1
|
Gao T, Dai T, Fan N, Han Z, Gao X. Comprehensive review and comparison on pretreatment of spent lithium-ion battery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121314. [PMID: 38843731 DOI: 10.1016/j.jenvman.2024.121314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Pretreatment, the initial step in recycling spent lithium-ion batteries (LIBs), efficiently separates cathode and anode materials to facilitate key element recovery. Despite brief introductions in existing research, a comprehensive evaluation and comparison of processing methods is lacking. This study reviews 346 references on LIBs recycling, analyzing pretreatment stages, treatment conditions, and method effects. Our analysis highlights insufficient attention to discharge voltage safety and environmental impact. Mechanical disassembly, while suitable for industrial production, overlooks electrolyte recovery and complicates LIBs separation. High temperature pyrolysis flotation offers efficient separation of mixed electrode materials, enhancing mineral recovery. We propose four primary pretreatment processes: discharge, electrolyte recovery, crushing and separation, and electrode material recovery, offering simplified, efficient, green, low-cost, and high-purity raw materials for subsequent recovery processes.
Collapse
Affiliation(s)
- Tianming Gao
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources Chinese Academy of Geological Sciences, Beijing, 100037, China; Research Center for Strategy of Global Mineral Resources, Chinese Geological Survey, Beijing, 100037, China
| | - Tao Dai
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources Chinese Academy of Geological Sciences, Beijing, 100037, China; Research Center for Strategy of Global Mineral Resources, Chinese Geological Survey, Beijing, 100037, China
| | - Na Fan
- China Huanqiu Contracting & Engineering Corp., Beijing, 100012, China
| | - Zhongkui Han
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Xin Gao
- Shanxi Aerospace Qinghua Equipment Co., Ltd, Changzhi, 046012, China.
| |
Collapse
|
2
|
Fu Y, Dong X, Ebin B. Resource Recovery of Spent Lithium-Ion Battery Cathode Materials by a Supercritical Carbon Dioxide System. Molecules 2024; 29:1638. [PMID: 38611917 PMCID: PMC11013235 DOI: 10.3390/molecules29071638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The increasing global market size of high-energy storage devices due to the boom in electric vehicles and portable electronics has caused the battery industry to produce a lot of waste lithium-ion batteries. The liberation and de-agglomeration of cathode material are the necessary procedures to improve the recycling derived from spent lithium-ion batteries, as well as enabling the direct recycling pathway. In this study, the supercritical (SC) CO2 was innovatively adapted to enable the recycling of spent lithium-ion batteries (LIBs) based on facilitating the interaction with a binder and dimethyl sulfoxide (DMSO) co-solvent. The results show that the optimum experimental conditions to liberate the cathode particles are processing at a temperature of 70 °C and 80 bar pressure for a duration of 20 min. During the treatment, polyvinylidene fluoride (PVDF) was dissolved in the SC fluid system and collected in the dimethyl sulfoxide (DMSO), as detected by the Fourier Transform Infrared Spectrometer (FTIR). The liberation yield of the cathode from the current collector reaches 96.7% under optimal conditions and thus, the cathode particles are dispersed into smaller fragments. Afterwards, PVDF can be precipitated and reused. In addition, there is no hydrogen fluoride (HF) gas emission due to binder decomposition in the suggested process. The proposed SC-CO2 and co-solvent system effectively separate the PVDF from Li-ion battery electrodes. Thus, this approach is promising as an alternative pre-treatment method due to its efficiency, relatively low energy consumption, and environmental benign features.
Collapse
Affiliation(s)
- Yuanpeng Fu
- School of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
- Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining and Technology, Ministry of Education, Xuzhou 221116, China
- Department of Chemistry and Chemical Engineering, Nuclear Chemistry and Industrial Material Recycling, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Xianshu Dong
- School of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Burçak Ebin
- Department of Chemistry and Chemical Engineering, Nuclear Chemistry and Industrial Material Recycling, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
3
|
Gupta DK, Iyer A, Mitra A, Chatterjee S, Murugan S. From power to plants: unveiling the environmental footprint of lithium batteries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26343-26354. [PMID: 38532211 DOI: 10.1007/s11356-024-33072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Widespread adoption of lithium-ion batteries in electronic products, electric cars, and renewable energy systems has raised severe worries about the environmental consequences of spent lithium batteries. Because of its mobility and possible toxicity to aquatic and terrestrial ecosystems, lithium, as a vital component of battery technology, has inherent environmental problems. Leaching of lithium from discharged batteries, as well as its subsequent migration through soil and water, represents serious environmental hazards, since it accumulates in the food chain, impacting ecosystems and human health. This study thoroughly analyses the effects of lithium on plants, including its absorption, transportation, and toxicity. An attempt has been made to examine how lithium moves throughout plants through symplastic and apoplastic pathways and the factors that affect lithium accumulation in plant tissues, such as soil pH and calcium. This review focuses on the possible toxicity of lithium and its impact on ecosystems and human health. Aside from examining the environmental impacts, this review also emphasizes the significance of proper disposal and recycling measures in order to offset the negative effects of used lithium batteries. The paper also highlights the need for ongoing research to develop innovative and sustainable techniques for lithium recovery and remediation.
Collapse
Affiliation(s)
- Dharmendra K Gupta
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhavan, Jorbagh Road, Aliganj, New Delhi, 110003, India.
| | - Aswetha Iyer
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to Be University), Karunya Nagar, Coimbatore, 641114, India
| | - Anindita Mitra
- Bankura Christian College, Bankura, 722101, West Bengal, India
| | - Soumya Chatterjee
- Defence Research Laboratory, DRDO, Post Bag 2, Tezpur, 784001, Assam, India
| | - Sevanan Murugan
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to Be University), Karunya Nagar, Coimbatore, 641114, India
| |
Collapse
|
4
|
Ding Y, Nhung NTH, An J, Chen H, Liao L, He C, Wang X, Fujita T. Manganese-Titanium Mixed Ion Sieves for the Selective Adsorption of Lithium Ions from an Artificial Salt Lake Brine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114190. [PMID: 37297324 DOI: 10.3390/ma16114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Lithium recovery is imperative to accommodate the increase in lithium demand. Salt lake brine contains a large amount of lithium and is one of the most important sources of lithium metal. In this study, Li2CO3, MnO2, and TiO2 particles were mixed, and the precursor of a manganese-titanium mixed ion sieve (M-T-LIS) was prepared by a high-temperature solid-phase method. M-T-LISs were obtained by DL-malic acid pickling. The adsorption experiment results noted single-layer chemical adsorption and maximum lithium adsorption of 32.32 mg/g. From the Brunauer-Emmett-Teller and scanning electron microscopy results, the M-T-LIS provided adsorption sites after DL-malic acid pickling. In addition, X-ray photoelectron spectroscopy and Fourier transform infrared results showed the ion exchange mechanism of the M-T-LIS adsorption. From the results of the Li+ desorption experiment and recoverability experiment, DL-malic acid was used to desorb Li+ from the M-T-LIS with a desorption rate of more than 90%. During the fifth cycle, the Li+ adsorption capacity of the M-T-LIS was more than 20 mg/g (25.90 mg/g), and the recovery efficiency was higher than 80% (81.42%). According to the selectivity experiment, the M-T-LIS had good selectivity for Li+ (adsorption capacity of 25.85 mg/g in the artificial salt lake brine), which indicates its good application potential.
Collapse
Affiliation(s)
- Yaxuan Ding
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Nguyen Thi Hong Nhung
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jiahao An
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Hao Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Lianying Liao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Chunlin He
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xinpeng Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Toyohisa Fujita
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Kong L, Li Z, Zhu W, Ratwani CR, Fernando N, Karunarathne S, Abdelkader AM, Kamali AR, Shi Z. Sustainable regeneration of high-performance LiCoO 2 from completely failed lithium-ion batteries. J Colloid Interface Sci 2023; 640:1080-1088. [PMID: 36931011 DOI: 10.1016/j.jcis.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Utilising the solid-state synthesis method is an easy and effective way to recycle spent lithium-ion batteries. However, verifying its direct repair effects on completely exhausting cathode materials is necessary. In this work, the optimal conditions for direct repair of completely failed cathode materials by solid-state synthesis are explored. The discharge capacity of spent LiCoO2 cathode material is recovered from 21.7 mAh g-1 to 138.9 mAh g-1 under the optimal regeneration conditions of 850 °C and n(Li)/n(Co) ratio of 1:1. The regenerated materials show excellent electrochemical performance, even greater than the commercial LiCoO2. In addition, based on the whole closed-loop recycling process, the economic and environmental effects of various recycling techniques and raw materials used in the battery production process are assessed, confirming the superior economic and environmental feasibility of direct regeneration method.
Collapse
Affiliation(s)
- Lingyu Kong
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, China; Department of Design and Engineering, Bournemouth University, Talbot Campus, Poole BH12 5BB, United Kingdom
| | - Zhuo Li
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, China
| | - Wenhui Zhu
- Energy and Environmental Materials Research Centre (E(2)MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Chirag R Ratwani
- Department of Design and Engineering, Bournemouth University, Talbot Campus, Poole BH12 5BB, United Kingdom
| | - Niranjala Fernando
- Department of Design and Engineering, Bournemouth University, Talbot Campus, Poole BH12 5BB, United Kingdom
| | - Shadeepa Karunarathne
- Department of Design and Engineering, Bournemouth University, Talbot Campus, Poole BH12 5BB, United Kingdom
| | - Amr M Abdelkader
- Department of Design and Engineering, Bournemouth University, Talbot Campus, Poole BH12 5BB, United Kingdom.
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E(2)MC), School of Metallurgy, Northeastern University, Shenyang 110819, China.
| | - Zhongning Shi
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
6
|
Jayakumar S, Philip J. Antimicrobial property of polyvinyl alcohol films containing extracts of Lawsonia inermis and Tamarindus indica. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
7
|
He X, Wen Y, Wang X, Cui Y, Li L, Ma H. Leaching NCM cathode materials of spent lithium-ion batteries with phosphate acid-based deep eutectic solvent. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:8-16. [PMID: 36512926 DOI: 10.1016/j.wasman.2022.11.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/30/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Deep eutectic solvents (DESs) play an important role in efficient recovery of spent lithium-ion batteries (LIBs). In this study, we proposed an efficient and safe method by using a choline chloride-phenylphosphinic acid DES as a lixiviant for the leaching of LiNixCoyMnzO2 (NCM) cathode active materials of spent LIBs. The leaching conditions were optimized based on the leaching time, liquid-solid ratio, and leaching temperature. Under optimal experimental conditions, the leaching efficiencies of Li, Co, Ni, and Mn reached 97.7 %, 97.0 %, 96.4 %, and 93.0 %, respectively. The kinetics of the leaching process were well-fitted using the logarithmic law equation. The apparent activation energies for Li, Co, Ni, and Mn have been reported to be 60.3 kJ/mol, 78.9 kJ/mol, 99.3 kJ/mol, and 82.1 kJ/mol, respectively. UV-visible spectroscopy and Fourier transform infrared analysis revealed that the coordination configurations of Ni and Co in the leaching solution were octahedral and tetrahedral, respectively. In addition, the PO bond in phenylphosphinic acid was involved in coordination during leaching. This finding may provide an effective and safe approach for leaching valuable metals from spent LIBs.
Collapse
Affiliation(s)
- Xihong He
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yunpeng Wen
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xinyao Wang
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yaru Cui
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Linbo Li
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hongzhou Ma
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
8
|
Wang J, Huo X, Zhang F, Wang L, Wang X, Li J, Yang J. Separation of cobalt and lithium from spent LiCoO2 batteries using zeolite NaA and the resulting ion exchange product for N2/O2 separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
9
|
Chaudhary V, Lakhera P, Kim KH, Deep A, Kumar P. Insights into the Eco-Friendly Recovery Process for Valuable Metals from Waste Lithium-ion Batteries by Organic Acids Leaching. SEPARATION & PURIFICATION REVIEWS 2023. [DOI: 10.1080/15422119.2022.2164650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Vikas Chaudhary
- Academy of Scientific & Innovative Research, 201002, Ghaziabad, India
- Materials Science & Sensor Applications (MSSA), Central Scientific Instruments Organization, Sector 30 C, 160030, Chandigarh, India
- Department of Research & development, Exigo Recycling Pvt. Ltd, 201301, Noida, India
| | - Praveen Lakhera
- Academy of Scientific & Innovative Research, 201002, Ghaziabad, India
- Materials Science & Sensor Applications (MSSA), Central Scientific Instruments Organization, Sector 30 C, 160030, Chandigarh, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Akash Deep
- Academy of Scientific & Innovative Research, 201002, Ghaziabad, India
- Materials Science & Sensor Applications (MSSA), Central Scientific Instruments Organization, Sector 30 C, 160030, Chandigarh, India
| | - Parveen Kumar
- Academy of Scientific & Innovative Research, 201002, Ghaziabad, India
- Materials Science & Sensor Applications (MSSA), Central Scientific Instruments Organization, Sector 30 C, 160030, Chandigarh, India
- Department of Research & development, Exigo Recycling Pvt. Ltd, 201301, Noida, India
| |
Collapse
|
10
|
Kong L, Wang Z, Shi Z, Hu X, Liu A, Tao W, Wang B, Wang Q. Leaching valuable metals from spent lithium-ion batteries using the reducing agent methanol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4258-4268. [PMID: 35969348 DOI: 10.1007/s11356-022-22414-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
When considering resource shortages and environmental pressures, salvaging valuable metals from the cathode materials of spent lithium-ion batteries (LIBs) is a very promising strategy to realize the green and sustainable development of batteries. The reductive acid leaching of valuable metals from cathode materials using methanol as a reducing agent was studied. The results show that the leaching efficiencies of Co and Li are 99% under optimal leaching conditions. The leaching kinetics of cathode materials in a H2SO4-methanol system indicate that the leaching of Co and Li is controlled by diffusion, with activation energies of 69.98 and 10.78 kJ/mol, respectively. Detailed analysis of the leaching reaction mechanism indicates that methanol is ultimately transformed into formic acid through a two-step process to further enhance leaching. No side reactions occur during leaching. Methanol can be a sustainable alternative for the reductive acid leaching of valuable metals from spent LIBs due to its high efficiency, application maturity, environmental friendliness, and low cost.
Collapse
Affiliation(s)
- Lingyu Kong
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang, 110819, China
| | - Zhaowen Wang
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang, 110819, China
| | - Zhongning Shi
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, 110819, China.
| | - Xianwei Hu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang, 110819, China
| | - Aimin Liu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang, 110819, China
| | - Wenju Tao
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang, 110819, China
| | - Benping Wang
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang, 110819, China
- Ningbo Ronbay New Energy Technology Co., Ltd, Yuyao, 315400, Zhejiang, China
| | - Qian Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing, 100190, China
| |
Collapse
|
11
|
Zhou X, Yang W, Liu X, Tang J, Su F, Li Z, Yang J, Ma Y. One-step selective separation and efficient recovery of valuable metals from mixed spent lithium batteries in the phosphoric acid system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:53-64. [PMID: 36343600 DOI: 10.1016/j.wasman.2022.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The recovery of valuable elements in spent lithium-ion batteries (LIBs) has attracted more and more attention. Efficient recovery of valuable elements from spent LIBs with lower consumption and shorter process is the target that people have been pursuing. In this study, the valuable metals (Ni, Co, Mn and Li) and FePO4 products are simultaneously recovered from mixed spent LiNixCoyMnzO2 and LiFePO4 in one step under the optimized condition of 0.88 M H3PO4, a mass ratio of LFP/NCM of 2:1, a L/S ratio of 33:1 and 80 ℃ for 120 min without additional auxiliary reagents. Over 60 % of acid consumption is reduced and the process of adjusting pH is avoidable. The leaching efficiencies of the valuable elements reach up to 99.1 % for Ni, 98.9 % for Co, 99.6 % for Li and 97.3 % for Mn. Almost all of Fe is precipitated as FePO4·2H2O. By means of the empirical model, the research on leaching kinetics demonstrates that the leaching reaction is internal diffusion-controlled with the apparent activation energy of valuable metals less than 30 kJ/mol. Furthermore, the redox reaction mechanism between spent LiBs has been explored. And the intrinsic driving force in the phosphoric acid system is found out. This finding may provide an innovative and selective recycling method for valuable elements from mixed spent LIBs with high economic benefit and fewer environmental footprints.
Collapse
Affiliation(s)
- Xiangyang Zhou
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, China; Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Changsha 410083, China
| | - Wan Yang
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, China
| | - Xiaojian Liu
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, China
| | - Jingjing Tang
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, China
| | - Fanyun Su
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, China
| | - Zhenxiao Li
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, China
| | - Juan Yang
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, China; Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Changsha 410083, China
| | - Yayun Ma
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China.
| |
Collapse
|
12
|
Xie F, Lu F, Liu C, Tian Y, Gao Y, Zheng L, Gao X. Poly(ionic liquid) Membranes Preserving Liquid Crystalline Microstructures for Lithium-Ion Enrichment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
13
|
He H, Yang B, Wu D, Gao X, Fei X. Applications of crushing and grinding-based treatments for typical metal-containing solid wastes: Detoxification and resource recovery potentials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120034. [PMID: 36030964 DOI: 10.1016/j.envpol.2022.120034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Metal-containing solid wastes can induce serious environmental pollution if managed improperly, but contain considerable resources. The detoxification and resource recoveries of these wastes are of both environmental and economic significances, being indispensable for circular economy. In the past decades, attempts have been made worldwide to treat these wastes. Crushing and grinding-based treatments have been increasingly applied, the operating apparatus and parameters of which depend on the waste type and treatment purpose. Based on the relevant studies, the applications of crushing and grinding on four major types of solid wastes, namely spent lithium-ion batteries (LIBs) cathode, waste printed circuit boards (WPCBs), incineration bottom ash (IBA), and incineration fly ash (IFA) are here systematically reviewed. These types of solid wastes are generated in increasing amounts, and have the potentials to release various organic and inorganic pollutants. Despite of the widely different texture, composition, and other physicochemical properties of the solid wastes, crushing and grinding have been demonstrated to be universally applicable. For each of the four wastes, the technical route that involving crushing and grinding is described with the advantages highlighted. The crushing and grinding serve either mainstream or auxiliary role in the processing of the solid wastes. This review summarizes and highlights the developments and future directions of crushing and grinding-based treatments.
Collapse
Affiliation(s)
- Hongping He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control Ecological Security, Shanghai, 200092, PR China
| | - Xiaofeng Gao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore.
| |
Collapse
|
14
|
Ilyas S, Ranjan Srivastava R, Singh VK, Chi R, Kim H. Recovery of critical metals from spent Li-ion batteries: Sequential leaching, precipitation, and cobalt-nickel separation using Cyphos IL104. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 154:175-186. [PMID: 36244206 DOI: 10.1016/j.wasman.2022.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
This study presents a novel recycling scheme for spent Li-ion batteries that involves the leaching of lithium in hot water followed by the dissolution of all transition metals in HCl solution and their separation using the ionic liquid Cyphos IL104. The parametric studies revealed that >84 % Li was dissolved while the cathode material was leached at 90 °C for 2 h. Approximately 98 % Li from the non-acidic solution was directly precipitated as Li2CO3 at a Li+:CO32- ratio of 1:1.5. The transition metals from the Li-depleted cathode mass were efficiently (>98 %) dissolved in 3.0 mol·L-1 HCl at 90 °C for a 3 h leaching process. Manganese from the chloride leach liquor was selectively precipitated by adding KMnO4 at a 1.25-fold higher quantity than the stoichiometric ratio, pH value 2.0, and temperature 80 °C. The remaining co-existing metals (Ni and Co) were separated from the chloride solution by contacting it with a phosphonium-based ionic liquid at an equilibrium pH value of 5.4 and an organic-to-aqueous phase ratio of 2/3. The loaded ionic liquid was quantitatively stripped in 2.0 mol·L-1 H2SO4 solution, which yielded high-purity CoSO4·xH2O crystals after evaporation of the stripped liquor. Subsequently, ∼99 % nickel was recovered as nickel carbonate [NiCO3·2Ni(OH)2] from the Co-depleted raffinate by the precipitation performed at Ni2+:CO32- ratio of 1:2.5, pH value of 10.8, and temperature of 50 °C. Finally, a process flow with mass and energy balances yielding a high recovery rate of all metals in the exhausted cathode powder of spent LiBs was proposed.
Collapse
Affiliation(s)
- Sadia Ilyas
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Rajiv Ranjan Srivastava
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Vinay K Singh
- Faculty of Science, Department of Chemistry, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Ruan Chi
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| | - Hyunjung Kim
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
15
|
Vieceli N, Ottink T, Stopic S, Dertmann C, Swiontek T, Vonderstein C, Sojka R, Reinhardt N, Ekberg C, Friedrich B, Petranikova M. Solvent extraction of cobalt from spent lithium-ion batteries: dynamic optimization of the number of extraction stages using factorial design of experiments and response surface methodology. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Zhang N, Xu Z, Deng W, Wang X. Recycling and Upcycling Spent LIB Cathodes: A Comprehensive Review. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Li C, Dai G, Liu R, Wang C, Wang S, Ju Y, Jiang H, Jiao S, Duan C. Separation and Recovery of Nickel Cobalt Manganese Lithium from Waste Ternary Lithium-Ion Batteries. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Li B, Li Q, Wang Q, Yan X, Shi M, Wu C. Deep eutectic solvent for spent lithium-ion battery recycling: comparison with inorganic acid leaching. Phys Chem Chem Phys 2022; 24:19029-19051. [PMID: 35938373 DOI: 10.1039/d1cp05968h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deep eutectic solvents (DESs) as novel green solvents are potential options to replace inorganic acids for hydrometallurgy. Compared with inorganic acids, the physicochemical properties of DESs and their applications in recycling of spent lithium-ion batteries were summarized. The viscosity, metal solubility, toxicological properties and biodegradation of DESs depend on the hydrogen bond donor (HBD) and acceptor (HBA). The viscosity of ChCl-based DESs increased according to the HBD in the following order: alcohols < carboxylic acids < sugars < inorganic salts. The strongly coordinating HBDs increased the solubility of metal oxide via surface complexation reactions followed by ligand exchange for chloride in the bulk solvent. Interestingly, the safety and degradability of DESs reported in the literature are superior to those of inorganic acids. Both DESs and inorganic acids have excellent metal leaching efficiencies (>99%). However, the reaction kinetics of DESs are 2-3 orders of magnitude slower than those of inorganic acids. A significant advantage of DESs is that they can be regenerated and recycled multiple times after recovering metals by electrochemical deposition or precipitation. In the future, the development of efficient and selective DESs still requires a lot of attention.
Collapse
Affiliation(s)
- Bensheng Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China. .,Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.,Water Pollution Control Technology Key Lab of Hunan Province, Changsha, 410083, China
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China. .,Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.,Water Pollution Control Technology Key Lab of Hunan Province, Changsha, 410083, China
| | - Xuelei Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Miao Shi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Chao Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| |
Collapse
|
19
|
Lan X, Gao J, Xue K, Xu H, Guo Z. A new finding and technology for selective separation of different REEs from CaO-SiO2-CaF2-P2O5-Fe3O4-RE2O3 system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Das D, R A, Kay P, Ramamurthy V, Goycoolea FM, Das N. Selective recovery of lithium from spent coin cell cathode leachates using ion imprinted blended chitosan microfibers: Pilot scale studies provide insights on scalability. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128535. [PMID: 35259696 DOI: 10.1016/j.jhazmat.2022.128535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/02/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Devlina Das
- School of Food Science and Nutrition, University of Leeds, LS2 9JT, United Kingdom; Department of Biotechnology, PSG College of Technology, Coimbatore 641004, India.
| | - Abarajitha R
- Department of Biotechnology, PSG College of Technology, Coimbatore 641004, India
| | - Paul Kay
- School of Geography, University of Leeds, LS2 9JT, United Kingdom
| | - V Ramamurthy
- Department of Biotechnology, PSG College of Technology, Coimbatore 641004, India; Department of Biomedical Engineering, Sri Ramakrishna Engineering College, Coimbatore 641 022, India
| | | | - Nilanjana Das
- Bioremediation Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
21
|
Makwarimba CP, Tang M, Peng Y, Lu S, Zheng L, Zhao Z, Zhen AG. Assessment of recycling methods and processes for lithium-ion batteries. iScience 2022; 25:104321. [PMID: 35602951 PMCID: PMC9117887 DOI: 10.1016/j.isci.2022.104321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This review discusses physical, chemical, and direct lithium-ion battery recycling methods to have an outlook on future recovery routes. Physical and chemical processes are employed to treat cathode active materials which are the greatest cost contributor in the production of lithium batteries. Direct recycling processes maintain the original chemical structure and process value of battery materials by recovering and reusing them directly. Mechanical separation is essential to liberate cathode materials that are concentrated in the finer size region. However, currently, the cathode active materials are being concentrated at a cut point that is considerably greater than the actual size found in spent batteries. Effective physical methods reduce the cost of subsequent chemical treatment and thereafter re-lithiation successfully reintroduces lithium into spent cathodes. Some of the current challenges are the difficulty in controlling impurities in recovered products and ensuring that the entire recycling process is more sustainable.
Collapse
Affiliation(s)
- Chengetai Portia Makwarimba
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Minghui Tang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yaqi Peng
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Lingxia Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhefei Zhao
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ai-gang Zhen
- Zhejiang Tianneng New Materials Co., Ltd., Huzhou 313000, PR China
| |
Collapse
|
22
|
Liu Y, Yu H, Wang Y, Tang D, Qiu W, Li W, Li J. Microwave hydrothermal renovating and reassembling spent lithium cobalt oxide for lithium-ion battery. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 143:186-194. [PMID: 35272201 DOI: 10.1016/j.wasman.2022.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/09/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
With the growing number of lithium-ion batteries (LIBs) that are consumed by worldwide people, recycling is necessary for addressing environmental problems and alleviating energy crisis. Especially, it is meaningful to regenerate LIBs from spent batteries. In this paper, the microwave hydrothermal method is used to replenish lithium, assemble particles and optimize the crystal structure of the spent lithium cobalt oxide. The microwave hydrothermal process can shorten the reaction time, improve the internal structure, and uniformize the particle size distribution of lithium cobalt oxide. It helps to construct a regenerated lithium cobalt oxide (LiCoO2) battery with high-capacity and high-rate properties (141.7 mAh g-1 at 5C). The cycle retention rate is 94.5% after 100 cycles, which is far exceeding the original lithium cobalt oxide (89.7%) and LiCoO2 regenerated by normal hydrothermal method (88.3%). This work demonstrates the feasibility to get lithium cobalt oxide batteries with good structural stability from spent lithium cobalt oxide batteries.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hongjian Yu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yue Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Dan Tang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Weixin Qiu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Wenzhang Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha 410083, China.
| | - Jie Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
23
|
Niu Y, Peng X, Li J, Zhang Y, Song F, Shi D, Li L. Recovery of Li2CO3 and FePO4 from spent LiFePO4 by coupling technics of isomorphic substitution leaching and solvent extraction. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Analysis of Lanthanum and Cobalt Leaching Aimed at Effective Recycling Strategies of Solid Oxide Cells. SUSTAINABILITY 2022. [DOI: 10.3390/su14063335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Lanthanum and cobalt are Critical Raw Materials and components of Solid Oxide Cells—SOCs electrodes. This review analyses lanthanum and cobalt leaching from waste materials (e-waste, batteries, spent catalysts), aiming to provide a starting point for SOC recycling, not yet investigated. The literature was surveyed with a specific interest for leaching, the first phase of hydrometallurgy recycling. Most references (86%) were published after 2012, with an interest higher (85%) for cobalt. Inorganic acids were the prevailing (>80%) leaching agents, particularly for lanthanum, while leaching processes using organic acids mostly involved cobalt. The experimental conditions adopted more diluted organic acids (median 0.55 M for lanthanum and 1.4 M for cobalt) compared to inorganic acids (median value 2 M for both metals). Organic acids required a higher solid to liquid ratio (200 g/L), compared to inorganic ones (100 g/L) to solubilize lanthanum, while the opposite happened for cobalt (20 vs. 50 g/L). The process temperature didn’t change considerably with the solvent (45–75 °C for lanthanum, and 75–88 °C for cobalt). The contact time was higher for lanthanum than for cobalt (median 3–4 h vs. 75–85 min). Specific recycling processes are crucial to support SOCs value chain in Europe, and this review can help define the existing challenges and future perspectives.
Collapse
|
25
|
Zhang Y, Li X, Chen X, Koivula R, Xu J. Tunnel manganese oxides prepared using recovered LiMn 2O 4 from spent lithium-ion batteries: Co adsorption behavior and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127957. [PMID: 34915292 DOI: 10.1016/j.jhazmat.2021.127957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/30/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
The purpose of this study was to investigate Cobalt (Co) removal from wastewater using synthesized manganese oxides from the recovered LiMn2O4. An efficient ultrasonication leaching method was utilized to recycle LiMn2O4 from spent lithium-ion batteries (LIBs). The recovered LiMn2O4 was used to synthesize tunnel λ-MnO2, γ-MnO2 and β-MnO2 by acid leaching and hydrothermal methods. Meanwhile, Li+ in the supernatant was recycled by the precipitation of Li3PO4. Subsequently, for the synthesized tunnel MnO2, various characterizations and sodium hydroxide titration in NaNO3 solution were performed. The effect of sorption studies presented the uptake of Co increased with the pH increasing from pH ~1 to pH ~8 and the isothermal sorption at pH ~6 showed that γ-MnO2 possessed the highest uptake amount 0.44 meq/g, and the highest distribution coefficient 2.5 × 105 mL/g. Moreover, γ-MnO2 was found without Mn3+/Mn2+ leached during the sorption process. The ion exchange-surface complexation model was adopted to study the titration, effect of pH and isotherm sorption on the ion exchange reaction mechanism of Co adsorption. Overall, this work provides an economically feasible and environmentally friendly method to recycle the spent LIBs and the γ-MnO2 synthesized from the recovered LiMn2O4 was proved to be promising adsorbents for Co removal.
Collapse
Affiliation(s)
- Yulai Zhang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian Province 350007, China; Nuclear Chemistry & Separation and Purification Technology Laboratory, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province 350002, China
| | - Xiaodong Li
- Department of Chemistry-Radiochemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014, Finland
| | - Xiangping Chen
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Risto Koivula
- Department of Chemistry-Radiochemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014, Finland
| | - Junhua Xu
- Nuclear Chemistry & Separation and Purification Technology Laboratory, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province 350002, China
| |
Collapse
|
26
|
Huang CC, Cai LM, Xu YH, Jie L, Chen LG, Hu GC, Jiang HH, Xu XB, Mei JX. A comprehensive exploration on the health risk quantification assessment of soil potentially toxic elements from different sources around large-scale smelting area. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:206. [PMID: 35190909 DOI: 10.1007/s10661-022-09804-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Non-ferrous metal smelting activities have always been considered as one of the foremost anthropogenic sources of potentially toxic elements (PTEs). The enrichment factor (EF) and pollution load index (PLI) were used to evaluate the pollution level of soil PTEs; positive matrix factorization (PMF), correlation analysis, and geostatistics were utilized to quantify the sources of soil PTEs; and potential ecological risk (PER) and human health risk (HHR) of different sources from farmland, construction land, and natural land were quantifiably determined via combined PTE sources with PER and HHR assessment models. Taking the smelting area of Daye City as an example, the evaluation results of EF and PLI showed that the soil PTE pollution in the study area was serious, especially Cd and Cu. And four sources were quantitatively allocated as agricultural practices (12.14%), traffic emissions (23.07%), natural sources (33.46%), and industrial activities (31.33%). For PER, industrial activities were the largest contributor to PER, accounting for 55.66%, 56.30%, and 55.36% of farmland, construction land, and natural land, respectively, and Cd was the most dangerous element. In terms of HHR, industrial activities were also the cardinal contributors under the three land use types. Children were exposed to serious non-carcinogenic risks under three land use patterns and slight carcinogenic risk in construction land (1.06E - 04). Significantly, the carcinogenic risk of children in farmland (9.06 × 10-5) was very close to the threshold (1 × 10-4), which requires attention. Both non-carcinogenic and carcinogenic risk for adults were all at acceptable levels. The health risks (carcinogenic and non-carcinogenic risks) of children from four different sources were distinctly higher than those of adults. Consequently, strict management and control of industrial activities should be given priority, and the management of agricultural practices should not be ignored.
Collapse
Affiliation(s)
- Chang-Chen Huang
- Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan, 430100, China
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, China
| | - Li-Mei Cai
- Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan, 430100, China.
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, China.
- Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Yao-Hui Xu
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, China
| | - Luo Jie
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, China
| | - Lai-Guo Chen
- Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou, 510535, China.
| | - Guo-Cheng Hu
- Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou, 510535, China
| | - Hui-Hao Jiang
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, China
| | - Xu-Bang Xu
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, China
| | - Jing-Xian Mei
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, China
| |
Collapse
|
27
|
Duangnet Laokae, Phuruangrat A, Thongtem T, Thongtem S. Synthesis, Analysis and Visible-Light-Driven Photocatalysis of 0–5% Pr-Doped ZnO Nanoparticles. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622050114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Gao H, Zhang Y, Meng Y, Liu X, Zhu F. Regeneration of waste LiCoO2 cathode materials with high energy stripping of laser. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
The interference of copper, iron and aluminum with hydrogen peroxide and its effects on reductive leaching of LiNi1/3Mn1/3Co1/3O2. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Investigation of indium and other valuable metals leaching from unground waste LCD screens by organic and inorganic acid leaching. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Recycling the cathode materials of spent Li-ion batteries in a H-Shaped neutral water electrolysis cell. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Li S, Wu X, Jiang Y, Zhou T, Zhao Y, Chen X. Novel electrochemically driven and internal circulation process for valuable metals recycling from spent lithium-ion batteries. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 136:18-27. [PMID: 34634567 DOI: 10.1016/j.wasman.2021.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/31/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The sustainable recycling of valuable metals from spent lithium-ion batteries (LIBs) is impeded by the issues of extensive chemicals consumption, tedious separation process and deficient selectivity. Here, novel electrochemically driven and internal circulation strategy was developed for the direct and selective recycling of valuable metals from waste LiCoO2 of spent LIBs. Firstly, the waste LiCoO2 can be efficiently dissolved by generated acid (H2SO4) during electro-deposition of Cu from CuSO4 electrolyte. Then, Co2+ ions in the lixivium can be electrodeposited and recovered as metallic Co with a coinstantaneous regeneration of H2SO4 and regenerated acid can be reused as leachant without obvious shrinking of leaching capability based on circulating leaching results. Over 92% Co and 97% Li can be leached, and 100% Cu and 93% Co are recovered as their metallic forms under the optimized experimental conditions. Results of leaching kinetics suggest that the leaching of Co and Li is controlled by internal diffusion with significantly reduced apparent activation energies (Ea) for Li and Co. Finally, Li2CO3 can be recovered from Li+ enriched lixivium after circulating leaching. This recycling process is a simplified route without any input of leachant and reductant, and valuable metals can be selectively recovered in a closed-loop way with high efficiency.
Collapse
Affiliation(s)
- Shuzhen Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xin Wu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Youzhou Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Tao Zhou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yan Zhao
- Qingdao Topscomm Communication Co., LTD., TOPSCOMM Industry Park, 858 Huaguan Rd., Hi-tech District, Qingdao, 266109, China
| | - Xiangping Chen
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
33
|
Chen X, Li S, Wang Y, Jiang Y, Tan X, Han W, Wang S. Recycling of LiFePO 4 cathode materials from spent lithium-ion batteries through ultrasound-assisted Fenton reaction and lithium compensation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 136:67-75. [PMID: 34637980 DOI: 10.1016/j.wasman.2021.09.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Efficient exfoliation of cathode materials from current collectors for their direct regeneration is the typical bottleneck during spent lithium ion batteries (LIBs) recycling due to the strong adhesion of PVDF (polyvinylidene fluoride) binders. Ultrasound-assisted Fenton reaction was innovatively applied for the selective removal of PVDF binders to recover cathode materials of LiFePO4 from current collectors and the recovered LiFePO4 was regenerated through lithium compensation, targeting for the in-situ recycling of cathode materials from spent LIBs. Experimental results suggest that the PVDF binders were adequately degraded by hydroxyl radical (·OH) generated from Fenton's reagent with reinforcement of ultrasound, and about 97% cathode materials can be scrubbed from Al foils under optimized conditions. Detailed analytical results support that the cathode materials peeled off from current collectors are free from contamination of effluent, and the recovered LiFePO4 can be directly re-fabricated as new cathode materials through lithium compensation with little reduction of electrochemical performances. And the tentative mechanism investigation for pathway of ·OH generation and chemical reactions indicates that ·OH generated from Fenton's reagent with the reinforcement of ultrasound can effectively degrade PVDF binders. This work can be a green and efficient candidate for the in-situ recycling of cathode materials of LiFePO4 from spent LIBs.
Collapse
Affiliation(s)
- Xiangping Chen
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi Province 710021, PR China.
| | - Shuzhen Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi Province 710021, PR China
| | - Yi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi Province 710021, PR China
| | - Youzhou Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province 410083, PR China
| | - Xiao Tan
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou 510655, PR China
| | - Weijiang Han
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou 510655, PR China
| | - Shubin Wang
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou 510655, PR China
| |
Collapse
|
34
|
Qiu X, Tian Y, Deng W, Li F, Hu J, Deng W, Chen J, Zou G, Hou H, Yang Y, Sun W, Hu Y, Ji X. Coupling regeneration strategy of lithium-ion electrode materials turned with naphthalenedisulfonic acid. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 136:1-10. [PMID: 34627101 DOI: 10.1016/j.wasman.2021.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
The resource exhaustion and environmental assessment driven by sustainable development make recycle of spent LIBs urgent to be achieved. However, the conventional recycling processes are quite complicated in terms of the tedious steps and secondary contamination. In this paper, hydrosoluble naphthalenedisulfonic acid is firstly proposed to selectively extract valuable metals (Co and Li) for the regeneration of battery materials. Lithium is selectively recovered as lithium enriched solution with a high yield of 99%, while 96.6% cobalt remains in a complex-precipitate benefited from the high acidity and coordination role of naphthalenedisulfonic acid. The leaching of Li fits well with the logarithmic rate law model with an activation energy of 32.42 kJ/mol. Additionally, the regenerated lithium-ion battery active materials (Co3O4 anode and LiCoO2 cathode) prepared from the cobalt complex-precipitate and lithium-enriched solution exhibit excellent discharged-charged performances and rate capability. This feasible strategy assisted by multifunctional naphthalenedisulfonic acid may offer an alternative option for the simultaneous recovery of Li and Co and the rational resource utilization of spent lithium-ion batteries.
Collapse
Affiliation(s)
- Xuejing Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ye Tian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Fengrong Li
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jiugang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Weina Deng
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha 410022, China
| | - Jun Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yuehua Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
35
|
Urias PM, Dos Reis Menêzes LH, Cardoso VL, de Resende MM, de Souza Ferreira J. Leaching with mixed organic acids and sulfuric acid to recover cobalt and lithium from lithium ion batteries. ENVIRONMENTAL TECHNOLOGY 2021; 42:4027-4037. [PMID: 32431249 DOI: 10.1080/09593330.2020.1772372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Li-ion batteries (LIBs) should be recycled because of the environmental reasons and this type of waste represents an important secondary source of metals. This work aimed to evaluate the recovery of Co and Li from LIBs by hydrometallurgy. The efficiency of different leachants was tested: H2SO4 (2 M), fermentation effluent with supplementation of organic acids (lactic, acetic, butyric and propionic acids) (3.4 M) and a combination of fermentation effluent (0.75 M) and H2SO4 (1.25 M). In addition, the effect of H2O2, glucose P.A., lactose P.A. and from milk whey permeate (MWP) as reducing agent was tested. The leaching solution composed of H2SO4 and fermentation effluent showed high potential of metals recovery in addition to being an alternative of reducing the volume of inorganic acid and the cost by using a fermentation effluent since its use may be integrated with a waste treatment process. Based on Central Composite Designs, optimum conditions of leaching were established, as temperature of 86°C, solid-liquid ratio of 18.5 g/L, leaching time 2.5 h, agitation of 300 rpm and concentration of 0.09 M of lactose from MWP and recovery level achieved was 93.35% of Co and 90.50% of Li. In order to evaluate the influence of each organic acid present on the fermentation effluent, testes were carried out using pure organic acid with H2SO4 (0.75 M:1.25 M) or isolated (3.4 M) and inferior recoveries were detected proving that mixture of organic acids and further compounds as phenolic groups characteristic of fermentation effluent improves the leaching process.
Collapse
Affiliation(s)
- Patrícia Moisés Urias
- School of Chemical Engineering, Federal University of Uberlandia, Uberlandia/MG, Brazil
| | | | - Vicelma Luiz Cardoso
- School of Chemical Engineering, Federal University of Uberlandia, Uberlandia/MG, Brazil
| | | | | |
Collapse
|
36
|
Ma Y, Zhou X, Tang J, Liu X, Gan H, Yang J. Reaction mechanism of antibiotic bacteria residues as a green reductant for highly efficient recycling of spent lithium-ion batteries. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126032. [PMID: 33992020 DOI: 10.1016/j.jhazmat.2021.126032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
In this study, antibiotic bacteria residues (ABRs) is proposed as a novel green reducing agent and it is found that the reducing agent can realize the efficient recovery of the valuable metals in spent cathode powder (SCP), reduce the environmental pollution and realize the high-value utilization of the biomass waste. The leaching efficiency of Ni, Co, Mn and Li can reach 99.57%, 98.50%, 98.99% and 99.90% respectively under the optimal conditions of 3 mol L-1 H2SO4, mass ratio of ABRs to SCP of 0.8:1, liquid/solid ratio of 30:1 mL g-1, the temperature of 363 K and time of 2.5 h. Leaching kinetics results shows that the reaction process is controlled by the chemical reaction with apparent activation energy exceeding than 40 kJ/mol. More importantly, the detailed ABRs leaching mechanism is proposed that the metabolite of CaC2O4 and reducing sugar in ABRs provide a synergistic reduction effect on the recovery of valuable metals. Furthermore, acid leaching residue can be regenerated to obtain lithium-ion anode materials with excellent electrochemical properties. The entire process is a sustainable green recycling strategy by using waste ABRs waste to treat spent lithium-ion batteries (LIBs), recovering valuable metals efficiently and minimizing environmental pollution.
Collapse
Affiliation(s)
- Yayun Ma
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiangyang Zhou
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jingjing Tang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiaojian Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Hongxiang Gan
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Changsha Engineering and Research Institute Ltd. of Nonferrous Metallurgy, Changsha 410019, China
| | - Juan Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
37
|
Qiu X, Hu J, Tian Y, Deng W, Yang Y, Silvester DS, Zou G, Hou H, Sun W, Hu Y, Ji X. Highly efficient re-cycle/generation of LiCoO 2 cathode assisted by 2-naphthalenesulfonic acid. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126114. [PMID: 34492910 DOI: 10.1016/j.jhazmat.2021.126114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 06/13/2023]
Abstract
The explosively growing demand for electrical energy is generating a great deal of spent lithium-ion batteries (LIBs). Therefore, a simple and effective strategy for the sustainable recycling of used batteries is urgently needed to minimize chemical consumption and to reduce the associated environmental pollution. In this work, 2-naphthalenesulfonic acid is innovatively proposed for the highly-selective recovery of valuable metals. Impressively, lithium and cobalt are simultaneously separated through a single-step process, in which 99.3% of lithium is leached out as Li+ enriched solutions while 99% of cobalt is precipitated as cobalt-naphthalenesulfonate. The obtained lithium enriched solutions are recovered as Li2CO3. The cobalt-naphthalenesulfonate with high purity (99%) is ready to be transformed into Co3O4, and then generated into LiCoO2 by reacting with the above-obtained Li2CO3. The cathode material LiCoO2 with micro/nanostructures exhibits excellent electrochemical properties. Characterization results confirm the coordination structure of the extracted cobalt complex (Co(NS)2•6H2O). Finally, compared to other selective metal extraction techniques, this strategy avoids additional separation and purification processes, thus improving the recycling efficiency. Overall, this route can be extended to selectively extract valuable metals from other types of cathode materials in spent LIBs as a sustainable approach.
Collapse
Affiliation(s)
- Xuejing Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiugang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ye Tian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Debbie S Silvester
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yuehua Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
38
|
Xing L, Lin S, Yu J. Novel Recycling Approach to Regenerate a LiNi 0.6Co 0.2Mn 0.2O 2 Cathode Material from Spent Lithium-Ion Batteries. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lei Xing
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Salt Lake Resources Process Engineering, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Sen Lin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Salt Lake Resources Process Engineering, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jianguo Yu
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Salt Lake Resources Process Engineering, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
39
|
Yang C, Zhang J, Yu B, Huang H, Chen Y, Wang C. Recovery of valuable metals from spent LiNixCoyMnzO2 cathode material via phase transformation and stepwise leaching. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118609] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Yang H, Deng B, Jing X, Li W, Wang D. Direct recovery of degraded LiCoO 2 cathode material from spent lithium-ion batteries: Efficient impurity removal toward practical applications. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 129:85-94. [PMID: 34044320 DOI: 10.1016/j.wasman.2021.04.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Regenerating cathode material from spent lithium-ion batteries (LIBs) permits an effective approach to resolve resource shortage and environmental pollution in the increasing battery industry. Directly renovating the spent cathode materials is a promising way, but it is still challenging to efficiently remove all of the complex impurities (such as binder, carbon black, graphite and current collectors) without destroying the material structure in the electrode. Herein, a facile strategy to directly remove these impurities and simultaneously repair the degraded LiCoO2 by a target healing method is reported. Specifically, by using an optimized molten salt system of LiOH-KOH (molar ratio of 3:7) where LiNO3 and O2 both serve as oxidants, the impurities can be completely removed, while the structure, composition and morphology of degraded LiCoO2 can be successfully repaired to commercial level based on a two-stage heating process (300 °C for 8 h and 500 °C for 16 h, respectively), resulting in a high recovery rate of approximately 100% for cathode material. More importantly, the regenerated LiCoO2 exhibits a high reversible capacity, good cycling stability and excellent rate capability, which are comparable with commercial LiCoO2. This work demonstrates an efficient approach to recycle and reuse advanced energy materials.
Collapse
Affiliation(s)
- Huimeng Yang
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resources and Energy, Wuhan University, Wuhan 430072, China
| | - Bowen Deng
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resources and Energy, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Jing
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resources and Energy, Wuhan University, Wuhan 430072, China
| | - Wei Li
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resources and Energy, Wuhan University, Wuhan 430072, China.
| | - Dihua Wang
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resources and Energy, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
41
|
Huang T, Junjun T, Liu W, Song D, Yin LX, Zhang S. Biotreatment for the spent lithium-ion battery in a three-module integrated microbial-fuel-cell recycling system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 126:377-387. [PMID: 33819901 DOI: 10.1016/j.wasman.2021.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/22/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
A bio-electrochemically (BE) recycling platform was assembled to recover Li and Co from the cathodic materials of spent LIBs in one integrated system. The BE platform consists of three microbial-fuel-cell (MFC) subsystems, including MFC-A, MFC-B, and MFC-C. Co and Li were smoothly recovered from the cathodic materials in the assembled platform. The initial pH and the loading ratios of LiCoO2 both significantly influenced the leaching efficiencies of Li and Co in MFC-A. Approximately 45% Li and 93% Co were simultaneously released through the reduction of LiCoO2 at the initial pH of 1 and the loading ratios of LiCoO2 of 0.2 g/L. The (NH4)2C2O4-modified granular activated carbons (GAC) with a thickness of 1.5 cm was favorably stacked adjacent to the cathode of the MFC-B system. About 98% of removal efficiency (RECo1) and 96% of recovery efficiency (RECo2) of Co were achieved in MFC-B under optimum conditions. The dosing concentration of Li+ lower than 2 mg/L and the (NH4)2CO3 of 0.01-0.02 M were conducive to enhancing the recovery of Li from raffinate and guaranteed the higher power output and coulombic efficiencies in MFC-C. The continuous release of CO2 caused by exoelectrogenic microorganisms on the biofilm facilitated the precipitation of Li2CO3.
Collapse
Affiliation(s)
- Tao Huang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu 215500, China; School of Chemical Engineering & Technology China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Tao Junjun
- School of Materials Engineering, Changshu Institute of Technology, 215500, China.
| | - Wanhui Liu
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu 215500, China.
| | - Dongping Song
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Li-Xin Yin
- School of Economics and Management, Changshu Institute of Technology, No. 99, South 3rd Ring Road, Changshu 215500, China.
| | - Shuwen Zhang
- Nuclear Resources Engineering College, University of South China, 421001, China
| |
Collapse
|
42
|
Ruan D, Wu L, Wang F, Du K, Zhang Z, Zou K, Wu X, Hu G. A low-cost silicon-graphite anode made from recycled graphite of spent lithium-ion batteries. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115073] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Liu F, Peng C, Ma Q, Wang J, Zhou S, Chen Z, Wilson BP, Lundström M. Selective lithium recovery and integrated preparation of high-purity lithium hydroxide products from spent lithium-ion batteries. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118181] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
A quantification method for Fe based particle contaminants in high purity materials for lithium-ion batteries. Talanta 2021; 224:121827. [PMID: 33379045 DOI: 10.1016/j.talanta.2020.121827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022]
Abstract
The technological growth, the increasing safety, and production standards cascade down to the quality of the raw materials. The development of analytical methods for high quality powder analysis needs to grow parallel to this trend. It is established that particle metal contaminants could trigger violent failures of lithium-ion batteries and compromise the battery performance, and the safety of the end user. Increased miniaturization requires exponential increases in quality of raw materials putting laboratories in a continuous process of development to achieve ever higher standards. Trace elements in a powder material can be present in different states, and their effect on the application can therefore be different according to the status. Trace elements can be present in the material as a dissolved impurity or as a particle contamination. Here we present an experimental method which is easy to implement and use, and is sensitive to contaminants (i.e. external particles that are not part of the material of interest) over total trace elements. Contaminants typically are a few orders of magnitude lower in concentration than total trace elements. The method focuses on the quantification of Fe, Ni and Cr in high purity carbon powders used in the lithium-ion battery industry. We present test sample size calculations prior to the method description to ensure high precision and assess possible bias. The method is based on the magnetic extraction of a large test sample, followed by acid digestion and quantification. The procedure and the method performance are described. The method ensures low levels of detection and quantification, high precision, and accuracy.
Collapse
|
45
|
Wang D, Li W, Rao S, Tao J, Duan L, Zhang K, Cao H, Liu Z. Oxygen-free calcination for enhanced leaching of valuable metals from spent lithium-ion batteries without a reductant. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Ruan D, Zou K, Du K, Wang F, Wu L, Zhang Z, Wu X, Hu G. Recycling of Graphite Anode from Spent Lithium‐ion Batteries for Preparing Fe‐N‐doped Carbon ORR Catalyst. ChemCatChem 2021. [DOI: 10.1002/cctc.202001867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dingshan Ruan
- School of Metallurgy and Environment Central South University Changsha 410083 P. R. China
- Guangdong Brunp Recycling Technology Co., Ltd. Foshan 528100 P. R. China
| | - Ke Zou
- Guangdong Brunp Recycling Technology Co., Ltd. Foshan 528100 P. R. China
| | - Ke Du
- School of Metallurgy and Environment Central South University Changsha 410083 P. R. China
| | - Fengmei Wang
- Guangdong Brunp Recycling Technology Co., Ltd. Foshan 528100 P. R. China
| | - Lin Wu
- Guangdong Brunp Recycling Technology Co., Ltd. Foshan 528100 P. R. China
| | - Zhenhua Zhang
- Guangdong Brunp Recycling Technology Co., Ltd. Foshan 528100 P. R. China
| | - Xiaofeng Wu
- Guangdong Brunp Recycling Technology Co., Ltd. Foshan 528100 P. R. China
| | - Guorong Hu
- School of Metallurgy and Environment Central South University Changsha 410083 P. R. China
| |
Collapse
|
47
|
Yang X, Zhang Y, Meng Q, Dong P, Ning P, Li Q. Recovery of valuable metals from mixed spent lithium-ion batteries by multi-step directional precipitation. RSC Adv 2020; 11:268-277. [PMID: 35423005 PMCID: PMC8690296 DOI: 10.1039/d0ra09297e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/13/2020] [Indexed: 11/21/2022] Open
Abstract
The novel strategy of multi-step directional precipitation is proposed for recovering valuable metals from the leachate of cathode material obtained by mechanical disassembly from mixed spent lithium-ion batteries. Based on thermodynamics and directional precipitation, Mn2+ is selectively precipitated under conditions of MRNM (molar ratio of (NH4)2S2O8 to Mn2+) = 3, pH = 5.5 and 80 °C for 90 min. Ni2+ was then selectively precipitated using C4H8N2O2 under conditions of pH = 6, MRCN (molar ratio of C4H8N2O2 to Ni2+) = 2, 30 °C and 20 min. Then, the pH was adjusted to 10 to precipitate Co2+ as Co(OH)2. Finally, Li+ was recovered by Na2CO3 at 90 °C. The precipitation rates of Mn, Ni, Co, and Li reached 99.5%, 99.6%, 99.2% and 90%, respectively. The precipitation products with high purity can be used as raw materials for industrial production based on characterization. The economical and efficient recovery process can be applied in industrialized large-scale recycling of spent lithium-ion batteries.
Collapse
Affiliation(s)
- Xuan Yang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Yingjie Zhang
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China .,Faculty of Materials Science and Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Qi Meng
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Peng Dong
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Peichao Ning
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Qingxiang Li
- Shenzhen Zhongjin Lingnan Technology Co., Ltd. Shenzhen 518118 China
| |
Collapse
|
48
|
Zhou LF, Yang D, Du T, Gong H, Luo WB. The Current Process for the Recycling of Spent Lithium Ion Batteries. Front Chem 2020; 8:578044. [PMID: 33344413 PMCID: PMC7744654 DOI: 10.3389/fchem.2020.578044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
With the development of electric vehicles involving lithium ion batteries as energy storage devices, the demand for lithium ion batteries in the whole industry is increasing, which is bound to lead to a large number of lithium ion batteries in the problem of waste, recycling and reuse. If not handled properly, it will certainly have a negative impact on the environment and resources. Current commercial lithium ion batteries mainly contain transition metal oxides or phosphates, aluminum, copper, graphite, organic electrolytes containing harmful lithium salts, and other chemicals. Therefore, the recycling and reuse of spent lithium ion batteries has been paid more and more attention by many researchers. However, due to the high energy density, high safety and low price of lithium ion batteries have great differences and diversity, the recycling of waste lithium ion batteries has great difficulties. This paper reviews the latest development of the recovery technology of waste lithium ion batteries, including the development of recovery process and products. In addition, the challenges and future economic and application prospects are described.
Collapse
Affiliation(s)
- Li-Feng Zhou
- Section of Environmental Protection (SEP) Key Laboratory of Eco-Industry, School of Metallurgy, Northeastern University, Shenyang, China
| | - Dongrun Yang
- School of Metallurgy, Institute for Energy Electrochemistry and Urban Mines Metallurgy, Northeastern University, Shenyang, China
| | - Tao Du
- Section of Environmental Protection (SEP) Key Laboratory of Eco-Industry, School of Metallurgy, Northeastern University, Shenyang, China
| | - He Gong
- Section of Environmental Protection (SEP) Key Laboratory of Eco-Industry, School of Metallurgy, Northeastern University, Shenyang, China
| | - Wen-Bin Luo
- Section of Environmental Protection (SEP) Key Laboratory of Eco-Industry, School of Metallurgy, Northeastern University, Shenyang, China.,School of Metallurgy, Institute for Energy Electrochemistry and Urban Mines Metallurgy, Northeastern University, Shenyang, China
| |
Collapse
|
49
|
Jian Y, Yanqing L, Fangyang L, Ming J, Liangxing J. Countercurrent leaching of Ni, Co, Mn, and Li from spent lithium-ion batteries. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2020; 38:1358-1366. [PMID: 32720588 DOI: 10.1177/0734242x20944498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study focuses on a countercurrent leaching process (CLP) for the dissolution of high-value metals from cathode active material of spent lithium-ion batteries (LIBs). Its main aim is to improve the effective utilization of acid during leaching and allow for the continuous operation of the entire CLP by adjusting the process parameters. The overall recovery of lithium (Li), cobalt (Co), nickel (Ni), and manganese (Mn) was 98%, 95%, 95%, and 92%, respectively; the acid utilization of the leaching process exceeded 95% under optimum conditions. The optimum conditions for first stage leaching were 70 g/L solid-liquid (S/L) ratio at 40°C for 30 minutes, and 2.0 M sulfuric acid, 100 g/L S/L ratio, 7 g/L starch, at 85°C for 120 minutes for second stage leaching. After five bouts of circulatory leaching, more than 98% Li, 95% Co, 95% Ni, and 92% Mn were leached under the same leaching conditions. Furthermore, we introduced the Avrami equation to describe metal leaching kinetics from spent LIBs, and determined that the second stage leaching process was controlled by the diffusion rate. In this way, Li, Ni, Co, and Mn can be recovered efficiently and the excess acid in the leachate can be reused in this hydrometallurgical process, potentially offering economic and environmental benefits.
Collapse
Affiliation(s)
- Yang Jian
- School of Metallurgy and Environment, Central South University, People's Republic of China
| | - Lai Yanqing
- School of Metallurgy and Environment, Central South University, People's Republic of China
| | - Liu Fangyang
- School of Metallurgy and Environment, Central South University, People's Republic of China
| | - Jia Ming
- School of Metallurgy and Environment, Central South University, People's Republic of China
| | - Jiang Liangxing
- School of Metallurgy and Environment, Central South University, People's Republic of China
| |
Collapse
|
50
|
Wu Z, Soh T, Chan JJ, Meng S, Meyer D, Srinivasan M, Tay CY. Repurposing of Fruit Peel Waste as a Green Reductant for Recycling of Spent Lithium-Ion Batteries. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9681-9692. [PMID: 32644805 DOI: 10.1021/acs.est.0c02873] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of environmentally benign hydrometallurgical processes to treat spent lithium-ion batteries (LIBs) is a critical aspect of the electronic-waste circular economy. Herein, as an alternative to the highly explosive H2O2, discarded orange peel powder (OP) is valorized as a green reductant for the leaching of industrially produced LIBs scraps in citric acid (H3Cit) lixiviant. The reductive potential of the cellulose- and antioxidant-rich OP was validated using the 3,5-dinitrosalicylic acid and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid assays. Leaching parameters such as OP concentration (200 mg), processing temperature (100 °C), H3Cit concentration (1.5 M), reaction duration (4 h), and slurry density (25 g/mL) were systematically optimized to achieve 80-99% leaching efficiencies of Ni, Mn, Co, and Li from the LIB "black mass". Importantly, solid side-streams generated by the OP-enabled leaching displayed negligible cytotoxicity in three different human cell lines, suggesting that the process is environmentally safe. As a proof of concept, Co(OH)2 was selectively recovered from the green lixiviant and subsequently utilized to fabricate new batches of LiCoO2 (LCO) coin cell batteries. Galvanostatic charge-discharge test revealed that the regenerated batteries exhibited initial charge and discharge values of 120 and 103 mAh/g, respectively, which is comparable to the performance of commercial LCO batteries. The use of fruit peel waste to recover valuable metals from spent LIBs is an effective, ecofriendly, and sustainable strategy to minimize the environmental footprint of both waste types.
Collapse
Affiliation(s)
- Zhuoran Wu
- Energy Research Institute, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
| | - Tanto Soh
- Energy Research Institute, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
| | - Jun Jie Chan
- Energy Research Institute, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 Singapore
| | - Shize Meng
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 Singapore
| | - Daniel Meyer
- Institut de Chimie Séparative de Marcoule (ICSM), UMR 5257 CEA-CNRS-UM-ENSCM, Centre de Marcoule, BP 17171, 30207 Bagnols-sur-Cèze Cedex, France
| | - Madhavi Srinivasan
- Energy Research Institute, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 Singapore
| | - Chor Yong Tay
- Energy Research Institute, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|