1
|
Huang G, Jian S, Gao X, Huang J, Deng X, Tan H, Li B. Sustainable water treatment ceramsite derived from dredged sludge and biomass waste for neutralizing acidic mining wastewater: Mechanisms and efficiency. ENVIRONMENTAL RESEARCH 2025; 274:121360. [PMID: 40064341 DOI: 10.1016/j.envres.2025.121360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/15/2025]
Abstract
Porous ceramsite, a typical water treatment material, could be potentially applied for treating acidic mining wastewater (AMW) with alkaline sources. This study aims to evaluate the treatment efficiency and mechanisms of water treatment ceramsite (WTC) derived from dredged sludge, biomass waste, and alkaline sources for neutralizing AMW. WTC with 8% CaCO3 was found to effectively increase the pH of AMW to 7 within 60 min, demonstrating its potential for AMW treatment. Mineralogical analysis revealed that the calcium-rich WTC primarily consisted of quartz, feldspar, and lime, with the decomposition of biomass waste during sintering creating a connecting pore structure that enhanced water treatment efficiency. At high temperatures, CaCO3 decomposed into CaO, the primary alkaline substance responsible for neutralizing AMW. However, excessively high sintering temperatures resulted in increased glassy and feldspar phases, which reduced the reactivity of the ceramsite. This study provides an innovative approach to AMW treatment by transforming solid waste into functional materials, offering a sustainable solution for environmental remediation. The results underscore the potential of WTC as a cost-effective and eco-friendly alternative for mitigating the environmental impacts of mining activities.
Collapse
Affiliation(s)
- Guan Huang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Shouwei Jian
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China.
| | - Xin Gao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianxiang Huang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiufeng Deng
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Hongbo Tan
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Baodong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China; Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| |
Collapse
|
2
|
Seabra I, Malvestiti JA, Gasparini B, Mendret J, Petit E, Dantas RF, Brosillon S. Coupled ozonation with nanofiltration and catalytic nanofiltration for the removal of micropollutants from secondary effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6871-6883. [PMID: 40025334 DOI: 10.1007/s11356-025-36173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Emerging contaminants have become a global concern in recent years. Ozonation is an effective treatment for their degradation. However, it may generate toxic by-products under certain conditions. Catalytic ozonation is an option for improved contaminant oxidation, which can be enhanced by incorporating a filtering membrane, adding the advantages of retaining molecules, ions, and colloids. Recent studies have demonstrated the catalytic potential of a nanofiltration membrane functionalized with a thin layer of mesoporous maghemite (γ-Fe2O3). However, they have not tested its efficiency in real environmental matrices. In this study, the efficiency of a ceramic membrane functionalized with maghemite was tested for the removal of seven contaminants (carbamazepine, acetaminophen, sulfamethoxazole, caffeine, sodium diclofenac, diuron, and ketoprofen). The performance of ozonation and nanofiltration and the combination of both, with and without the functionalized γ-Fe2O3 layer, were compared for ultrapure water and secondary effluent with contaminants at a concentration of 0.5 mgL-1. The coupling of ozonation and functionalized membrane had around 20% higher removal for the most resistant compounds, using 70% less ozone than the configuration that used a commercial membrane. Although the initial samples did not show toxicity, there was an emergence and growth of toxicity, possibly due to the formation of toxic by-products.
Collapse
Affiliation(s)
- Ivna Seabra
- Faculdade de Tecnologia, Universidade Estadual de Campinas (UNICAMP), Paschoal Marmo 1888, Limeira, SP, Brazil
| | - Jacqueline Ap Malvestiti
- Faculdade de Tecnologia, Universidade Estadual de Campinas (UNICAMP), Paschoal Marmo 1888, Limeira, SP, Brazil
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Av. Centenário, Piracicaba, SP, 303, Brazil
| | - Beatriz Gasparini
- Faculdade de Tecnologia, Universidade Estadual de Campinas (UNICAMP), Paschoal Marmo 1888, Limeira, SP, Brazil
| | - Julie Mendret
- Institut Européen Des Membranes, Université de Montpellier, CNRS/ENSCM, Place Eugéne Bataillon, 34095, Montpellier, France
| | - Eddy Petit
- Institut Européen Des Membranes, Université de Montpellier, CNRS/ENSCM, Place Eugéne Bataillon, 34095, Montpellier, France
| | - Renato F Dantas
- Faculdade de Tecnologia, Universidade Estadual de Campinas (UNICAMP), Paschoal Marmo 1888, Limeira, SP, Brazil.
| | - Stephan Brosillon
- Institut Européen Des Membranes, Université de Montpellier, CNRS/ENSCM, Place Eugéne Bataillon, 34095, Montpellier, France
| |
Collapse
|
3
|
Sawunyama L, Oyewo OA, Makgato SS, Bopape MF, Onwudiwe DC. TiO 2-ZnO functionalized low-cost ceramic membranes from coal fly ash for the removal of tetracycline from water under visible light. DISCOVER NANO 2025; 20:1. [PMID: 39751693 PMCID: PMC11698709 DOI: 10.1186/s11671-024-04178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Hybrid wastewater treatment systems offer viable solutions to enhance the removal of complicated contaminants from aqueous system. This innovation has opened new avenues for advanced wastewater treatment processes. Herein, a novel TiO2-ZnO functionalized coal fly ash-based ceramic membrane was fabricated by utilizing a combined pressing and sintering method. The intrinsic properties of the functionalized membranes were characterized and their chemical and physical properties such as chemical stability, mechanical stability, water absorption, and porosity were established. The shape, crystallinity, thermal characteristics, and functional groups present were also determined using SEM, XRD, TGA, and FTIR studies, respectively. The results showed that the ceramic membrane functionalized with 0.5 g of TiO2-ZnO and sintered at 850 °C exhibited the best thermal, and chemical stability, and possessed the required porosity for ultrafiltration applications. Photocatalytic degradation of tetracycline (TC) as a model pollutant was examined and the optimum efficiency of 77% was achieved within 100 min of visible irradiation using the functionalized membrane. Moreso, the functionalized membrane was found to be stable with 73% degradation efficiency after 5 consecutive cycles of reusability study, showing negligible loss of efficiency. The scale-up of photocatalytic ceramic membranes and their utilization in real industrial applications will confirm their robustness.
Collapse
Affiliation(s)
- Lawrence Sawunyama
- Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Opeyemi A Oyewo
- Department of Chemical & Materials Engineering, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| | - Seshibe S Makgato
- Department of Chemical & Materials Engineering, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| | - Mokgadi F Bopape
- Department of Chemical, Metallurgical and Material Engineering, Tshwane University of Technology, Private Bag x680, Pretoria, 0001, South Africa
| | - Damian C Onwudiwe
- Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa.
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
4
|
Calzada A, Viñes F, Gamallo P. Selective O 2/N 2 Separation Using Grazyne Membranes: A Computational Approach Combining Density Functional Theory and Molecular Dynamics. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2053. [PMID: 39728588 DOI: 10.3390/nano14242053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The separation of oxygen (O2) and nitrogen (N2) from air is a process of utmost importance nowadays, as both species are vital for numerous fundamental processes essential for our development. Membranes designed for their selective molecule separation have become the materials of choice for researchers, primarily due to their ease of use. The present study proposes grazynes, 2D carbon-based materials consisting of sp and sp2 C atoms, as suitable membranes for separating O2 and N2 from air. By combining static density functional theory (DFT) calculations with molecular dynamics (MD) simulations, we address this issue through a comprehensive examination of the thermodynamic, kinetic, and dynamic aspects of the molecular diffusions across the nano-engineered pores of grazynes. The studied grazyne structures have demonstrated the ability to physisorb both O2 and N2, preventing material saturation, with diffusion rates exceeding 1 s-1 across a temperature range of 100-500 K. Moreover, they exhibit a selectivity of ca. 2 towards O2 at 300 K. Indeed, MD simulations with equimolar mixtures of O2:N2 indicated a selectivity towards O2 in both grazynes with ca. twice as many O2 filtered molecules in the [1],[2]{2}-grazyne and with O2 representing ca. 88% of the filtered gas in the [1],[2]{(0,0),2}-grazyne. [1],[2]{2}-grazyne shows higher permeability for both molecules compared to the other grazyne, with O₂ demonstrating particularly enhanced diffusion capacity across both membranes. Further MD simulations incorporating CO2 and Ar confirm O2 enrichment, particularly with [1],[2]{(0,0),2}-grazyne, which increased the presence of O2 in the filtered mixture by 26% with no evidence of CO2 molecules.
Collapse
Affiliation(s)
- Adrià Calzada
- Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Francesc Viñes
- Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Pablo Gamallo
- Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Xiong H, Chen X, Feng J, Zhang F, Qiu M, Zhang Q, Fan Y. Bibliometric and Visual Analysis of Studies on Ceramic Membranes: A Review. MEMBRANES 2024; 14:144. [PMID: 39057652 PMCID: PMC11278809 DOI: 10.3390/membranes14070144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024]
Abstract
As a high-performance separation material, the ceramic membrane has played a crucial role in addressing resource, energy, and environmental challenges. Here, we carried out literature retrieval and collection for the research of ceramic membranes based on the Web of Science. The retrieval strategy was quantitatively evaluated from two dimensions: recall and precision. The distributions of publication time, journal, and related subjects were systematically analyzed. With the help of CiteSpace and VOSviewer, the literature was visually analyzed through the co-occurrence map of authors and the cluster network of keywords. The findings indicate a strong correlation between ceramic membrane research and the field of Chemical Engineering. A core group of authors has emerged as prominent contributors in this area of study. Additionally, there is a notable long-tail effect observed in the application of ceramic membranes. Despite their current low-frequency usage and high-volume potential, these applications hold substantial promise for future scientific research and industrial development.
Collapse
Affiliation(s)
- Hao Xiong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Energy and Environmental Materials Research Department, Suzhou Laboratory, Suzhou 215123, China
| | - Xianfu Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Energy and Environmental Materials Research Department, Suzhou Laboratory, Suzhou 215123, China
| | - Jun Feng
- National Intellectual Property Information Service Center in Colleges and Universities, Nanjing Tech University, Nanjing 211816, China
| | - Fan Zhang
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Minghui Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qi Zhang
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yiqun Fan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Energy and Environmental Materials Research Department, Suzhou Laboratory, Suzhou 215123, China
| |
Collapse
|
6
|
Sawunyama L, Olatunde OC, Oyewo OA, Bopape MF, Onwudiwe DC. Application of coal fly ash based ceramic membranes in wastewater treatment: A sustainable alternative to commercial materials. Heliyon 2024; 10:e24344. [PMID: 38298659 PMCID: PMC10828652 DOI: 10.1016/j.heliyon.2024.e24344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
The continued increase in the global population has resulted in increased water demand for domestic, agricultural, and industrial purposes. These activities have led to the generation of high volumes of wastewater, which has an impact on water quality. Consequently, more practical solutions are needed to improve the current wastewater treatment systems. The use of improved ceramic membranes for wastewater treatment holds significant prospects for advancement in water treatment and sanitation. Hence, different studies have employed ceramic membranes in wastewater treatment and the search for low-cost and environmentally friendly starting materials has continued to engender research interests. This review focuses on the application of coal fly ash in membrane technology for wastewater treatment. The processes of membrane fabrication and the various limitations of the material. Several factors that influence the properties and performance of coal fly ash ceramic membranes in wastewater treatment are also presented. Some possible solutions to the limitations are also proposed, while cost analysis of coal fly ash-based membranes is explored to evaluate its potential for large-scale applications.
Collapse
Affiliation(s)
- Lawrence Sawunyama
- Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olalekan C. Olatunde
- Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Opeyemi A. Oyewo
- Department of Chemical Engineering, College of Science, Engineering and Technology, University of South Africa, South Africa
| | - Mokgadi F. Bopape
- Department of Chemical, Metallurgical and Material Engineering, Tshwane University of Technology, Private Bag x680, Pretoria, 0001, South Africa
| | - Damian C. Onwudiwe
- Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa
| |
Collapse
|
7
|
Bauer RA, Qiu M, Schillo-Armstrong MC, Snider MT, Yang Z, Zhou Y, Verweij H. Ultra-Stable Inorganic Mesoporous Membranes for Water Purification. MEMBRANES 2024; 14:34. [PMID: 38392661 PMCID: PMC10890243 DOI: 10.3390/membranes14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Thin, supported inorganic mesoporous membranes are used for the removal of salts, small molecules (PFAS, dyes, and polyanions) and particulate species (oil droplets) from aqueous sources with high flux and selectivity. Nanofiltration membranes can reject simple salts with 80-100% selectivity through a space charge mechanism. Rejection by size selectivity can be near 100% since the membranes can have a very narrow size distribution. Mesoporous membranes have received particular interest due to their (potential) stability under operational conditions and during defouling operations. More recently, membranes with extreme stability became interesting with the advent of in situ fouling mitigation by means of ultrasound emitted from within the membrane structure. For this reason, we explored the stability of available and new membranes with accelerated lifetime tests in aqueous solutions at various temperatures and pH values. Of the available ceria, titania, and magnetite membranes, none were actually stable under all test conditions. In earlier work, it was established that mesoporous alumina membranes have very poor stability. A new nanofiltration membrane was made of cubic zirconia membranes that exhibited near-perfect stability. A new ultrafiltration membrane was made of amorphous silica that was fully stable in ultrapure water at 80 °C. This work provides details of membrane synthesis, stability characterization and data and their interpretation.
Collapse
Affiliation(s)
- Ralph A Bauer
- Global Research and Development Inc., 539 Industrial Mile Road, Columbus, OH 43228, USA
| | - Minghui Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | | | - Matthew T Snider
- Carbon-Carbon Advanced Technologies, 4704 Eden Road, Arlington, TX 76001, USA
| | - Zi Yang
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Ave, Columbus, OH 43210, USA
| | - Yi Zhou
- Quantumscape, 1730 Technology Drive, San Jose, CA 95110, USA
| | - Hendrik Verweij
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Ave, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Joseph TM, Al-Hazmi HE, Śniatała B, Esmaeili A, Habibzadeh S. Nanoparticles and nanofiltration for wastewater treatment: From polluted to fresh water. ENVIRONMENTAL RESEARCH 2023; 238:117114. [PMID: 37716387 DOI: 10.1016/j.envres.2023.117114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Water pollution poses significant threats to both ecosystems and human health. Mitigating this issue requires effective treatment of domestic wastewater to convert waste into bio-fertilizers and gas. Neglecting liquid waste treatment carries severe consequences for health and the environment. This review focuses on intelligent technologies for water and wastewater treatment, targeting waterborne diseases. It covers pollution prevention and purification methods, including hydrotherapy, membrane filtration, mechanical filters, reverse osmosis, ion exchange, and copper-zinc cleaning. The article also highlights domestic purification, field techniques, heavy metal removal, and emerging technologies like nanochips, graphene, nanofiltration, atmospheric water generation, and wastewater treatment plants (WWTPs)-based cleaning. Emphasizing water cleaning's significance for ecosystem protection and human health, the review discusses pollution challenges and explores the integration of wastewater treatment, coagulant processes, and nanoparticle utilization in management. It advocates collaborative efforts and innovative research for freshwater preservation and pollution mitigation. Innovative biological systems, combined with filtration, disinfection, and membranes, can elevate recovery rates by up to 90%, surpassing individual primary (<10%) or biological methods (≤50%). Advanced treatment methods can achieve up to 95% water recovery, exceeding UN goals for clean water and sanitation (Goal 6). This progress aligns with climate action objectives and safeguards vital water-rich habitats (Goal 13). The future holds promise with advanced purification techniques enhancing water quality and availability, underscoring the need for responsible water conservation and management for a sustainable future.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Hussein E Al-Hazmi
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Bogna Śniatała
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology, and Industrial Trades, College of the North Atlantic-Qatar, Doha, Qatar
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology, Tehran 1599637111, Iran.
| |
Collapse
|
9
|
Sato C, Apollon W, Luna-Maldonado AI, Paucar NE, Hibbert M, Dudgeon J. Integrating Microbial Fuel Cell and Hydroponic Technologies Using a Ceramic Membrane Separator to Develop an Energy-Water-Food Supply System. MEMBRANES 2023; 13:803. [PMID: 37755225 PMCID: PMC10538097 DOI: 10.3390/membranes13090803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
In this study, a microbial fuel cell was integrated into a hydroponic system (MFC-Hyp) using a ceramic membrane as a separator. The MFC-Hyp is a passive system that allows the transport of nutrients from wastewater in the microbial fuel cell (MFC) to water in the hydroponic vessel (Hyp) through a ceramic membrane separator, with no external energy input. The performance of this system was examined using potato-process wastewater as a source of energy and nutrients (K, P, N) and garlic chives (Allium tuberosum) as a hydroponic plant. The results showed that based on dry weight, the leaves of Allium tuberosum grew 142% more in the MFC-Hyp than those of the plant in the Hyp without the MFC, in a 49-day run. The mass fluxes of K, P, and NO3--N from the MFC to the Hyp through the ceramic membrane were 4.18 ± 0.70, 3.78 ± 1.90, and 2.04 ± 0.98 µg s-1m-2, respectively. It was apparent that the diffusion of nutrients from wastewater in the MFC enhanced the plant growth in the Hyp. The MFC-Hyp in the presence of A. tuberosum produced the maximum power density of 130.2 ± 45.4 mW m-2. The findings of this study suggest that the MFC-Hyp system has great potential to be a "carbon-neutral" technology that could be transformed into an important part of a diversified worldwide energy-water-food supply system.
Collapse
Affiliation(s)
- Chikashi Sato
- Department of Civil and Environmental Engineering, Idaho State University, 921 S. 8th Ave., Stop 8060, Pocatello, ID 83209, USA; (N.E.P.); (M.H.)
| | - Wilgince Apollon
- Department of Agriculture and Food Engineering, Faculty of Agriculture, Autonomous University of Nuevo Leon, Campus of Agricultural and Animal Sciences, General Escobedo 66050, Nuevo Leon, Mexico; (W.A.); (A.I.L.-M.)
| | - Alejandro Isabel Luna-Maldonado
- Department of Agriculture and Food Engineering, Faculty of Agriculture, Autonomous University of Nuevo Leon, Campus of Agricultural and Animal Sciences, General Escobedo 66050, Nuevo Leon, Mexico; (W.A.); (A.I.L.-M.)
| | - Noris Evelin Paucar
- Department of Civil and Environmental Engineering, Idaho State University, 921 S. 8th Ave., Stop 8060, Pocatello, ID 83209, USA; (N.E.P.); (M.H.)
| | - Monte Hibbert
- Department of Civil and Environmental Engineering, Idaho State University, 921 S. 8th Ave., Stop 8060, Pocatello, ID 83209, USA; (N.E.P.); (M.H.)
| | - John Dudgeon
- Department of Anthropology, Idaho State University, 921 South 8th Avenue, Stop 8094, Pocatello, ID 83209, USA;
| |
Collapse
|
10
|
Mei Q, Zheng P, Ma W, Han I, Zhan M, Wu B. New insight into the irreversible membrane fouling in different pore-sized ultrafiltration ceramic membrane bioreactors (UCMBRs) for high-strength textile wastewater treatment. CHEMOSPHERE 2023; 331:138773. [PMID: 37105308 DOI: 10.1016/j.chemosphere.2023.138773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/16/2023] [Accepted: 04/22/2023] [Indexed: 05/19/2023]
Abstract
Despite great achievements in ceramic membrane bioreactor applications, membrane fouling, which decreases the permeability and separation performance of bioreactors and is associated with increased operational costs and energy consumption, remains a problem. The aim of this study was to expand our understanding of the fouling behavior in the long-term performance of ultrafiltration ceramic membrane bioreactors (UCMBRs) for high-strength textile wastewater reclamation. Using real textile wastewater effluent, the effects of ultrafiltration (UF) membrane pore sizes, cleaning strategies, and foulant distribution were systematically evaluated over more than three months of continuous operation. The results showed that UCMBR system achieved chemical oxygen demand and total nitrogen removal efficiencies as high as 91-95% and 39-43%, respectively. The high PN concentration can easily increase the viscosity of mixed liquor samples, contributing to a fouling layer on the membrane surface. In addition, the fouling layer formed on the surface of small-pore-sized ceramic UF membranes was not completely reversible but was difficult to eliminate by simple physical cleaning. Soluble extracellular polymeric substances, especially proteins and low molecular weight neutrals, remained, resulting in irreversible fouling on the UF membrane. However, saturated CO2 backwash showed great potential for enhancing the system through efficient fouling control without using environmentally unfriendly cleaning chemicals. The cake-intermediate and complete-standard models were suitable for explaining the fouling mechanism in the large- and small-pore-sized UF membranes, respectively.
Collapse
Affiliation(s)
- Qiwen Mei
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Department of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Pengfei Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Wenhao Ma
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Ihnsup Han
- Department of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Min Zhan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Huang Y, Guan Z, Li Q, Li Q, Xia D. Preparation, performance and mechanism of metal oxide modified catalytic ceramic membranes for wastewater treatment. RSC Adv 2023; 13:17436-17448. [PMID: 37313519 PMCID: PMC10258605 DOI: 10.1039/d3ra01291c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Catalytic ceramic membranes (CMs) integrated with different metal oxides were designed and fabricated by an impregnation-sintering method. The characterization results indicated that the metal oxides (Co3O4, MnO2, Fe2O3 and CuO) were uniformly anchored around the Al2O3 particles of the membrane basal materials, which could provide a large number of active sites throughout the membrane for the activation of peroxymonosulfate (PMS). The performance of the CMs/PMS system was evaluated by filtrating a phenol solution under different operating conditions. All the four catalytic CMs showed desirable phenol removal efficiency and the performance was in order of CoCM, MnCM, FeCM and CuCM. Moreover, the low metal ion leaching and high catalytic activity even after the 6th run revealed the good stability and reusability of the catalytic CMs. Quenching experiments and electron paramagnetic resonance (EPR) measurements were conducted to discuss the mechanism of PMS activation in the CMs/PMS system. The reactive oxygen species (ROS) were supposed to be SO4˙- and 1O2 in the CoCM/PMS system, 1O2 and O2˙- in the MnCM/PMS system, SO4˙- and ·OH in the FeCM/PMS system, and SO4˙- in the CuCM/PMS system, respectively. The comparative study on the performance and mechanism of the four CMs provides a better understanding of the integrated PMS-CMs behaviors.
Collapse
Affiliation(s)
- Yangbo Huang
- School of Environmental Engineering, Wuhan Textile University Wuhan Hubei 430073 China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University Wuhan Hubei 430073 China
| | - Zeyu Guan
- School of Environmental Engineering, Wuhan Textile University Wuhan Hubei 430073 China
| | - Qiang Li
- School of Environmental Engineering, Wuhan Textile University Wuhan Hubei 430073 China
| | - Qian Li
- China Three Gorges Corporation Wuhan 430014 China
| | - Dongsheng Xia
- School of Environmental Engineering, Wuhan Textile University Wuhan Hubei 430073 China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University Wuhan Hubei 430073 China
| |
Collapse
|
12
|
Qi T, Yang D, Chen X, Ke W, Qiu M, Fan Y. Sulfonated ceramic membranes with antifouling performance for the filtration of BSA-containing systems. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
Kammakakam I, Lai Z. Next-generation ultrafiltration membranes: A review of material design, properties, recent progress, and challenges. CHEMOSPHERE 2023; 316:137669. [PMID: 36623590 DOI: 10.1016/j.chemosphere.2022.137669] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Membrane technology utilizing ultrafiltration (UF) processes has emerged as the most widely used and cost-effective simple process in many industrial applications. The industries like textiles and petroleum refining are promptly required membrane based UF processes to alleviate the potential environmental threat caused by the generation of various wastewater. At the same time, major limitations such as material selection as well as fouling behavior challenge the overall performance of UF membranes, particularly in wastewater treatment. Therefore, a complete discussion on material design with structural property relation and separation performance of UF membranes is always exciting. This state-of-the-art review has exclusively focused on the development of UF membranes, the material design, properties, progress in separation processes, and critical challenges. So far, most of the review articles have examined the UF membrane processes through a selected track of paving typical materials and their limited applications. In contrast, in this review, we have exclusively aimed at comprehensive research from material selection and fabrication methods to all the possible applications of UF membranes, giving more attention and theoretical understanding to the complete development of high-performance UF systems. We have discussed the methodical engineering behind the development of UF membranes regardless of their materials and fabrication mechanisms. Identifying the utility of UF membrane systems in various applications, as well as their mode of separation processes, has been well discussed. Overall, the current review conveys the knowledge of the present-day significance of UF membranes together with their future prospective opportunities whilst overcoming known difficulties in many potential applications.
Collapse
Affiliation(s)
- Irshad Kammakakam
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
14
|
Amin NAAM, Mokhter MA, Salamun N, Mohamad MFB, Mahmood WMAW. ANTI-FOULING ELECTROSPUN ORGANIC AND INORGANIC NANOFIBER MEMBRANES FOR WASTEWATER TREATMENT. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
15
|
Alias NH, Aziz MHA, Adam MR, Aizudin M, Ang EH. Polymeric/ceramic membranes for water reuse. RESOURCE RECOVERY IN DRINKING WATER TREATMENT 2023:65-92. [DOI: 10.1016/b978-0-323-99344-9.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
16
|
Heredia Deba SA, Wols BA, Yntema DR, Lammertink RG. Advanced ceramics in radical filtration: TiO2 layer thickness effect on the photocatalytic membrane performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Gao Y, Xu G, Zhao P, Liu L, Zhang E. One step co-sintering synthesis of gradient ceramic microfiltration membrane with mullite/alumina whisker bi-layer for high permeability oil-in-water emulsion treatment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Zahmatkesh S, Rezakhani Y, Arabi A, Hasan M, Ahmad Z, Wang C, Sillanpää M, Al-Bahrani M, Ghodrati I. An approach to removing COD and BOD based on polycarbonate mixed matrix membranes that contain hydrous manganese oxide and silver nanoparticles: A novel application of artificial neural network based simulation in MATLAB. CHEMOSPHERE 2022; 308:136304. [PMID: 36096310 DOI: 10.1016/j.chemosphere.2022.136304] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to determine the efficacy of novel ultrafiltration and mixed matrix membrane (MMM) composed of hydrous manganese oxide (HMO) and silver nanoparticles (Ag-NPs) for the removal of biological oxygen demand (BOD) and chemical oxygen demand (COD). In the polycarbonate (PC) MMM, the weight percent of HMO and Ag-NP has been increased from 5% to 10%. A neural network (ANN) was used in this study to compare PC-HMO and Ag-NP. MMM was evaluated in combination with HMO and Ag-NP loadings in order to assess their effects on pure water flux, mean pore size, porosity, and efficacy in removing BOD and COD. HMO and Ag-NPs can decrease membrane porosity in the casting solution while increasing mean pore size. According to the study's findings, the artificial neural network model appears to be highly appropriate for predicting the removal of BOD and COD. To develop a successful model, a suitable input dataset was selected, which consisted of BOD and COD. An ideal model architecture for MMM was proposed based on an optimal number of hidden layers (2 layers) and neurons (5-8 neurons). Experiments and predicted data show a strong correlation between the developed models. BOD was predicted with an excellent R2 and a low root mean square error (RMSE) of 0.99 and 0.05%, respectively, while COD was predicted with an excellent R2 and a low RMSE of 0.99 and 0.09%, respectively. Based on the results, Ag-NP was found to be an excellent candidate for the preparation of MMMs as well as convenient for the removal of BOD and COD from polluted water sources.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran.
| | - Yousof Rezakhani
- Department of Civil Engineering, Pardis Branch, Islamic Azad University, Pardis, Iran
| | - Alireza Arabi
- Center for Processing and Characterization of Nanostructured Materials, School of Mechanical Engineering, University of Tehran, P.O.B.14399-57131,1450, Iran
| | - Mudassir Hasan
- College of Engineering, Department of Chemical Engineering, King Khalid University, Abha, 61411, Saudi Arabia
| | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Mika Sillanpää
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, PR China
| | - Mohammed Al-Bahrani
- Air Conditioning and Refrigeration Techniques Engineering Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Iman Ghodrati
- Department of Computer Engineering, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| |
Collapse
|
19
|
Izadi R, Assarian D, Altaee A, Mahinroosta M. Investigation of methods for fuel desulfurization wastewater treatment. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Analytical Review on Membrane Water Filter using Different Materials to Prevent Microbial Activities. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.4.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Drinking water quality monitoring technologies have made significant progress in monitoring water resources and water treatment plants. This paper discusses the adverse effect of microbial contamination and also gives a brief description of the important parameters for drinking water and the technologies currently available used in this field. This paper is focused on studying the requirement for the development of low-cost filter materials that can be suitable as well as economical to be produced on a large-scale for real applications. There are several parameters such as porosity, contact angle, water flux, thickness, microbial activity needed to be focused on in the future to study the transformation of the hydrophilic property on the surface of the water.
Collapse
|
21
|
Water reuse in the food processing industries: A review on pressure-driven membrane processes as reconditioning treatments. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Biopolymer composites for removal of toxic organic compounds in pharmaceutical effluents – a review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Ahmed SF, Mehejabin F, Momtahin A, Tasannum N, Faria NT, Mofijur M, Hoang AT, Vo DVN, Mahlia TMI. Strategies to improve membrane performance in wastewater treatment. CHEMOSPHERE 2022; 306:135527. [PMID: 35780994 DOI: 10.1016/j.chemosphere.2022.135527] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Membrane technology has rapidly gained popularity in wastewater treatment due to its cost-effectiveness, environmentally friendly tools, and elevated productivity. Although membrane performance in wastewater treatment has been reviewed in several past studies, the key techniques for improving membrane performance, as well as their challenges, and solutions associated with the membrane process, were not sufficiently highlighted in those studies. Also, very few studies have addressed hybrid techniques to improve membrane performance. The present review aims to fill those gaps and achieve public health benefits through safe water processing. Despite its higher cost, membrane performance can result in a 36% reduction in flux degradation. The issue with fouling has been identified as one of the key challenges of membrane technology. Chemical cleaning is quite effective in removing accumulated foulant. Fouling mitigation techniques have also been shown to have a positive effect on membrane photobioreactors that handle wastewater effluent, resulting in a 50% and 60% reduction in fouling rates for backwash and nitrogen bubble scouring techniques. Membrane hybrid approaches such as hybrid forward-reverse osmosis show promise in removing high concentrations of phosphorus, ammonium, and salt from wastewater. The incorporation of the forward osmosis process can reject 99% of phosphorus and 97% of ammonium, and the reverse osmosis approach can achieve a 99% salt rejection rate. The control strategies for membrane fouling have not been successfully optimized yet and more research is needed to achieve a realistic, long-term direct membrane filtering operation.
Collapse
Affiliation(s)
- Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh.
| | - Fatema Mehejabin
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Adiba Momtahin
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Nuzaba Tasannum
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Nishat Tasnim Faria
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| | - Dai-Viet N Vo
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia; Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - T M I Mahlia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Selangor, Malaysia
| |
Collapse
|
24
|
Sakamoto H, Hafuka A, Tsuchiya T, Kimura K. Intensive routine cleaning for mitigation of fouling in flat-sheet ceramic membranes used for drinking water production: Unique characteristics of resulting foulants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Dou Y, Yi G, Huang L, Ma Y, Li C, Zhu A, Liu Q, Zhang Q. Hollow fiber composite membranes of poly(paraterphenyl-3-bromo-1,1,1-trifluoroacetone) and PVA/glycine for ethanol dehydration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Shi L, Lai LS, Tay WH, Yeap SP, Yeong YF. Membrane Fabrication for Carbon Dioxide Separation: A Critical Review. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Linggao Shi
- UCSI University Department of Chemical & Petroleum Engineering Faculty of Engineering, Technology and Built Environment Kuala Lumpur Malaysia
- Guangxi University of Science and Technology School of Medical Science 545006 Guangxi China
| | - Li Sze Lai
- UCSI University Department of Chemical & Petroleum Engineering Faculty of Engineering, Technology and Built Environment Kuala Lumpur Malaysia
- UCSI-Cheras Low Carbon Innovation Hub Research Consortium Kuala Lumpur Malaysia
| | - Wee Horng Tay
- Gensonic Technology Persiaran SIBC 12 Seri Iskandar Business Centre 32610 Seri Iskandar Malaysia
| | - Swee Pin Yeap
- UCSI University Department of Chemical & Petroleum Engineering Faculty of Engineering, Technology and Built Environment Kuala Lumpur Malaysia
- UCSI-Cheras Low Carbon Innovation Hub Research Consortium Kuala Lumpur Malaysia
| | - Yin Fong Yeong
- Universiti Teknologi PETRONAS CO2 Research Centre (CO2RES) Chemical Engineering Department Bandar Seri Iskandar Malaysia
| |
Collapse
|
27
|
Du N, Pan L, Liu J, Wang L, Li H, Li K, Xie C, Hang F, Lu H, Li W. Clarification of Limed Sugarcane Juice by Stainless Steel Membranes and Membrane Fouling Analysis. MEMBRANES 2022; 12:910. [PMID: 36295669 PMCID: PMC9611257 DOI: 10.3390/membranes12100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The performance of stainless steel membranes with pore sizes of 100 and 20 nm in clarifying limed sugarcane juice was investigated under different operating conditions. An increase in transmembrane pressure (TMP) for the 20 nm membrane from 2 to 5 bar led to an increase in the average flux from 146.6 Lm-2 h-1 to 187.8 Lm-2 h-1 (approximately 9 h). The increase in crossflow velocity from 2 to 5 m/s led to an increase in the average flux from 111.9 Lm-2 h-1 to 158.1 Lm-2 h-1. The increase in temperature from 70 °C to 90 °C caused an increase in the average flux from 132.8 Lm-2 h-1 to 148.6 Lm-2 h-1. Simultaneously, the test produced a high-quality filtered juice with an average of 1.26 units of purity rise. The purity increased with time, and a 99.99% reduction in turbidity and an average 29.3% reduction in colour were observed. In addition, four classic filtration mathematical models and scanning electron microscopy (SEM) analyses suggested that cake formation is the main mechanism for flux decline. Fourier transform infrared (FTIR) spectrometry and energy-dispersive X-ray (EDX) spectrometry indicated that organic fouling is the main foulant. This study demonstrates the potential of stainless steel membranes as filters for the clarification of raw sugarcane juice.
Collapse
Affiliation(s)
- Nan Du
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lili Pan
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lijun Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Engineering Center for Sugarcane and Canesugar, Guangxi University, Nanning 530004, China
- Collaborative Innovation Center of Guangxi Sugarcane Industry, Guangxi University, Nanning 530004, China
| | - Caifeng Xie
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Fangxue Hang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Haiqin Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wen Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
28
|
Crosslinked polyethersulfone membranes for organic solvent nanofiltration in polar aprotic and halogenated solvents. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Cifuentes-Cabezas M, Vincent-Vela MC, Mendoza-Roca JA, Álvarez-Blanco S. Use of ultrafiltration ceramic membranes as a first step treatment for olive oil washing wastewater. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Zhao Y, Matsui Y, Saito S, Shirasaki N, Matsushita T. Effectiveness of pulse dosing of submicron super-fine powdered activated carbon in preventing transmembrane pressure rise in outside-in-type tubular and inside-out-type monolithic ceramic membrane microfiltrations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Formation and Antibacterial Activity of AlOOH/Ag Composite Coating on Macroporous α-Al2O3 Ceramics. COATINGS 2022. [DOI: 10.3390/coatings12081107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, the modification of macroporous α-Al2O3 ceramics with AlOOH nanostructures impregnated with silver particles is carried out using bicomponent Al/Ag nanoparticles obtained by the simultaneous electrical explosion of Al and Ag wires. Nanoparticle suspension impregnation of porous ceramics followed by oxidation with water is shown to lead to the formation of a continuous AlOOH nanosheet coating on the ceramic surface, with silver releasing on the surface of nanosheets in the form of individual particles sized 5–30 nm. Modified with AlOOH/Ag nanostructures, macroporous α-Al2O3 pellets with a diameter of 11 mm and a thickness of 5 mm show 100% efficiency for water purification from bacteria with a concentration of 105 CFU/mL for 7.5 min at a flow rate of 6.7 mL/min.
Collapse
|
32
|
Dong Y, Wu H, Yang F, Gray S. Cost and efficiency perspectives of ceramic membranes for water treatment. WATER RESEARCH 2022; 220:118629. [PMID: 35609431 DOI: 10.1016/j.watres.2022.118629] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/12/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
More robust ceramic membranes with tailorable structures and functions are increasingly employed for water treatment, particularly in some harsh applications for their ultra-long service lifespan due to their high mechanical, structural, chemical and thermal stability and anti-fouling properties. Decreasing cost and enhancing efficiency are two key but quite challenging application-oriented issues for broader and larger-scale engineering application of current ceramic membranes, and are required to make ceramic membranes a highly efficient and economic water treatment technique. In this review, we critically discuss these two significant concerns of both cost and efficiency for water treatment ceramic membranes, focusing on an overview of various advanced strategies and mechanism insights. A brief up-to-date discussion is first introduced about recent developments of ceramic membranes covering the major advances of novel membranes and applications. Then some promising strategies for decreasing the cost of ceramic membranes are discussed, including membrane material cost and processing cost. To fully address the issue of moderate efficiency with single separation function, valuable and considerable insights are provided into recent major progress and mechanism understandings in application with other unit processes, such as advanced oxidation and electrochemistry techniques, to significantly enhance treatment efficiency. Subsequently, a review of recent ceramic membrane applications emphasizing harsh operating environments is presented, such as oil-water separation, saline water, refractory organic and emerging contaminant wastewater treatment. Finally, engineering application, conclusions, and future perspectives of ceramic membrane for water treatment applications are critically discussed offering new insight based on understanding the issues of cost and efficiency.
Collapse
Affiliation(s)
- Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Hui Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Stephen Gray
- Institute for Sustainable Industries & Liveable Cities, Victoria University, PO Box 14428, Melbourne, Australia
| |
Collapse
|
33
|
Abstract
In recent years, anaerobic membrane bioreactor (AnMBRs) technology, a combination of a biological reactor and a selective membrane process, has received increasing attention from both industrialists and researchers. Undoubtedly, this is due to the fact that AnMBRs demonstrate several unique advantages. Firstly, this paper addresses fundamentals of the AnMBRs technology and subsequently provides an overview of the current state-of-the art in the municipal and domestic wastewaters treatment by AnMBRs. Since the operating conditions play a key role in further AnMBRs development, the impact of temperature and hydraulic retention time (HRT) on the AnMBRs performance in terms of organic matters removal is presented in detail. Although membrane technologies for wastewaters treatment are known as costly in operation, it was clearly demonstrated that the energy demand of AnMBRs may be lower than that of typical wastewater treatment plants (WWTPs). Moreover, it was indicated that AnMBRs have the potential to be a net energy producer. Consequently, this work builds on a growing body of evidence linking wastewaters treatment with the energy-efficient AnMBRs technology. Finally, the challenges and perspectives related to the full-scale implementation of AnMBRs are highlighted.
Collapse
|
34
|
Xue N, Cui Y, Xiao H, Wang Y, Huang Y, Huang X, Shi B. Collagen fiber membrane as multi-functional support enabled rational design of ultrahigh-flux separation membrane for the remediation of oil contamination in water. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128649. [PMID: 35299108 DOI: 10.1016/j.jhazmat.2022.128649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/14/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Membrane separation is a promising approach for the remediation of oil contamination in water. High-flux separation of membrane relies on the rational design of ultrathin active layer to significantly reduce mass transfer distance for achieving high separation flux, while the ultrathin active layer is usually fragile with poor mechanical strength, which has to be supported on a support. Herein, we employed collagen fiber membrane (CFM) as multi-functional support for the in-situ growth of polyacrylonitrile (PAN) layer by electrospinning to prepare the high-performance PAN/CFM composite membrane. Due to the amphiphilic nature and strong capillary effect, CFM played the role as multi-functional support to provide separation effectiveness and boosted separation flux. The PAN/CFM composite membrane enabled ultrahigh separation flux (e.g., 51751.59 L m-2 h-1 bar-1) to a variety of oil-in-water emulsion, which was one order of magnitude higher than that of commercial polyethersulfone membrane and 1.86-fold to that of cellulose acetate membrane. Furthermore, the PAN/CFM composite membrane retained high separation flux (e.g., 11046.97 L m-2 h-1 bar-1) during the 5th separation cycle, providing appreciable anti-fouling capability. Therefore, our findings provided a promising way to effectively resolve the problem of oil contamination in water.
Collapse
Affiliation(s)
- Ni Xue
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Yiwen Cui
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Hanzhong Xiao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Yujia Wang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Yawen Huang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Xin Huang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China; Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China; Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
35
|
Yang W, Guo Q, Duan D, Wang T, Liu J, Du X, Liu Y, Xia S. Characteristics of flat-sheet ceramic ultrafiltration membranes for lake water treatment: A pilot study. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
A Brief Review of the Status of Low-Pressure Membrane Technology Implementation for Petroleum Industry Effluent Treatment. MEMBRANES 2022; 12:membranes12040391. [PMID: 35448361 PMCID: PMC9029438 DOI: 10.3390/membranes12040391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022]
Abstract
Low-pressure membrane technology (ultrafiltration and microfiltration) has been applied to two key effluents generated by the petroleum industry: produced water (PW) from oil exploration, a significant proportion being generated offshore, and onshore refinery/petrochemical effluent. PW is treated physicochemically to remove the oil prior to discharge, whereas the onshore effluents are often treated biologically to remove both the suspended and dissolved organic fractions. This review examines the efficacy and extent of implementation of membrane technology for these two distinct applications, focusing on data and information pertaining to the treatment of real effluents at large/full scale. Reported data trends from PW membrane filtration reveal that, notwithstanding extensive testing of ceramic membrane material for this duty, the mean fluxes sustained are highly variable and generally insufficiently high for offshore treatment on oil platforms where space is limited. This appears to be associated with the use of polymer for chemically-enhanced enhanced oil recovery, which causes significant membrane fouling impairing membrane permeability. Against this, the application of MBRs to onshore oil effluent treatment is well established, with a relatively narrow range of flux values reported (9−17 L·m−2·h−1) and >80% COD removal. It is concluded that the prospects of MBRs for petroleum industry effluent treatment are more favorable than implementation of membrane filtration for offshore PW treatment.
Collapse
|
37
|
Feng X, Peng D, Zhu J, Wang Y, Zhang Y. Recent advances of loose nanofiltration membranes for dye/salt separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120228] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Goswami KP, Pakshirajan K, Pugazhenthi G. Process intensification through waste fly ash conversion and application as ceramic membranes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151968. [PMID: 34863768 DOI: 10.1016/j.scitotenv.2021.151968] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Improper disposal of huge quantities of fly ash generated by thermal power plants and few other industries contributes to both air and water pollution, and therefore, recent advancements in research are focused toward utilizing this waste material in fabricating useful membranes. This article presents an overview of various methods used to fabricate fly ash-based membranes and critical parameters affecting the same. Fly ash-based membranes also act as the support for fabricating composite membranes and therefore, different means of coating the support membranes are discussed in this paper. Among various methods of membrane fabrication, extrusion method can be considered for bulk production of membranes, which is a pre-requisite for industrial implementation. The article also throws light on a wide range of wastewater that have been successfully treated using these fly ash-based ceramic membranes. However, the use of these membranes should be avoided in acidic solutions as it may cause leaching of heavy metals present in fly ash, causing health hazards. Most of these membranes function on the basis of size exclusion principle, whereas membranes with charge-based separation are also well known. Both of these types of membranes are discussed in this work. Utilization of fly ash-based membranes in separation processes not only reduce the cost associated with the process, but will also intensify the process through various other means such as reduced energy consumption, environmental safety and so on. Thus, the main focus of this review is to present the readers with development and important future directions in this research topic.
Collapse
Affiliation(s)
- Kakali Priyam Goswami
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - G Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
39
|
Manzoor K, Khan SJ, Khan A, Abbasi H, Zaman WQ. Woven-fiber microfiltration coupled with anaerobic forward osmosis membrane bioreactor treating textile wastewater: Use of fertilizer draw solutes for direct fertigation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Cao L, Zhang Y, Ni L, Feng X. A novel loosely structured nanofiltration membrane bioreactor for wastewater treatment: Process performance and membrane fouling. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Cha M, Boo C, Song IH, Park C. Investigating the potential of ammonium retention by graphene oxide ceramic nanofiltration membranes for the treatment of semiconductor wastewater. CHEMOSPHERE 2022; 286:131745. [PMID: 34364232 DOI: 10.1016/j.chemosphere.2021.131745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Ceramic membranes with high chemical and fouling resistance can play a critical role in treating industrial wastewater. In the present study, we demonstrate the fabrication of graphene oxide (GO) assembled ceramic nanofiltration (NF) membranes that provide effective ammonium retention and excellent fouling resistance for treating semiconductor wastewater. The GO-ceramic NF membranes were prepared via a layer-by-layer (LbL) assembly of GO and polyethyleneimine (PEI) on a ceramic ultrafiltration (UF) substrate. The successful fabrication of the GO-ceramic NF membranes was verified through surface characterization and pore size evaluation. We also investigated the performance of GO-ceramic NF membranes assembled with different numbers of bilayers for the rejection of ammonium ions. GO-ceramic NF membranes with three GO-PEI bilayers exhibited 8.4- and 3.2-times higher ammonium removal with simulated and real semiconductor wastewater, respectively, compared to the pristine ceramic UF substrate. We also assessed flux recovery after filtration using real semiconductor wastewater samples to validate the lower fouling potential of the GO-ceramic NF membranes. Results indicate that flux recovery increases from 39.1 % in the pristine UF substrate to 71.0 % and 90.8 % for the three- and ten-bilayers GO-ceramic NF membranes, respectively. The low-fouling GO-ceramic NF membranes developed in this study are effective and promising options for the removal of ammonium ions from semiconductor wastewater.
Collapse
Affiliation(s)
- Minju Cha
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea
| | - Chanhee Boo
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - In-Hyuck Song
- Ceramic Materials Division, Korea Institute of Materials Science, Changwon, Gyeongnam, 51508, South Korea
| | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
42
|
Optimization of a High-Performance Poly(diallyl dimethylammonium chloride)-alumina-perfluorooctanoate Intercalated Ultrafiltration Membrane for Treating Emulsified Oily Wastewater via Response Surface Methodology Approach. MEMBRANES 2021; 11:membranes11120956. [PMID: 34940457 PMCID: PMC8704475 DOI: 10.3390/membranes11120956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022]
Abstract
This research aimed to investigate the ultrafiltration of water from emulsified oily wastewater through the application of surface-functionalized ceramic membrane to enhance its water permeability based on optimized parameters using a cross-flow filtration system. The interactive effects of feed concentration (10–1000 ppm), pH (4–10), and pressure (0–3 bar) on the water flux and oil rejection were investigated. Central composite design (CCD) from response surface methodology (RSM) was employed for statistical analysis, modeling, and optimization of operating conditions. The analysis of variance (ANOVA) results showed that the oil rejection and water flux models were significant with p-values of 0.0001 and 0.0075, respectively. In addition, good correlation coefficients of 0.997 and 0.863 were obtained for the oil rejection and water flux models, respectively. The optimum conditions for pressure, pH, and feed concentration were found to be 1.5 bar, pH 8.97, and 10 ppm, respectively with water flux and oil rejection maintained at 152 L/m2·h and 98.72%, respectively. Hence, the functionalized ultrafiltration ceramic membrane enables the separation efficiency of the emulsified oil in water to be achieved.
Collapse
|
43
|
Fabrication of thin-film composite hollow fiber membranes in modules for concentrating pharmaceuticals and separating sulphate from high salinity brine in the chlor-alkali process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Zhao Y, Qiu Y, Mamrol N, Ren L, Li X, Shao J, Yang X, van der Bruggen B. Membrane bioreactors for hospital wastewater treatment: recent advancements in membranes and processes. Front Chem Sci Eng 2021; 16:634-660. [PMID: 34849268 PMCID: PMC8617552 DOI: 10.1007/s11705-021-2107-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/15/2021] [Indexed: 11/26/2022]
Abstract
Discharged hospital wastewater contains various pathogenic microorganisms, antibiotic groups, toxic organic compounds, radioactive elements, and ionic pollutants. These contaminants harm the environment and human health causing the spread of disease. Thus, effective treatment of hospital wastewater is an urgent task for sustainable development. Membranes, with controllable porous and nonporous structures, have been rapidly developed for molecular separations. In particular, membrane bioreactor (MBR) technology demonstrated high removal efficiency toward organic compounds and low waste sludge production. To further enhance the separation efficiency and achieve material recovery from hospital waste streams, novel concepts of MBRs and their applications are rapidly evolved through hybridizing novel membranes (non hydrophilic ultrafiltration/microfiltration) into the MBR units (hybrid MBRs) or the MBR as a pretreatment step and integrating other membrane processes as subsequent secondary purification step (integrated MBR-membrane systems). However, there is a lack of reviews on the latest advancement in MBR technologies for hospital wastewater treatment, and analysis on its major challenges and future trends. This review started with an overview of main pollutants in common hospital waste-water, followed by an understanding on the key performance indicators/criteria in MBR membranes (i.e., solute selectivity) and processes (e.g., fouling). Then, an in-depth analysis was provided into the recent development of hybrid MBR and integrated MBR-membrane system concepts, and applications correlated with wastewater sources, with a particular focus on hospital wastewaters. It is anticipated that this review will shed light on the knowledge gaps in the field, highlighting the potential contribution of hybrid MBRs and integrated MBR-membrane systems toward global epidemic prevention.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Chemical Engineering, KU Leuven, B-3001 Leuven, Belgium
| | - Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Natalie Mamrol
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Longfei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xin Li
- Department of Chemical Engineering, KU Leuven, B-3001 Leuven, Belgium
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xing Yang
- Department of Chemical Engineering, KU Leuven, B-3001 Leuven, Belgium
| | | |
Collapse
|
45
|
Guo H, Li X, Yang W, Yao Z, Mei Y, Peng LE, Yang Z, Shao S, Tang CY. Nanofiltration for drinking water treatment: a review. Front Chem Sci Eng 2021; 16:681-698. [PMID: 34849269 PMCID: PMC8617557 DOI: 10.1007/s11705-021-2103-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/28/2021] [Indexed: 12/30/2022]
Abstract
In recent decades, nanofiltration (NF) is considered as a promising separation technique to produce drinking water from different types of water source. In this paper, we comprehensively reviewed the progress of NF-based drinking water treatment, through summarizing the development of materials/fabrication and applications of NF membranes in various scenarios including surface water treatment, groundwater treatment, water reuse, brackish water treatment, and point of use applications. We not only summarized the removal of target major pollutants (e.g., hardness, pathogen, and natural organic matter), but also paid attention to the removal of micropollutants of major concern (e.g., disinfection byproducts, per- and polyfluoroalkyl substances, and arsenic). We highlighted that, for different applications, fit-for-purpose design is needed to improve the separation capability for target compounds of NF membranes in addition to their removal of salts. Outlook and perspectives on membrane fouling control, chlorine resistance, integrity, and selectivity are also discussed to provide potential insights for future development of high-efficiency NF membranes for stable and reliable drinking water treatment.
Collapse
Affiliation(s)
- Hao Guo
- Membrane-based Environmental & Sustainable Technology (MembEST) Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006 China
| | - Wulin Yang
- College of Environmental Science and Engineering, Peking University, Beijing, 100871 China
| | - Zhikan Yao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Ying Mei
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087 China
| | - Lu Elfa Peng
- Membrane-based Environmental & Sustainable Technology (MembEST) Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Zhe Yang
- Membrane-based Environmental & Sustainable Technology (MembEST) Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan, 430072 China
| | - Chuyang Y. Tang
- Membrane-based Environmental & Sustainable Technology (MembEST) Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
46
|
Reig M, Vecino X, Cortina JL. Use of Membrane Technologies in Dairy Industry: An Overview. Foods 2021; 10:foods10112768. [PMID: 34829049 PMCID: PMC8620702 DOI: 10.3390/foods10112768] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
The use of treatments of segregated process streams as a water source, as well as technical fluid reuse as a source of value-added recovery products, is an emerging direction of resource recovery in several applications. Apart from the desired final product obtained in agro-food industries, one of the challenges is the recovery or separation of intermediate and/or secondary metabolites with high-added-value compounds (e.g., whey protein). In this way, processes based on membranes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), could be integrated to treat these agro-industrial streams, such as milk and cheese whey. Therefore, the industrial application of membrane technologies in some processing stages could be a solution, replacing traditional processes or adding them into existing treatments. Therefore, greater efficiency, yield enhancement, energy or capital expenditure reduction or even an increase in sustainability by producing less waste, as well as by-product recovery and valorization opportunities, could be possible, in line with industrial symbiosis and circular economy principles. The maturity of membrane technologies in the dairy industry was analyzed for the possible integration options of membrane processes in their filtration treatment. The reported studies and developments showed a wide window of possible applications for membrane technologies in dairy industry treatments. Therefore, the integration of membrane processes into traditional processing schemes is presented in this work. Overall, it could be highlighted that membrane providers and agro-industries will continue with a gradual implementation of membrane technology integration in the production processes, referring to the progress reported on both the scientific literature and industrial solutions commercialized.
Collapse
Affiliation(s)
- Mònica Reig
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; (X.V.); (J.L.C.)
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-4016184
| | - Xanel Vecino
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; (X.V.); (J.L.C.)
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain
| | - José Luis Cortina
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; (X.V.); (J.L.C.)
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain
- CETaqua, Carretera d’Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| |
Collapse
|
47
|
Bousbih S, Belhadj Ammar R, Ben Amar R, Dammak L, Darragi F, Selmane E. Synthesis and Evaluation of Asymmetric Mesoporous PTFE/Clay Composite Membranes for Textile Wastewater Treatment. MEMBRANES 2021; 11:membranes11110850. [PMID: 34832079 PMCID: PMC8625523 DOI: 10.3390/membranes11110850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
Asymmetric mesoporous composite PTFE membranes wit 40, 50, and 85 wt.% of a clay (kaolin) were fabricated and characterized using a scanning electron microscope equipped with EDX for morphology and elemental analysis. The surface chemistry of the membranes was checked using Fourier transform infrared spectroscopy. The effect of incorporating the clay on the hydrophilicity, permeability, morphology, and antifouling properties of the fabricated membranes was investigated. It was observed that incorporating kaolin particles improved the mechanical properties but decreased the contact angle of the membranes, thereby resulting in an improvement in the membrane permeability. The performance of the three composite UF membranes was evaluated through the treatment of a real textile effluent sample containing indigo dye. The results confirmed that these membranes are effective in the removal of COD, color, and turbidity. Indeed, at a transmembrane pressure of 2.5 bar, almost total removal of the turbidity, COD removal > 85%, and color removal > 97% were attained. Furthermore, membrane A85 (with 85% clay) showed the best performance, with a water flux of 659.1 L·h-1·m-2·bar-1. This study highlights the potential of incorporating low-cost clay material for the enhancement of the performance of mixed organic/inorganic matrix membranes, which can be applied to textile wastewater treatment.
Collapse
Affiliation(s)
- Saida Bousbih
- Département de Géologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis 2092, Tunisia; (S.B.); (F.D.)
| | - Rihab Belhadj Ammar
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est, UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais, France; (R.B.A.); (L.D.)
- Laboratoire de Chimie Analytique et d’Électrochimie, Département de Chimie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis 2092, Tunisia;
| | - Raja Ben Amar
- Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, BP 1141, Sfax 3018, Tunisia
- Correspondence:
| | - Lasâad Dammak
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est, UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais, France; (R.B.A.); (L.D.)
| | - Fadila Darragi
- Département de Géologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis 2092, Tunisia; (S.B.); (F.D.)
| | - Emna Selmane
- Laboratoire de Chimie Analytique et d’Électrochimie, Département de Chimie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis 2092, Tunisia;
| |
Collapse
|
48
|
Tai ZS, Othman MHD, Mustafa A, Ravi J, Wong KC, Koo KN, Hubadillah SK, Azali MA, Alias NH, Ng BC, Mohamed Dzahir MIH, Ismail AF, Rahman MA, Jaafar J. Development of hydrophobic polymethylhydrosiloxane/tetraethylorthosilicate (PMHS/TEOS) hybrid coating on ceramic membrane for desalination via membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Çelebi MD, Dilaver M, Kobya M. A study of inline chemical coagulation/precipitation-ceramic microfiltration and nanofiltration for reverse osmosis concentrate minimization and reuse in the textile industry. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2457-2471. [PMID: 34810324 DOI: 10.2166/wst.2021.439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Reverse osmosis concentrate (ROC) is one of the major drawbacks in membrane treatment technologies specifically due to the scale-forming ions. It is important to remove these ions from ROC to enhance total water recovery and reuse in the textile industry that is the largest water-consumer and polluter industry. In this work, coagulation/high pH precipitation (CP) integrated with ceramic microfiltration (CMF) was studied as a pre-treatment method followed by nanofiltration (NF) to increase the efficiency of water recovery. To prevent organic fouling, ferric chloride (FeCl3) was applied at a concentration of 3 mM, and ceramic membranes were used for the removal of non-precipitating crystals and/or suspended solids (at high pH) before the NF processes. The CP-CMF method successfully removed calcium (Ca2+), magnesium (Mg2+), silica (SiO2), and TOC up to 97, 83, 92, and 87% respectively, which resulted in higher performance of the NF process. Moreover, this method provided higher flux at lower pressure that ultimately increased overall water recovery of the NF process to achieve near-zero liquid discharge (n-ZLD). A cost-benefit estimation showed that a high-quality effluent (COD<5 mg/L; conductivity 700<μS/cm; negligible residual color) can be generated and recycled in the textile industry at an economical cost (approximately 0.97 USD/m3). Therefore, ROC minimization and water recovery can help to achieve n-ZLD using the CP-CMF/NF method.
Collapse
Affiliation(s)
- Mehtap Dursun Çelebi
- Department of Environmental Engineering, Gebze Technical University, Çayırova 41400, Kocaeli, Turkey E-mail: ; TUBITAK Marmara Research Center, Environment and Cleaner Production Institute, Gebze 41470, Kocaeli, Turkey
| | - Mehmet Dilaver
- TUBITAK Marmara Research Center, Environment and Cleaner Production Institute, Gebze 41470, Kocaeli, Turkey
| | - Mehmet Kobya
- Department of Environmental Engineering, Gebze Technical University, Çayırova 41400, Kocaeli, Turkey E-mail: ; Department of Environmental Engineering, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| |
Collapse
|
50
|
Eray E, Candelario VM, Boffa V. Ceramic Processing of Silicon Carbide Membranes with the Aid of Aluminum Nitrate Nonahydrate: Preparation, Characterization, and Performance. MEMBRANES 2021; 11:714. [PMID: 34564531 PMCID: PMC8464978 DOI: 10.3390/membranes11090714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
The development of a low-cost and environmentally-friendly procedure for the fabrication of silicon carbide (SiC) membranes while achieving good membrane performance is an important goal, but still a big challenge. To address this challenge, herein, a colloidal coating suspension of sub-micron SiC powders was prepared in aqueous media by employing aluminum nitrate nonahydrate as a sintering additive and was used for the deposition of a novel SiC membrane layer onto a SiC tubular support by dip-coating. The sintering temperature influence on the structural morphology was studied. Adding aluminum nitrate nonahydrate reduced the sintering temperature of the as-prepared membrane compared to conventional SiC membrane synthesis. Surface morphology, pore size distribution, crystalline structure, and chemical and mechanical stability of the membrane were characterized. The membrane showed excellent corrosion resistance in acidic and basic medium for 30 days with no significant changes in membrane properties. The pure water permeance of the membrane was measured as 2252 L h-1 m-2 bar-1. Lastly, the final membrane with 0.35 µm mean pore size showed high removal of oil droplets (99.7%) in emulsified oil-in-water with outstanding permeability. Hence, the new SiC membrane is promising for several industrial applications in the field of wastewater treatment.
Collapse
Affiliation(s)
- Esra Eray
- Department of Research and Development, LiqTech Ceramics A/S, Industriparken 22C, DK-2750 Ballerup, Denmark;
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg Øst, Denmark;
| | - Victor Manuel Candelario
- Department of Research and Development, LiqTech Ceramics A/S, Industriparken 22C, DK-2750 Ballerup, Denmark;
| | - Vittorio Boffa
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg Øst, Denmark;
| |
Collapse
|