, Gu C, Wang L, Li J. Modified hydrous zirconium oxide/PAN nanofibers for efficient defluoridation from groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:401-409. [PMID: 31176225 DOI: 10.1016/j.scitotenv.2019.05.380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Fluoride contamination in groundwater is a worldwide problem that is related to human health. Zirconium-based adsorbents possess satisfactory selective defluoridation capacities. However, narrow efficiency pH range, easy aggregation and difficult separation are the main obstructions in practical application. In this study, the branched polyethyleneimine (bPEI) modified hydrous zirconium oxide (HZO)/polyacrylonitrile (PAN) nanofibers (NFs) are synthesized by immobilizing bPEI-HZO into PAN nanofibers via electrospinning. The resultant bPEI-HZO/PAN NFs exhibit a wide working pH range and an excellent adsorption capacity toward fluoride (67.51 mg·g-1) even at neutral condition, indicating non-negligible superiority in the practical application of groundwater defluoridation. This enhanced adsorption performance along with extended wider working pH range are ascribed to the optimization of the adsorbents from both composition and structure. Compositionally, the modification of bPEI improves the surface property of HZO, and thus increases fluoride capacity in alkaline groundwater. Structurally, electrospinning conquers the drawbacks of nano-adsorbents for both easy aggregation and difficult separation. In addition, the effect of co-existing ions was further investigated and the X-ray photoelectron spectroscopy (XPS) as well as fourier transform infrared spectrum (FTIR) measurements were used to clarify the fluoride adsorption mechanism. Furthermore, the dynamic adsorption and regeneration performance were accomplished through the fixed-bed column experiment. All the results indicated that bPEI-HZO/PAN NFs are promising materials for defluoridation from groundwater.
Collapse
Affiliation(s)
- Xuezhu Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shunlong Pan
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ming Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiuyun Sun
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lianjun Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
8
|
Liang W, Chenyang Y, Bin Z, Xiaona W, Zijun Y, Lixiang Z, Hongwei Z, Nanwen L. Hydrophobic polyacrylonitrile membrane preparation and its use in membrane contactor for CO2 absorption. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.09.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|