1
|
Arumugham T, Kaleekkal NJ, Gopal S, Nambikkattu J, K R, Aboulella AM, Ranil Wickramasinghe S, Banat F. Recent developments in porous ceramic membranes for wastewater treatment and desalination: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112925. [PMID: 34289593 DOI: 10.1016/j.jenvman.2021.112925] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/15/2021] [Accepted: 05/05/2021] [Indexed: 05/26/2023]
Abstract
The development of membrane technology has proved vital in providing a sustainable and affordable supply of clean water to address the ever-increasing demand. Though liquid separation applications have been still dominated by polymeric membranes, porous ceramic membranes have gained a commercial foothold in microfiltration (MF) and ultrafiltration (UF) applications due to their hydrophilic nature, lower fouling, ease of cleaning, reliable performance, robust performance with harsh feeds, relative insensitivity to temperature and pH, and stable long-term flux. The enrichment of research and development on porous ceramic membranes extends its focus into advanced membrane separation technologies. The latest emerging nanofiltration (NF) and membrane distillation (MD) applications have witnessed special interests in constructing porous membrane with hydrophilic/functional/hydrophobic properties. However, NF and MD are relatively new, and many shortcomings must be addressed to compete with their polymeric counterparts. For the last three years (2018-2020), state-of-the-art literature on porous ceramic membranes has been collected and critically reviewed. This review highlights the efficiency (permeability, selectivity, and antifouling) of hydrophilic porous ceramic membranes in a wide variety of wastewater treatment applications and hydrophobic porous ceramic membranes in membrane distillation-based desalination applications. A significant focus on pores characteristics, pore sieving phenomenon, nano functionalization, and synergic effect on fouling, the hydrophilic porous ceramic membrane has been discussed. In another part of this review, the role of surface hydrophobicity, water contact angle, liquid entry pressure (LEP), thermal properties, surface micro-roughness, etc., has been discussed for different types of hydrophobic porous ceramic membranes -(a) metal-based, (b) silica-based, (c) other ceramics. Also, this review highlights the potential benefits, drawbacks, and limitations of the porous membrane in applications. Moreover, the prospects are emphasized to overcome the challenges in the field.
Collapse
Affiliation(s)
- Thanigaivelan Arumugham
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, 673601, Kerala, India.
| | - Sruthi Gopal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, 673601, Kerala, India
| | - Jenny Nambikkattu
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, 673601, Kerala, India
| | - Rambabu K
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Ahmed Mamdouh Aboulella
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - S Ranil Wickramasinghe
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Alam SF, Kim MZ, Kim YJ, Rehman AU, Devipriyanka A, Sharma P, Yeo JG, Lee JS, Kim H, Cho CH. A new seeding method, dry rolling applied to synthesize SAPO-34 zeolite membrane for nitrogen/methane separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117825] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Yan Y, Huang P, Zhang H. Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis method for toluene adsorption. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1827-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Hesas RH, Baei MS, Rostami H, Gardy J, Hassanpour A. An investigation on the capability of magnetically separable Fe 3O 4/mordenite zeolite for refinery oily wastewater purification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:525-534. [PMID: 30301659 DOI: 10.1016/j.jenvman.2018.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/17/2018] [Accepted: 09/02/2018] [Indexed: 05/27/2023]
Abstract
Damage to the water resources and environment as a consequence of oil production and use of fossil fuels, has increased the need for applying various technologies and developing effective materials to remove contaminates from oily wastewaters resources. One of the challenges for an economic industrial wastewater treatment is separation and reusability of the developed purifying agents. Development of magnetic materials could potentially facilitate easier and more economic separation of purifying agents. Therefore, herein we have synthesised an efficient and easily recyclable Fe3O4/mordenite zeolite using a hydrothermal process to investigate its purification capability for wastewater from Kermanshah oil refinery. The synthesised Fe3O4/mordenite zeolite was characterised using XRD, FTIR, SEM, EDX, XRF and BET analysis. XRD result showed that the synthesised Fe3O4/mordenite zeolite comprised sodium aluminium silicate hydrate phase [01-072-7919, Na8(Al6Si30O72)(H2O)9.04] and cubic iron oxide phase [04-013-9808, Fe3O4]. Response Surface Method (RSM) combined with Central Composite Design (CCD) was used to identify the optimum operation parameters of the pollutant removal process. The effect of pH, contact time and Fe3O4/mordenite zeolite amount on the Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD) and Nephelometric Turbidity Unit (NTU) were investigated. It was found that pH was the most significant factor influencing COD and BOD removal but the quantity of Fe3O4/mordenite zeolite was the most influential factor on the turbidity removal capacity. The optimum removal process conditions were identified to be pH of 7.81, contact time of 15.8 min and Fe3O4/mordenite zeolite amount of 0.52% w/w. The results show that the regenerated Fe3O4/mordenite zeolite can be reused for five consecutive cycles in purification of petroleum wastes.
Collapse
Affiliation(s)
| | - Mazyar Sharifzadeh Baei
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
| | - Hadi Rostami
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Jabbar Gardy
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Ali Hassanpour
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
6
|
Chang YH, Chang HC, Fu YP. Utilizing Infrared Spectroscopy to Analyze the Interfacial Structures of Ionic Liquids/Al₂O₃ and Ionic Liquids/Mica Mixtures under High Pressures. NANOMATERIALS 2019; 9:nano9030373. [PMID: 30841586 PMCID: PMC6473959 DOI: 10.3390/nano9030373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/05/2023]
Abstract
The interfacial interactions between ionic liquids (1,3-dimethylimidazolium methyl sulfate and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate) and solid surfaces (mesoporous aluminum oxide and mica) have been studied by infrared spectroscopy at high pressures (up to 2.5 GPa). Under ambient pressure, the spectroscopic features of pure ionic liquids and mixtures of ionic liquids/solid particles (Al2O3 and mica) are similar. As the pressure is increased, the cooperative effect in the local structure of pure 1,3-dimethylimidazolium methyl sulfate becomes significantly enhanced as the imidazolium C–H absorptions of the ionic liquid are red-shifted. However, this pressure-enhanced effect is reduced by adding the solid particles (Al2O3 and mica) to 1,3-dimethylimidazolium methyl sulfate. Although high-pressure IR can detect the interactions between 1,3-dimethylimidazolium methyl sulfate and particle surfaces, the difference in the interfacial interactions in the mixtures of Al2O3 and mica is not clear. By changing the type of ionic liquid to 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, the interfacial interactions become more sensitive to the type of solid surfaces. The mica particles in the mixture perturb the local structure of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate under high pressures, forcing 1-ethyl-3-methylimidazolium trifluoromethanesulfonate to form into an isolated structure. For Al2O3, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate tends to form an associated structure under high pressures.
Collapse
Affiliation(s)
- Yen-Hsu Chang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan.
| | - Hai-Chou Chang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan.
| | - Yen-Pei Fu
- Department of Materials Science and Engineering, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan.
| |
Collapse
|