1
|
Bouaziz N, Kouira O, Aouaini F, Bukhari L, Knani S, Znaidia S, Lamine AB. Adsorption of antibiotics by bentonite-chitosan composite: Phenomenological modeling and physical investigation of the adsorption process. Int J Biol Macromol 2023:125156. [PMID: 37270136 DOI: 10.1016/j.ijbiomac.2023.125156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
The increased use of antibiotics worldwide turned into a serious preoccupation due to their environmental and health impacts. Since the majority of antibiotic residuals are hardly eliminated from wastewater, based on usual methods, other treatments receive considerable attention. Adsorption is known as the most effective method of the treatment of antibiotics. In this paper, the adsorption isotherms of doripenem, ampicillin, and amoxicillin on bentonite-chitosan composite are determined at three temperatures, T = 303.15, 313.15 and 323.15 K, which are used to achieve a theoretical investigation of the removal phenomenon, based on a statistical physics theory. Three analytical models are utilized to describe the AMO, AMP, and DOR adsorption phenomena at the molecular level. From the fitting results, all antibiotic adsorption on a BC adsorbent is associated with the monolayer formation with one type of site. Concerning the number of adsorbed molecules per site (n), it is concluded that multi-docking (n < 1) and multi-molecular (n > 1) phenomena are feasible for AMO, AMP, and DOR adsorption on BC. The adsorption amounts at saturation of the BC adsorbent, deduced by the monolayer model, are found to be 70.4-88.0 mg/g for doripenem, 57.8-79.2 mg/g for ampicillin and 38.6-67.5 mg/g for amoxicillin indicating that the antibiotics adsorption performance of BC was greatly depended on temperature where the adsorption capacities increased with the increment of this operating variable. All adsorption systems are demonstrated by a calculation of the energy of adsorption, considering that the extrication of these pollutants implies physical interactions. The thermodynamic interpretation confirms the spontaneous and feasible nature of the adsorption of the three antibiotics on BC adsorbent. In brief, BC sample is regarded as a promising adsorbent to extract antibiotics from water and presents important potentials to be effected in wastewater handling at industrial level.
Collapse
Affiliation(s)
- Nadia Bouaziz
- Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019 Monastir, Tunisia.
| | - Oumayma Kouira
- Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019 Monastir, Tunisia
| | - Fatma Aouaini
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Lamies Bukhari
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Salah Knani
- Department of Physics, College of Science, Northern Border University, Arar, Saudi Arabia.
| | - Sami Znaidia
- College of Sciences and Arts in Mahayel Asir, Department of Physics, King Khalid University, Abha, Saudi Arabia
| | - Abdelmottaleb Ben Lamine
- Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019 Monastir, Tunisia
| |
Collapse
|
2
|
Abstract
The spent automobile catalysts (SAC) is the major secondary source of palladium and the production of SAC is increasing rapidly over years. The price of palladium keeps rising over the years, which demonstrates its preciousness and urgent industrial demand. Recovering palladium from the spent automobile catalysts benefits a lot from economic and environmental protection aspects. This review aims to provide some new considerations of recovering palladium from the spent automotive catalysts by summarizing and discussing both hydrometallurgical and pyrometallurgical methods. The processes of pretreatment, leaching/extraction, and separation/recovery of palladium from the spent catalysts are introduced, and related reaction mechanisms and process flows are given, especially detailed for hydrometallurgical methods. Hydrometallurgical methods such as chloride leaching with oxidants possess a high selectivity of palladium and low consumption of energy, and are cost-effective and flexible for different volume feeds compared with pyrometallurgical methods. The recovery ratios of palladium and other platinum-group metals should be the focus of competition since their prices have been rapidly increased over the years, and hence more efficient extractants with high selectivity of palladium even in the complexed leachate should be proposed in the future.
Collapse
|
3
|
Jiang L, Liu Y, Meng X, Xian M, Xu C. Adsorption behavior study and mechanism insights into novel isothiocyanate modified material towards Pd2+. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Li L, Xu C, Peng X, Zhang M, Zeb S, Jiang X, Liu Y, Cui Y, Sun G. Extraction and separation of Pd(II) by N, N'-diethyl-N, N'-dicyclohexylmalonamide in a nitric acid system. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Recovery of Platinum from a Spent Automotive Catalyst through Chloride Leaching and Solvent Extraction. RECYCLING 2021. [DOI: 10.3390/recycling6020027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Considering economics and environmental sustainability, recycling of critical metals from end-of-life devices should be a priority. In this work the hydrometallurgical treatment of a spent automotive catalytic converter (SACC) using HCl with CaCl2 as a leaching medium, and solvent extraction (SX) with a thiodiglycolamide derivative, is reported. The aim was to develop a leaching scheme allowing high Pt recoveries and minimizing Al dissolution, facilitating the application of SX. The replacement of part of HCl by CaCl2 in the leaching step is viable, without compromising Pt recovery (in the range 75–85%), as found for the mixture 2 M CaCl2 + 8 M HCl when compared to 11.6 M HCl. All leaching media showed good potential to recover Ce, particularly for higher reaction times and temperatures. Regarding SX, results achieved with a model solution were promising, but SX for Pt separation from the real SACC solution did not work as expected. For the adopted experimental conditions, the tested thiodiglycolamide derivative in toluene revealed a very good loading performance for both Pt and Fe, but Fe removal and Pt stripping from the organic phases after contact with the SACC solution were not successfully accomplished. Hence, the reutilization of the organic solvent needs improvement.
Collapse
|
6
|
Feng S, Huang K, Huang Z, Liu G, Zhang G, Gou G. Highly selective extraction of Pd(II) using functionalized molecule of 2-[(2-ethylhexyl)thio]benzoxazole and its Pd(II) extraction mechanism. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Hanada T, Firmansyah ML, Yoshida W, Kubota F, Kolev SD, Goto M. Transport of Rhodium(III) from Chloride Media across a Polymer Inclusion Membrane Containing an Ionic Liquid Metal Ion Carrier. ACS OMEGA 2020; 5:12989-12995. [PMID: 32548483 PMCID: PMC7288575 DOI: 10.1021/acsomega.0c00867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Efficient and selective transport of rhodium(III) across a polymer inclusion membrane (PIM) from a 0.1 mol dm-3 HCl feed solution, also containing iron(III), to a receiving solution containing 0.1 mol dm-3 HCl and 4.9 mol dm-3 NH4Cl was achieved using a phosphonium-type ionic liquid, trioctyl(dodecyl)phosphonium chloride (P88812Cl), as the metal ion carrier. The optimum PIM composition for the Rh(III) transport was 50 wt % poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP), 30 wt % P88812Cl, and 20 wt % plasticizer 2-nitrophenyl octyl ether (2NPOE). The driving force for the Rh(III) transport was suggested to be the concentration difference of the chloride ion between the feed and the receiving solutions. More than 70% rhodium(III) could be recovered from the receiving solution, and no transport of iron(III) was observed; however, the two metal ions cannot be separated by liquid-liquid extraction. This is the first report of selective transport of rhodium(III) across a polymer inclusion membrane.
Collapse
Affiliation(s)
- Takafumi Hanada
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Mochamad Lutfi Firmansyah
- Department
of Chemistry, Faculty of Science and Technology, Airlangga University, Ji. Dr. Ir. H. Soekarno, Surabaya 60115, Indonesia
| | - Wataru Yoshida
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Fukiko Kubota
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Spas D. Kolev
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Masahiro Goto
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- Center
for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Cieszynska A, Wieczorek D. Efficiency and Mechanism of Palladium(II) Extraction from Chloride Media with N-Hexadecylpiperidinium Chloride. J SOLUTION CHEM 2020. [DOI: 10.1007/s10953-020-00981-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractN-hexadecylpiperidinium chloride ([PIP16]Cl) has been synthesized and examined as a reagent for extractive recovery of palladium(II) from hydrochloric acid solutions. The effect of the contact time between the two phases, temperature and the concentration of palladium(II) ions, the extractant and HCl, were also evaluated. The anion-exchange mechanism of palladium(II) extraction with [PIP16]Cl was confirmed by Job’s method, UV–VIS, IR and 1H NMR analysis. The extraction of palladium(II) from 0.1 mol·L−1 HCl solution with [PIP16]Cl in toluene was very effective and amounted to almost 100%. Increases in both HCl and NaCl concentrations and increasing temperature had negative effects on the effectiveness of palladium(II) extraction. [PIP16]Cl also exhibited selectivity to extraction of palladium(II) over some other metals: rhodium(III), iron(III), aluminium(III), copper(II) and lead(II). From among the examined stripping solutions the most effective were 0.5 mol·L−1 aqueous solution of ammonia and 0.1 mol·L−1 thiourea in 0.1 or 1 mol·L−1 HCl. The percentage of palladium(II) stripped from loaded organic phase reached nearly 100%. The feasibility of regeneration of [PIP16]Cl and its reuse in subsequent extractions was also investigated.
Collapse
|
9
|
Experimental and DFT studies on the selective adsorption of Pd(II) from wastewater by pyromellitic-functionalized poly(glycidyl methacrylate) microsphere. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Nanusha MY, Carlier JD, Carvalho GI, Costa MC, Paiva AP. Separation and recovery of Pd and Fe as nanosized metal sulphides by combining solvent extraction with biological strategies based on the use of sulphate-reducing bacteria. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|