1
|
Kumar A, Thakur A, Panesar PS. A review on the industrial wastewater with the efficient treatment techniques. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
2
|
Abd Khalil AT, Shah Buddin MMH, Puasa SW, Ahmad AL. Reuse of waste cooking oil (WCO) as diluent in green emulsion liquid membrane (GELM) for zinc extraction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45244-45258. [PMID: 36705837 DOI: 10.1007/s11356-023-25208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Zinc (Zn) was identified as one of the most toxic heavy metals and often found contaminating the water sources as a result of inefficient treatment of industrial effluent. A green emulsion liquid membrane (GELM) was proposed in this study as a method to minimize the concentration of Zn ions in an aqueous solution. Instead of the common petroleum-based diluent, the emulsion is reformulated with untreated waste cooking oil (WCO) collected from the food industry as a sustainable and cheaper diluent. It also includes Bis(2-ethylhexyl) phosphate (D2EHPA) as a carrier, Span 80 as a surfactant, sulfuric acid (H2SO4) as an internal phase, and ZnSO4 solution as an external phase. Such formulation requires a thorough understanding of the oil characteristics as well as the interaction of the components in the membrane phase. The compatibility of WCO and D2EHPA, as well as the external phase pH, was confirmed via a liquid-liquid extraction (LLE) method. To obtain the best operating conditions for Zn extraction using GELM, the extraction time and speed, carrier, surfactant and internal phase concentrations, and W/O ratio were varied. 95.17% of Zn ions were removed under the following conditions; 0.001 M of H2SO4 in external phase, 700 rpm extraction speed for 10 min, 8 wt% of carrier and 4 wt% of surfactant concentrations, 1:4 of W/O ratio, and 1 M of internal phase concentration.
Collapse
Affiliation(s)
- Afiqah Tasneem Abd Khalil
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | | | - Siti Wahidah Puasa
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia.
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Universiti Sains Malaysia Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
Wang D, Wang Q, Zhang X, Liu T, Zhang H. Conversion of Waste Oil from Oil Refinery into Emulsion Liquid Membrane for Removal of Phenol: Stability Evaluation, Modeling and Optimization. MEMBRANES 2022; 12:membranes12121202. [PMID: 36557109 PMCID: PMC9781828 DOI: 10.3390/membranes12121202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 05/12/2023]
Abstract
The waste oil emulsion liquid membrane produced by waste oil from oil refineries (WELM) is used to separate the phenol in purified water from the sour water stripper in oil refinery facilities, and the stability of WELM was studied. It is verified that waste refinery oil can be produced into emulsion liquid membrane with good stability and high removal rate for the first time. The WELM stability models were established by response surface methodology (RSM) and artificial neural network (ANN), respectively. The principle and mechanism of various parameters, as well as the interaction effects on the stability of WELM, are proposed. The effects of parameters, including the ratio of Span-80, liquid paraffin, the ratio of internal and oil, and the rotational speed of the homogenizer, were investigated. Under the optimal operating parameters, the WELM had a demulsification percentage of just 0.481%, and the prediction results of RSM and ANN were 0.536% and 0.545%, respectively. Both models demonstrate good predictability. The WELM stability model has a high application value in the treatment of phenol-containing wastewater in the oil refining industry, and provides a green method of resource recovery.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
- CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
- Correspondence: ; Tel.: +86-10-80166518
| | - Qingji Wang
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
- CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
| | - Xiaofei Zhang
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
- CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
| | - Taoran Liu
- Petrochemical Research Institute, PetroChina, Beijing 102206, China
| | - Hua Zhang
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
- CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
| |
Collapse
|
4
|
Khalil ATA, Buddin MMHS, Puasa SW, Ahmad AL. Reuse of Waste Cooking Oil (WCO) as Diluent in Green Emulsion Liquid Membrane (GELM) for Zinc Extraction.. [DOI: 10.21203/rs.3.rs-1251988/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Zinc (Zn) was identified as one of the most toxic heavy metals and often found contaminating the water sources as a result of inefficient treatment of industrial effluent. A Green Emulsion Liquid Membrane (GELM) was proposed in this study as a method to minimize the concentration of Zn ions in an aqueous solution. Instead of the common petroleum-based diluent, the emulsion is reformulated with untreated waste cooking oil (WCO) collected from the food industry as a sustainable and cheaper diluent. It also includes Bis(2-ethylhexyl) phosphate (D2EHPA) as carrier, Span 80 as surfactant, sulfuric acid (H2SO4) as internal phase and ZnSO4 solution as external phase. Such formulation requires a thorough understanding of the oil characteristics as well as the interaction of the components in the membrane phase. The compatibility of WCO and D2EHPA, as well as the external phase pH was confirmed via liquid-liquid extraction (LLE) method. To obtain the best operating conditions for Zn extraction using GELM, the extraction time and speed, carrier, surfactant and internal phase concentrations, and W/O ratio were varied. 95.17% of Zn ions were removed under the following conditions; 0.001M of H2SO4 in external phase, 700 rpm extraction speed for 10 minutes, 8 wt% of carrier and 4 wt% of surfactant concentrations, 1:4 of W/O ratio and 1 M of internal phase concentration.
Collapse
|
5
|
Cui H, Cao G, Zhu S, Mu J, Chou X. Study on the preparation and formation factors of frother emulsion. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Khan HW, Reddy AVB, Bustam MA, Goto M, Moniruzzaman M. Development and optimization of ionic liquid-based emulsion liquid membrane process for efficient recovery of lactic acid from aqueous streams. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Tahmasebizadeh P, Javanshir S, Ahmadi A. Zinc extraction from a bioleaching solution by emulsion liquid membrane technique. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Rajewski J, Dobrzyńska-Inger A. Application of Response Surface Methodology (RSM) for the Optimization of Chromium(III) Synergistic Extraction by Supported Liquid Membrane. MEMBRANES 2021; 11:membranes11110854. [PMID: 34832083 PMCID: PMC8619586 DOI: 10.3390/membranes11110854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
In this paper, the response surface methodology (RSM) was proposed for studying the synergistic extraction of chromium(III) ions by double-carrier supported liquid membrane (DCSLM) with organophosphorus carriers (D2EHPA/Cyanex272). At first, the optimization method of "one-factor-at-a-time" was adopted for determination of the best conditions for Cr(III) extraction by SLM with only one carrier (D2EHPA). The optimum/threshold D2EHPA concentration in the membrane phase increased linearly with initial concentration of Cr(III) ions in the feed phase. After the addition the second carrier (Cyanex272), the synergistic effect was observed. The largest percentage of extraction and the shorter time was obtained. The optimization of the synergistic extraction in DCSLM system by RSM using Box-Behnken design (BBD) for three variables (concentration and proportions of the carriers, initial concentration of Cr(III), and time of the process) was studied. The statistical model was verified with the analysis of variance (ANOVA) for the response surface quadratic model. The reduced quadratic model showed that the predicted values were in agreement with those obtained experimentally, as well as the fact that the concentrations and proportions of the carriers had a significant influence on the response. The developed model was considered to be verified and can be used to predict the optimal condition for the chromium ions extraction.
Collapse
|
9
|
Yan B, Huang X, Chen K, Liu H, Wei S, Wu Y, Wang L. A study of synergetic carrier emulsion liquid membrane for the extraction of amoxicillin from aqueous phase using response surface methodology. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Ghorbanpour P, Jahanshahi M. Removal of zinc by emulsion liquid membrane using lecithin as biosurfactant. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1929287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Payam Ghorbanpour
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Mohsen Jahanshahi
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
11
|
Anarakdim K, Gutiérrez G, Cambiella Á, Senhadji‐Kebiche O, Matos M. Green Emulsified Liquid Membrane for Hexavalent Chromium Extraction: Formulation and Process Optimization. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Katia Anarakdim
- Laboratoire des Procédés Membranaires et des Techniques de Séparation et de Récupération Département de Génie des Procédés, Université de Bejaia Bejaia Algerie
| | - Gemma Gutiérrez
- University of Oviedo Department of Chemical and Environmental Engineering Julián Clavería 8 <33006 Oviedo Spain
| | - Ángel Cambiella
- University of Oviedo Department of Chemical and Environmental Engineering Julián Clavería 8 <33006 Oviedo Spain
| | - Ounissa Senhadji‐Kebiche
- Laboratoire des Procédés Membranaires et des Techniques de Séparation et de Récupération Département de Génie des Procédés, Université de Bejaia Bejaia Algerie
| | - María Matos
- University of Oviedo Department of Chemical and Environmental Engineering Julián Clavería 8 <33006 Oviedo Spain
| |
Collapse
|
12
|
Chai CY, Tan IS, Foo HCY, Lam MK, Tong KTX, Lee KT. Sustainable and green pretreatment strategy of Eucheuma denticulatum residues for third-generation l-lactic acid production. BIORESOURCE TECHNOLOGY 2021; 330:124930. [PMID: 33735730 DOI: 10.1016/j.biortech.2021.124930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/27/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Managing plastic waste remains an urgent environmental concern and switching to biodegradable plastics can reduce the dependence on depleting fossil fuels. This study emphasises the efficacy of macroalgae wastes, Eucheuma denticulatum residues (EDRs), as potential alternate feedstock to produce l-lactic acid (l-LA), the monomer of polylactic acid, through fermentation. An innovative environmental friendly strategy was explored in this study to develop a glucose platform from EDRs: pretreatment with microwave-assisted autohydrolysis (MAA) applied to enhance enzymatic hydrolysis of EDRs. The results indicate that MAA pretreatment significantly increased the digestibility of EDRs during the enzymatic hydrolysis process. The optimum pretreatment conditions were 120 °C and 50 min, resulting in 96.5% of enzymatic digestibility after 48 h. The high l-LA yield of 98.6% was obtained using pretreated EDRs and supplemented with yeast extract. The energy analysis implies that MAA pretreatment could further improve the overall energy efficiency of the process.
Collapse
Affiliation(s)
- Choi Yan Chai
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
| | - Henry Chee Yew Foo
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Kevin Tian Xiang Tong
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
13
|
Chang SH. Utilization of green organic solvents in solvent extraction and liquid membrane for sustainable wastewater treatment and resource recovery-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32371-32388. [PMID: 32533493 DOI: 10.1007/s11356-020-09639-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Water pollution and depletion of natural resources have motivated the utilization of green organic solvents in solvent extraction (SX) and liquid membrane (LM) for sustainable wastewater treatment and resource recovery. SX is an old and established separation method, while LM, which combines both the solute removal and recovery processes of SX in a single unit, is a revolutionary separation technology. The organic solvents used for solute removal in SX and LM can be categorized into sole conventional, mixed conventional-green, and sole green organic solvents, whereas the stripping agents used for solute recovery include acids, bases, metal salts, and water. This review revealed that the performance of greener organic solvents (mixed conventional-green and sole green organic solvents) was on par with the sole conventional organic solvents. However, some green organic solvents may threaten food security, while others could be pricey. The distinctive extraction theories of various sole green organic solvents (free fatty acid-rich oils, triglyceride-rich oils, and deep eutectic solvents) affect their application suitability for a specific type of wastewater. Organic liquid wastes are among the optimal green organic solvents for SX and LM in consideration of their triple environmental, economic, and performance benefits.
Collapse
Affiliation(s)
- Siu Hua Chang
- Faculty of Chemical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500, Permatang Pauh, Penang, Malaysia.
| |
Collapse
|
14
|
Meng K, Zhang G, Ding C, Zhang T, Yan H, Zhang D, Fang T, Liu M, You Z, Yang C, Shen J, Jin X. Recent Advances on Purification of Lactic Acid. CHEM REC 2020; 20:1236-1256. [PMID: 32767665 DOI: 10.1002/tcr.202000055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/10/2020] [Indexed: 01/16/2023]
Abstract
With increasing interest in developing biodegradable polymers to replace fossil-based products globally, lactic acid (LA) has been paid extensive attention due to the high environment-compatibility of its downstream products. The mainstream efforts have been put in developing energy-efficient conversion technologies through biological and chemical routes to synthesize LA. However, to our best knowledge, there is a lack of sufficient attention in developing effective separation technologies with high atom economics for purifying LA and derivatives. In this review, the most recent advances in purifying LA using precipitation, reactive extraction, emulsion liquid membrane, reactive distillation, molecular distillation, and membrane techniques will be discussed critically with respect to the fundamentals, flow scheme, energy efficiency, and equipment. The outcome of this article is to offer insights into implementing more atomic and energy-efficient technologies for upgrading LA.
Collapse
Affiliation(s)
- Kexin Meng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Guangyu Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Chuanqin Ding
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Tongyang Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Hui Yan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Dongpei Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Tianqi Fang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Mengyuan Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Zhenchao You
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, Hunan Province, 411105, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| |
Collapse
|
15
|
Majid MF, Mohd Zaid HF, Kait CF, Jumbri K, Yuan LC, Rajasuriyan S. Futuristic advance and perspective of deep eutectic solvent for extractive desulfurization of fuel oil: A review. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112870] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Abejón R, Rabadán J, Garea A, Irabien A. Comparison of Supported Ionic Liquid Membranes and Polymeric Ultrafiltration and Nanofiltration Membranes for Separation of Lignin and Monosaccharides. MEMBRANES 2020; 10:membranes10020029. [PMID: 32075000 PMCID: PMC7073623 DOI: 10.3390/membranes10020029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 11/17/2022]
Abstract
Lignin is one of the three main components of lignocellulosic biomass and must be considered a raw material with attractive applications from an economic and ecological point of view. Therefore, biorefineries must have in mind the most adequate processing to obtain high-quality lignin and the separation tasks that play a key role to improve the purity of the lignin. Separation techniques based on membranes are a promising way to achieve these requirements. In this work, the separation performance of the SILM (Supported Ionic Liquid Membrane) formed with [BMIM][DBP] as IL (Ionic Liquid) and PTFE as membrane support was compared to a nanofiltration (NF) membrane (NP010 by Microdyn-Nadir) and two ultrafiltration (UF) membranes (UF5 and UF10 by Trisep). The SILM showed selective transport of Kraft lignin, lignosulphonate, xylose, and glucose in aqueous solutions. Although it was stable under different conditions and its performance was improved by the integration of agitation, it was not competitive when compared to NF and UF membranes, although the latter ones suffered fouling. The NF membrane was the best alternative for the separation of lignosulphonates from monosaccharides (separation factors around 75 while SILM attained only values lower than 3), while the UF5 membrane should be selected to separate Kraft lignin and monosaccharides (separation factors around 100 while SILM attained only values below 3).
Collapse
|