1
|
Li X, Benstead M, Peeters N, Binnemans K. Recycling of metals from LiFePO 4 battery cathode material by using ionic liquid based-aqueous biphasic systems. RSC Adv 2024; 14:9262-9272. [PMID: 38505392 PMCID: PMC10949915 DOI: 10.1039/d4ra00655k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Lithium-ion batteries are essential for electric vehicles and energy storage devices. With the increasing demand for their production and the concomitant surge in waste generation, the need for an efficient and environmentally friendly recycling process has become imperative. This work presents a new approach for recycling of metals from the LiFePO4 (LFP) cathode material. The cathode material was first leached by a HCl solution without an oxidizing agent. Subsequently, an ionic-liquid-based aqueous biphasic system (IL-based ABS) was used for the separation of lithium and iron from leachate solutions, followed by a precipitation process. The influence of the acid concentration, solid-to-liquid ratio and leaching time on the leaching yield was investigated. UV-vis absorption spectra revealed the presence of mixed-valent iron in the leachate, with 83 ± 1% Fe(ii) and 17 ± 1% Fe(iii). The ABS systems comprised tributyltetradecylphosphonium chloride [P44414]Cl and a salting-out agent (HCl or NaCl). The extraction percentage of iron reached 90% and less than 1% of lithium was extracted under the studied optimal conditions. Further enhancement of iron extraction, reaching 98%, was achieved via a two-stage cross-current extraction process. Iron was precipitated from the loaded IL phase with an efficiency of 97% as Fe(OH)2 and Fe(OH)3, using an aqueous ammonia solution. Lithium was precipitated as Li3PO4 with a lithium purity of 99.5% by adding K3PO4 solution. The ionic liquid used in the process was efficiently regenerated and used in four extraction cycles with no activity decline, with an extraction percentage of 90% of iron in each cycle.
Collapse
Affiliation(s)
- Xiaohua Li
- KU Leuven, Department of Chemistry Celestijnenlaan 200F, P. O. Box 2404 B-3001 Leuven Belgium
| | - Maia Benstead
- Durham University, Department of Chemistry Durham DH1 3LE UK
| | - Nand Peeters
- KU Leuven, Department of Chemistry Celestijnenlaan 200F, P. O. Box 2404 B-3001 Leuven Belgium
| | - Koen Binnemans
- KU Leuven, Department of Chemistry Celestijnenlaan 200F, P. O. Box 2404 B-3001 Leuven Belgium
| |
Collapse
|
2
|
Aqueous Two-Phase Systems Based on Ionic Liquids and Deep Eutectic Solvents as a Tool for the Recovery of Non-Protein Bioactive Compounds—A Review. Processes (Basel) 2022. [DOI: 10.3390/pr11010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aqueous two-phase systems (ATPS) based on ionic liquids (IL) and deep eutectic solvents (DES) are ecofriendly choices and can be used to selectively separate compounds of interest, such as bioactive compounds. Bioactive compounds are nutrients and nonnutrients of animal, plant, and microbial origin that benefit the human body in addition to their classic nutritional properties. They can also be used for technical purposes in food and as active components in the chemical and pharmaceutical industries. Because they are usually present in complex matrices and low concentrations, it is necessary to separate them in order to increase their availability and stability, and ATPS is a highlighted technique for this purpose. This review demonstrates the application of ATPS based on IL and DES as a tool for recovering nonprotein bioactive compounds, considering critical factors, results and the most recent advances in this field. In addition, the review emphasizes the perspectives for expanding the use of nonconventional ATPS in purification systems, which consider the use of molecular modelling to predict experimental conditions, the investigation of diverse compounds in phase-forming systems, the establishment of optimal operational parameters, and the verification of bioactivities after the purification process.
Collapse
|
3
|
Enhancement of long alkyl-chained imidazolium ionic liquids for the formation and extraction behaviour of PEG 600/(NH4)2SO4 aqueous two-phase system by complexing with Triton X-100. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Marchel M, Marrucho IM. Application of Aqueous Biphasic Systems Extraction in Various Biomolecules Separation and Purification: Advancements Brought by Quaternary Systems. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2136574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mateusz Marchel
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Gdansk, Poland
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Isabel M. Marrucho
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
Aqueous biphasic systems: A robust platform for green extraction of biomolecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Li X, van de Ven JJ, Li Z, Binnemans K. Separation of Rare Earths and Transition Metals Using Ionic-Liquid-Based Aqueous Biphasic Systems. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaohua Li
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Leuven, Belgium
| | | | - Zheng Li
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Leuven, Belgium
| | - Koen Binnemans
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Leuven, Belgium
| |
Collapse
|
7
|
Liquid-liquid and solid-liquid equilibria of several PEG-based ABS with ionic liquid [C4C1im]Br as adjuvant at 298.15 K. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Extraction and Determination of Protein from Edible Oil Using Aqueous Biphasic Systems of Ionic Liquids and Salts. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02738-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Buarque FS, Guimarães DE, Soares CM, Souza RL, Pereira MM, Lima ÁS. Ethanolic two-phase system formed by polypropylene glycol, ethylene glycol and/or ionic liquid (phase-forming or adjuvant) as a platform to phase separation and partitioning study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Mumcu T, Seyhan Bozkurt S. Simultaneous extraction of five phenolic acids in fruits using ultrasound assisted aqueous two phase system based on polyethylene glycol-ionic liquid-sodium carbonate. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1912765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Taşkın Mumcu
- Dokuz Eylul University, Graduate School of Natural and Applied Science, Tınaztepe Campus, Izmir, Turkey
| | | |
Collapse
|
11
|
Constructing a phase-controllable aqueous biphasic system by using deep eutectic solvent as adjuvant. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Marchel M, Niewisiewicz J, Coroadinha AS, Marrucho IM. Purification of virus-like particles using aqueous biphasic systems composed of natural deep eutectic solvents. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Castro LS, Pereira P, Passarinha LA, Freire MG, Pedro AQ. Enhanced performance of polymer-polymer aqueous two-phase systems using ionic liquids as adjuvants towards the purification of recombinant proteins. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117051] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Tang N, Wang Y, Liu M, Liu L, Yin C, Yang X, Wang S. Ionic liquid as adjuvant in an aqueous biphasic system composed of polyethylene glycol for green separation of Pd(II) from hydrochloric solution. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Mussagy CU, Tabanez NL, Farias FO, Kurnia KA, Mafra MR, Pereira JF. Determination, characterization and modeling of aqueous biphasic systems composed of propylammonium-based ionic liquids and phosphate salts. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Separation and Purification of Papain Crude Extract from Papaya Latex Using Quaternary Ammonium Ionic Liquids as Adjuvants in PEG-Based Aqueous Two-Phase Systems. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01761-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Gao J, Fang C, Lin Y, Nie F, Ji H, Liu S. Enhanced extraction of astaxanthin using aqueous biphasic systems composed of ionic liquids and potassium phosphate. Food Chem 2020; 309:125672. [DOI: 10.1016/j.foodchem.2019.125672] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/03/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
|
18
|
Penido JA, Mageste AB, Martins PL, Ferreira GMD. Surfactant as selective modulator in the partitioning of dyes in aqueous two-phase systems: A strategy for separation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Extraction and Purification of Capsaicin from Capsicum Oleoresin Using a Combination of Tunable Aqueous Polymer-Phase Impregnated Resin (TAPPIR) Extraction and Chromatography Technology. Molecules 2019; 24:molecules24213956. [PMID: 31683728 PMCID: PMC6866130 DOI: 10.3390/molecules24213956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023] Open
Abstract
Capsaicin, which mainly comes from pepper, exhibits anticancer, antioxidant, and anti-obesity properties. This work aims to construct a comprehensive technology for the extraction and purification of capsaicin from capsicum oleoresin. The tunable aqueous polymer phase impregnated HZ816 resins were selected in extraction step. In the extraction process, 3 g of impregnated HZ816 macroporous resin was employed per system. The results showed that a higher molecular weight of Polyethylene glycol (PEG) and 1-ethyl-3-methyl imidazolium acetate ([Emim] [OAc]) are more beneficial to the improvement of the yield of capsaicin. Screening experiment using fractional factorial designs indicated that the amount of sample loading, pH, and concentration of [Emim] [OAc] and PEG 6000 significantly affect the yield of capsaicin. Mathematical models of capsaicin yield in tunable aqueous polymer-phase impregnated resins were established and optimum condition was obtained using response surface methodology. The optimum impregnated phase was the polymer phase of an aqueous two-phase system which contained 18.5% (w/w) PEG6000, 15% (w/w) sodium citrate, and 10% (w/w) [Emim] [OAc] at pH 6.5. Under the optimal conditions, the yield of capsaicin reached 95.82% when the extraction system contains 0.25 g capsicum oleoresin. Ultimately, capsaicinoids extract was purified by reverse-phase resin (SKP-10-4300) chromatographic column. The capsaicin recovery and purity achieved 85% and 92%, respectively.
Collapse
|
20
|
Trujillo-Rodríguez MJ, Nan H, Varona M, Emaus MN, Souza ID, Anderson JL. Advances of Ionic Liquids in Analytical Chemistry. Anal Chem 2018; 91:505-531. [PMID: 30335970 DOI: 10.1021/acs.analchem.8b04710] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - He Nan
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Marcelino Varona
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Miranda N Emaus
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Israel D Souza
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Jared L Anderson
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| |
Collapse
|