1
|
Cao DQ, Jin Y, Liu H, Lei SC, Song YX, Han JL, Hao XD, Ma MG, Zhang Z, Wu R. Concentration properties of biopolymers via dead-end forward osmosis. Int J Biol Macromol 2024; 270:132338. [PMID: 38763237 DOI: 10.1016/j.ijbiomac.2024.132338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Extracellular polymeric substances (EPSs) in excess sludge of wastewater treatment plants are valuable biopolymers that can act as recovery materials. However, effectively concentrating EPSs consumes a significant amount of energy. This study employed novel energy-saving pressure-free dead-end forward osmosis (DEFO) technology to concentrate various biopolymers, including EPSs and model biopolymers [sodium alginate (SA), bovine serum albumin (BSA), and a mixture of both (denoted as BSA-SA)]. The feasibility of the DEFO technology was proven and the largest concentration ratios for these biopolymers were 94.8 % for EPSs, 97.1 % for SA, 97.8 % for BSA, and 98.4 % for BSA-SA solutions. An evaluation model was proposed, incorporating the FO membrane's water permeability coefficient and the concentrated substances' osmotic resistance, to describe biopolymers' concentration properties. Irrespective of biopolymer type, the water permeability coefficient decreased with increasing osmotic pressure, remained constant with increasing feed solution (FS) concentration, increased with increasing crossing velocity in the draw side, and showed little dependence on draw salt type. In the EPS DEFO concentration process, osmotic resistance was minimally impacted by osmotic pressure, FS concentration, and crossing velocity, and monovalent metal salts were proposed as draw solutes. The interaction between reverse diffusion metal cations and EPSs affected the structure of the concentrated substances on the FO membrane, thus changing the osmotic resistance in the DEFO process. These findings offer insights into the efficient concentration of biopolymers using DEFO.
Collapse
Affiliation(s)
- Da-Qi Cao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China.
| | - Yan Jin
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Hui Liu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Shi-Cheng Lei
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yi-Xuan Song
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jia-Lin Han
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100061, China
| | - Xiao-Di Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ming-Guo Ma
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhongguo Zhang
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China
| | - Rongling Wu
- Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China; Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
| |
Collapse
|
2
|
Li C, Ma Y, Zhi X, Peng G. Optimization of ultrasonic assisted membrane strategy for saponins from Gynostemma Pentaphyllum with response surface methodology. Food Sci Biotechnol 2023; 32:319-328. [PMID: 36778093 PMCID: PMC9905334 DOI: 10.1007/s10068-022-01196-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Gynostemma pentaphyllum saponin has a variety of biological properties. Classic separation methods of saponin, such as resin absorption and preparative chromatography are limited by environmental pollution and high cost. In the study, ultrasonic assisted membrane separation was firstly used to purify saponin from Gynostemma pentaphyllum. Total proteins, polysaccharides, saponin, gypenoside A and rutin were selected as indexes to optimize the pretreatment and purification parameters by response surface methodology. The fitted models were significant (p < 0.05) and the optimal conditions were: (1) removing protein and polysaccharides by MWCO 10,000 Da, ultrasonic power 400 W and pH 7.8; (2) separation flavonoids from saponin by MWCO 1000 Da, ultrasonic power 300 W and pH 7.9. The difficulty in separating saponin from flavonoids was solved by releasing flavonoids from micelles with ultrasonic assisted membrane method. The saponin content in Gynostemma pentaphyllum extracts reached 82.81%, which was more than four times of that obtained with resin adsorption method. The protective effect of saponins on SH-SY5Y cells injury induced by H2O2 was better than that of Gynostemma pentaphyllum extracts. The study suggested that ultrasonic assisted membrane method would be widely applied in the preparation of food materials.
Collapse
Affiliation(s)
- Cunyu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 People’s Republic of China
- Jiangsu Collaborative Innovation Centers of Chinese Medicinal Resources Industrialization, Nanjing, 210023 People’s Republic of China
- Jiangsu Engineering Research Centers of Classical Prescription, Nanjing, 210023 People’s Republic of China
| | - Yun Ma
- The Fourth People’s Hospital of Taizhou City, Taizhou, 225300 People’s Republic of China
| | - Xinglei Zhi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 People’s Republic of China
- Jiangsu Collaborative Innovation Centers of Chinese Medicinal Resources Industrialization, Nanjing, 210023 People’s Republic of China
| | - Guoping Peng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 People’s Republic of China
- Jiangsu Collaborative Innovation Centers of Chinese Medicinal Resources Industrialization, Nanjing, 210023 People’s Republic of China
| |
Collapse
|
3
|
Cao DQ, Liu XD, Han JL, Zhang WY, Hao XD, Iritani E, Katagiri N. Recovery of Extracellular Polymeric Substances from Excess Sludge Using High-Flux Electrospun Nanofiber Membranes. MEMBRANES 2023; 13:74. [PMID: 36676881 PMCID: PMC9862183 DOI: 10.3390/membranes13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The recycling of extracellular polymeric substances (EPSs) from excess sludge in wastewater treatment plants has received increasing attention in recent years. Although membrane separation has great potential for use in EPS concentration and recovery, conventional membranes tend to exhibit low water flux and high energy consumption. Herein, electrospun nanofiber membranes (ENMs) were fabricated using polyvinylidene fluoride (PVDF) and used for the recovery of EPSs extracted from the excess sludge using the cation exchange resin (CER) method. The fabricated ENM containing 14 wt.% PVDF showed excellent properties, with a high average water flux (376.8 L/(m2·h)) and an excellent EPS recovery rate (94.1%) in the dead-end filtration of a 1.0 g/L EPS solution at 20 kPa. The ENMs displayed excellent mechanical strength, antifouling properties, and high reusability after five recycles. The filtration pressure had a negligible effect on the average EPS recovery rate and water flux. The novel dead-end filtration with an EPS filter cake on the ENM surface was effective in removing heavy-metal ions, with the removal rates of Pb2+, Cu2+, and Cr6+ being 89.5%, 73.5%, and 74.6%, respectively. These results indicate the potential of nanofiber membranes for use in effective concentration and recycling of EPSs via membrane separation.
Collapse
Affiliation(s)
- Da-Qi Cao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiao-Dan Liu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jia-Lin Han
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Wen-Yu Zhang
- Institute of Soil Environment and Pollution Remediation, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Xiao-Di Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Eiji Iritani
- Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Nobuyuki Katagiri
- Department of Environmental Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
| |
Collapse
|
4
|
Cao DQ, Sun XZ, Zhang WY, Ji YT, Yang XX, Hao XD. News on alginate recovery by forward osmosis: Reverse solute diffusion is useful. CHEMOSPHERE 2021; 285:131483. [PMID: 34329149 DOI: 10.1016/j.chemosphere.2021.131483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The water content in the recycled alginate solutions from aerobic granular sludge was nearly 100%. Forward osmosis (FO) has become an innovative dewatering technology. In this study, the FO concentration of sodium alginate (SA) was investigated using calcium chloride as a draw solute. The reverse solute flux (RSF) of calcium ions in FO had a beneficial effect, contrary to the findings of previous literature. The properties of the concentrated substances formed on the FO membrane on the feed side were analyzed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, verifying that calcium alginate (Ca-Alg), which can be used as a recycled material, was formed on the FO membrane on the feed side owing to the interaction between SA and permeable calcium ions. Water flux increased significantly with the increase in calcium chloride concentration, while the concentration of SA had little influence on the water flux in FO. Based on this discovery, we propose a novel method for the concentration and recovery of alginate, in which the RSF of calcium ions is utilized for recovering Ca-Alg by FO, with calcium chloride as a draw solute.
Collapse
Affiliation(s)
- Da-Qi Cao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing, 100044, China.
| | - Xiu-Zhen Sun
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Wen-Yu Zhang
- Institute of Soil Environment and Pollution Remediation, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Yu-Ting Ji
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xiao-Xuan Yang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xiao-Di Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing, 100044, China.
| |
Collapse
|
5
|
Cao DQ, Tian F, Wang X, Zhang WY, Hao XD, Wang QH. Recovery of polymeric substances from excess sludge: Surfactant-enhanced ultrasonic extraction and properties analysis. CHEMOSPHERE 2021; 283:131181. [PMID: 34146882 DOI: 10.1016/j.chemosphere.2021.131181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/12/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
The recovery of polymeric substances from excess sludge is gaining significant research interest in future wastewater treatment technologies. We present a surfactant-enhanced ultrasonic method to extract mixed polymeric substances with typical functional groups from excess sludge. Four potential reasons were revealed for the higher efficiency upon ultrasonication with surfactant: low surface tension, damage of non-covalent bonds between extracellular polymeric substances and cells, enhanced dissolution of polymeric substances, and release of intracellular polymeric substances caused by cell lysis. The increase in extraction efficiency after the addition of cetyltrimethylammonium bromide and sodium dodecyl sulfate reached the maximum of 76.5% and 53.1%, respectively. The contents of polysaccharides, proteins, and DNA were approximately 50% of the total polymeric substances, and the content of protein was higher than that of polysaccharide; the concentration change of the surfactant had a minimal effect on these contents. For the polymeric substances extracted via ultrasonication with surfactant, the size was smaller than that for the non-surfactant extraction; moreover, the contents of metals decreased significantly (Al: 0.18% → 0%; Na: 0.15% → 0%; Ca: 0.24% → 0.11%), which was probably caused by the interaction between the surfactant and metal ions in the excess sludge. The surfactant had a negligible effect on the properties of polymeric substances, adsorption capacity of polymeric substances for heavy metal ions, and dewatering performance of sludge. The recycled polymeric substances may be used as a substitute for commercial adsorbents of heavy metal ions. Thus, the obtained results provide further insight into the recovery of polymeric substances from excess sludge via the surfactant-enhanced ultrasonic method.
Collapse
Affiliation(s)
- Da-Qi Cao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Feng Tian
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xin Wang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Wen-Yu Zhang
- Institute of Soil Environment and Pollution Remediation, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Xiao-Di Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Qun-Hui Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
6
|
Montroni D, Giusti G, Simoni A, Cau G, Ciavatta C, Marzadori C, Falini G. Metal ion removal using waste byssus from aquaculture. Sci Rep 2020; 10:22222. [PMID: 33335208 PMCID: PMC7746758 DOI: 10.1038/s41598-020-79253-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/21/2020] [Indexed: 11/08/2022] Open
Abstract
Byssus is a thread-like seafood waste that has a natural high efficiency in anchoring many metal ions thanks to its richness of diverse functional groups. It also has structural stability in extreme chemical, physical and mechanical conditions. The combination of these properties, absent in other waste materials, has novelty suggested its use as matrix for water remediation. Thus, pristine byssus, upon de-metalation, was studied to remove metal ions from ideal solutions at pH 4 and 7, as model chemical systems of industrial and environmental polluted waters, respectively. The byssus matrix's uptake of metal ions was determined by ICP-OES and its surface microstructure investigated by SEM. The results showed that the byssus matrix excellently uptakes metal ions slightly reorganizing its surface micro-structure. As example of its efficiency: 50 mg of byssus absorbed 21.7 mg·g-1 of Cd2+ from a 10 mM solution at pH 7. The adsorption isotherm models of Freundlich and Langmuir were mainly used to describe the system at pH 7 and pH 4, respectively. In conclusion, we showed that the byssus, a waste material that is an environmental issue, has the potential to purify polluted industrial and environmental waters from metal ions.
Collapse
Affiliation(s)
- Devis Montroni
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Giorgia Giusti
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Andrea Simoni
- DiSTA, Department of Science and Technology of Agriculture and Environment, Alma Mater Studiorum, Università di Bologna, via Fanin 40, 40127, Bologna, Italy
| | - Genny Cau
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Claudio Ciavatta
- DiSTA, Department of Science and Technology of Agriculture and Environment, Alma Mater Studiorum, Università di Bologna, via Fanin 40, 40127, Bologna, Italy
| | - Claudio Marzadori
- DiSTA, Department of Science and Technology of Agriculture and Environment, Alma Mater Studiorum, Università di Bologna, via Fanin 40, 40127, Bologna, Italy
| | - Giuseppe Falini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, 40126, Bologna, Italy.
| |
Collapse
|
7
|
Cao D, Jin J, Wang Q, Song X, Hao X, Iritani E, Katagiri N. Ultrafiltration recovery of alginate: Membrane fouling mitigation by multivalent metal ions and properties of recycled materials. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
9
|
Removal of heavy metal ions by ultrafiltration with recovery of extracellular polymer substances from excess sludge. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118103] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Alternate Ultrasound/Microwave Digestion for Deep Eutectic Hydro-distillation Extraction of Essential Oil and Polysaccharide from Schisandra chinensis (Turcz.) Baill. Molecules 2019; 24:molecules24071288. [PMID: 30987021 PMCID: PMC6479861 DOI: 10.3390/molecules24071288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 11/18/2022] Open
Abstract
An alternating synergetic ultrasound/microwave method was applied to the simultaneous extraction of essential oils and polysaccharides with deep eutectic solvent (DES) from Schisandra chinensis. Under the optimal conditions, extract in the selected choline chloride-ethylene glycol 1:3 solvent yielded 12.2 mL/kg and 8.56 g/100g of essential oils and polysaccharides, respectively. The free radical scavenging and immunological activities of the polysaccharides and the antioxidant activity of the essential oils have also been investigated. The lymphocyte proliferation capacity was substantially improved by adding concanavalin A or lipopolysaccharides to polysaccharides (0.20 mg/mL). The IC50 values of the essential oils for scavenging DPPH obtained by hydro-distillation and DES ultrasound/microwave-assisted hydro-distillation (DES UMHD) were 52.34 µg/mL and 29.82 µg/mL, respectively. The essential oil obtained by DES UMHD had the highest reducing power (856.05 (TE)/g) at 150 g/mL and had the strongest inhibitory capacity (SC% = 18.12%). S. chinensis has the potential to be developed as a natural antioxidant.
Collapse
|