1
|
Cheng Z, Lin Z, Chen X, Zhang X, Zhang H. Unraveling the mechanisms underlying AOM-induced deterioration of the settling performance of algal floc. WATER RESEARCH 2025; 274:123115. [PMID: 39799910 DOI: 10.1016/j.watres.2025.123115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The influence of algal organic matter (AOM) on the settling performance of algal flocs remains poorly understood. To address this, we employed fractionation techniques based on molecular weight to isolate different AOM fractions and analyzed their effects on floc structure and settling performance. This involved comparing the concentrations, compositions, potentials, and functional groups of organic matter before and after coagulation-sedimentation. The results demonstrated that AOM significantly impacts floc characteristics, including size and compactness, ultimately hindering floc settling performance. Specifically, AOM fractions smaller than 100 kDa, such as humic substances, preferentially consumed coagulants without directly participating in floc formation, leading to smaller and slower-settling algal flocs. This was particularly evident for fractions with a molecular weight below 5 kDa, where only 25 % of the material participated in floc formation. In contrast, over 90 % of the AOM with a molecular weight exceeding 100 kDa, such as proteins, exhibited negatively charged functional groups (e.g., carboxyl groups) that interacted with coagulants via electrostatic forces to form larger complexes. These complexes enhance the coagulant's ability to capture and bridge algal cells, directly binding to the flocs, resulting in an increase of 20.3 % in the size and a 37.5 % faster settling velocity of the flocs formed by >100 kDa AOM compared to <5 kDa. This study elucidates the mechanisms by which AOM influences algal floc settling performance from the perspectives of AOM composition and its interactions with coagulants and algal cells. The findings provide a theoretical basis for a deeper understanding of algal flocculation mechanisms and for accelerating algal flocculation and sedimentation.
Collapse
Affiliation(s)
- Ziqian Cheng
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Zhe Lin
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Xin Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Xuezhi Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Haiyang Zhang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.
| |
Collapse
|
2
|
de Moura AA, Straioto H, Martins WM, de Araújo TP, Diório A, Gil GA, Moisés MP, Dornellas Barros MAS. Eco-friendly synthesis of a novel adsorbent from sugarcane and high-pressure boiler water. ENVIRONMENTAL TECHNOLOGY 2024; 45:3621-3634. [PMID: 37306530 DOI: 10.1080/09593330.2023.2224064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/20/2023] [Indexed: 06/13/2023]
Abstract
The development of industrial process in line with the circular economy and the environmental, social and corporate governance (ESG) is the foundation for sustainable economic development. Alternatives that make feasible the transformation of residues in added value products are promising and contribute to the repositioning of the industry towards sustainability, due to financial leverage obtained from lesser operational costs when compared with conventional processes, therefore increasing the company competitivity. In this study, it is presented a promising and innovative technology for the recycling of agro-industrial residues, the sugarcane bagasse and the high-pressure water boiler effluent, in the development of a low-cost adsorbent (HC-T) using the hydrothermal carbonization processes and its application in the adsorption of herbicide Diuron and Methylene Blue dye from synthetic contaminated water. The hydrothermal carbonization was performed in a Teflon contained inside a sealed stainless-steel reactor self-pressurized at 200°C, biomass-to-effluent (m/v) ratio of 1:3 and 24 h. The synthesized material (HC) was activated in an oven at 450°C for 10 min, thus being named adsorbent (HC-T) and characterized by textural, structural and spectroscopic analyses. The low-cost adsorbent HC-T presented an 11-time-fold increase in surface area and ∼40% increase in total pore volume in comparison with the HC material. The kinetic and isotherm adsorption experiment results highlighted that the HC-T was effective as a low-cost adsorbent for the removal of herbicide Diuron and Methylene Blue dye from synthetic contaminated waters, with an adsorption capacity of 35.07 (63.25% removal) and 307.09 mg g-1 (36,47% removal), respectively.
Collapse
Affiliation(s)
| | - Henrique Straioto
- Department of Chemical Engineering, State University of Maringá, Maringá, Brazil
| | | | | | - Alexandre Diório
- Department of Chemical Engineering, State University of Maringá, Maringá, Brazil
| | | | - Murilo Pereira Moisés
- Department of Chemical Engineering, Federal University of Technology, Apucarana, Brazil
| | | |
Collapse
|
3
|
Jeon Y, Li L, Bhatia M, Ryu H, Santo Domingo JW, Brown J, Goetz J, Seo Y. Impact of harmful algal bloom severity on bacterial communities in a full-scale biological filtration system for drinking water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171301. [PMID: 38423320 PMCID: PMC11333992 DOI: 10.1016/j.scitotenv.2024.171301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/15/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
The occurrence of harmful algal blooms (HABs) in freshwater environments has been expanded worldwide with growing frequency and severity. HABs can pose a threat to public water supplies, raising concerns about safety of treated water. Many studies have provided valuable information about the impacts of HABs and management strategies on the early-stage treatment processes (e.g., pre-oxidation and coagulation/flocculation) in conventional drinking water treatment plants (DWTPs). However, the potential effect of HAB-impacted water in the granular media filtration has not been well studied. Biologically-active filters (BAFs), which are used in drinking water treatment and rely largely on bacterial community interactions, have not been examined during HABs in full-scale DWTPs. In this study, we assessed the bacterial community structure of BAFs, functional profiles, assembly processes, and bio-interactions in the community during both severe and mild HABs. Our findings indicate that bacterial diversity in BAFs significantly decreases during severe HABs due to the predominance of bloom-associated bacteria (e.g., Spingopyxis, Porphyrobacter, and Sphingomonas). The excitation-emission matrix combined with parallel factor analysis (EEM-PARAFAC) confirmed that filter influent affected by the severe HAB contained a higher portion of protein-like substances than filter influent samples during a mild bloom. In addition, BAF community functions showed increases in metabolisms associated with intracellular algal organic matter (AOM), such as lipids and amino acids, during severe HABs. Further ecological process and network analyses revealed that severe HAB, accompanied by the abundance of bloom-associated taxa and increased nutrient availability, led to not only strong stochastic processes in the assembly process, but also a bacterial community with lower complexity in BAFs. Overall, this study provides deeper insights into BAF bacterial community structure, function, and assembly in response to HABs.
Collapse
Affiliation(s)
- Youchul Jeon
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH 43606, United States of America
| | - Lei Li
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH 43606, United States of America
| | - Mudit Bhatia
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH 43606, United States of America
| | - Hodon Ryu
- Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, Cincinnati, OH 45268, United States of America
| | - Jorge W Santo Domingo
- Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, Cincinnati, OH 45268, United States of America
| | - Jess Brown
- Carollo Engineers' Research and Development Practice, Costa Mesa, CA 92626, United States of America
| | - Jake Goetz
- City of Toledo Colins Park Water Treatment, Toledo, OH 43605, United States of America
| | - Youngwoo Seo
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH 43606, United States of America; Department of Chemical and Engineering, University of Toledo, Mail Stop 307, 3048 Nitschke Hall, Toledo, OH 43606, United States of America.
| |
Collapse
|
4
|
Xu Y, Liu J, You G, Yang Z, Miao L, Wu J, Yang G, Hou J. A quaternary ammonium salt grafted tannin-based flocculant boosts the conjugative transfer of plasmid-born antibiotic resistance genes: The nonnegligible side of their flocculation-sterilization properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166515. [PMID: 37619725 DOI: 10.1016/j.scitotenv.2023.166515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
This study developed dual-function tannin-based flocculants, namely tannin-graft-acrylamide-diallyl dimethyl ammonium chloride (TGCC-A/TGCC-C), endowed with enhanced flocculation-sterilization properties. The impacts of these flocculants on proliferation and transformation of antibiotic resistance genes (ARGs) among bacteria during the flocculation-deposition process were examined. TGCC-A/TGCC-C exhibited remarkable flocculation capacities towards both Escherichia coli and Staphylococcus aureus, encompassing a logarithmic range of initial cell density (108-109 CFU/mL) and a broad pH spectrum (pH 2-11). The grafted quaternary ammonium salt groups played pivotal parts in flocculation through charge neutralization and bridging mechanisms, concurrently contributing to sterilization by disrupting cellular membranes. The correlation between flocculation and sterilization entails a sequential progression, where an excess of TGCC, initially employed for flocculation, is subsequently consumed for sterilization purposes. The frequencies of ARGs conjugative transfer were enhanced in bacterial flocs across all TGCC treatments, stemming from augmented bacterial aggregation and cell membrane permeability, elicited stress response, and up-regulated genes encoding plasmid transfer. These findings underscore the indispensable role of flocculation-sterilization effects in mediating the propagation of ARGs, consequently providing substantial support for the scientific evaluation of the environmental risks associated with flocculants in the context of ARGs dissemination during the treatment of raw water featuring high bacterial density.
Collapse
Affiliation(s)
- Yi Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, People's Republic of China
| | - Jialin Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Zijun Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guang Yang
- Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
5
|
Yang Z, Hou J, Pan Z, Wu M, Zhang M, Wu J, Miao L. A innovative stepwise strategy using magnetic Fe 3O 4-co-graft tannin/polyethyleneimine composites in a coupled process of sulfate radical-advanced oxidation processes to control harmful algal blooms. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129485. [PMID: 35868085 DOI: 10.1016/j.jhazmat.2022.129485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
A novel co-graft tannin and polyethyleneimine co-coating magnetic composite (TP@Fe3O4) was prepared in the study. On this premise, an unique stepwise efficient strategy based on magnetic flocculation and Sulfate radical (SO4•-)-advanced oxidation processes (S-AOPs) for eliminating Microcystis aeruginosa (M. aeruginosa) and algal organic matters (AOMs) was presented. Due to the high positive charge of TP@Fe3O4, a > 99 % high algae removal rate was obtained at a modest TP@Fe3O4 dosage of 100 mg/L at pH = 8.0 with a short separation time of 5 min. Further, peroxymonosulfate (PMS) treatment was employed as a pre-oxidation method to lower cell stability and promote M. aeruginosa removal by subsequent TP@Fe3O4 flocculation. The PMS/TP@Fe3O4 system successfully cuts the optimum dose of TP@Fe3O4 in half (50 mg/L) without causing obvious cell damage. Following algal fast magnetic separation, ultraviolet (UV) was introduced to activate PMS to totally degrade AOM and microcystin. Response surface methodology (RSM) demonstrated that UV/PMS oxidation removed > 80 % of DOC and > 94 % of microcystin under optimal conditions. SO4•- was the main radical species that aided in the elimination of AOM. This is the first study to use magnetic flocculation in conjunction with AOPs to mitigate harmful algal blooms, which can enable the non-destructive eradication of M. aeruginosa while also efficiently degrading AOMs.
Collapse
Affiliation(s)
- Zijun Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Zhengguo Pan
- Wuxi Delinhai Environmental Protection Technology Co., Ltd, China
| | - Miao Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
6
|
Das N, Shende AP, Mandal SK, Ojha N. Biologia Futura: treatment of wastewater and water using tannin-based coagulants. Biol Futur 2022; 73:279-289. [DOI: 10.1007/s42977-022-00128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
|
7
|
Yang Z, Hou J, Wu M, Miao L, Wu J, Li Y. A novel co-graft tannin-based flocculant for the mitigation of harmful algal blooms (HABs): The effect of charge density and molecular weight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150518. [PMID: 34583079 DOI: 10.1016/j.scitotenv.2021.150518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
In this study, for the first time, we developed a series of co-graft tannin-based flocculants, TA-g-P(AM-DMDAAC), with different charge densities (CDs) and molecular weights (MWs) and evaluated their algal-removal performances. The effects of TA-g-P(AM-DMDAAC) on the cell integrity of Microcystis aeruginosa and release of extracellular organic matter (EOM) and microcystin-leucine-arginine (MC-LR) in flocculation and floc storage were also studied. Results suggested that TA-g-P(AM-DMDAAC) could not only efficiently remove algal cells over a wide pH range (pH 3-11) but also EOM. CD and MW significantly affected flocculation performance and floc characteristics of TA-g-P(AM-DMDAAC). A higher CD helped achieve a higher removal efficiency of algal cells and EOM, whereas a higher MW resulted in the formation of larger and more compact flocs. Furthermore, the larger and denser flocs could better protect algal cells and reduce the release of EOM during floc storage. Notably, algal cells in the TA-g-P(AM-DMDAAC) flocs did not appear to show signs of massive rupture nor did they release EOM and MC-LR extensively for at least 20 days of storage. The abundance and easy availability of tannin resources effectively reduce the cost of preparing tannin-based flocculants. Therefore, TA-g-P(AM-DMDAAC) can have broad application prospects in the management of cyanobacteria bloom.
Collapse
Affiliation(s)
- Zijun Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Miao Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
8
|
Yang Z, Hou J, Wu J, Miao L. The effect of carbonization temperature on the capacity and mechanisms of Pb(II) adsorption by microalgae residue-derived biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112750. [PMID: 34530264 DOI: 10.1016/j.ecoenv.2021.112750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the adsorption characterizations and mechanisms of lead (Pb) on biochar-derived microalgae residue (MB) produced at different pyrolytic temperatures. Six different MB samples were prepared from Chlorella sp. (CB) and Spirulina sp. (SB) in the temperature range of 200-600 ℃, and microalgae residue power (MP) was used as a control. The effect of pH, adsorption kinetics and isotherms were studied for the different MBs, and a chemical analysis of Pb2+-loaded MP and MB was performed by SEM-EDS, XRD, XPS, FTIR, and Boehm titration. The results showed that Pb2+ adsorption on MP and MB was a monolayer chemical adsorption process. Precipitation with minerals, metal ion exchange, oxygen/nitrogen-containing functional groups (OFGs/NFGs), and coordination of Pb2+ with π electrons jointly contributed to Pb2+ adsorption on MP and MB. More specifically, the contribution of each mechanism depended on the pyrolytic temperature. The contribution of surface complexation and ion exchange decreased with increasing pyrolytic temperature due to the loss of OFGs/NFGs and decreasing metal ion content, while the contribution of precipitation and Pb2+-π interaction significantly increased. Overall, precipitation with minerals and ion exchange dominated Pb2+ adsorption on MP and MB, which accounted for 65.20-74.40% of the total adsorption capacity. Surface precipitation contributed to a maximum adsorption capacity for high-temperature CB and SB (600 ℃) of up to 131.41 mg/g and 154.56 mg/g, respectively. In conclusion, MB adsorbents are a promising material for the remediation of heavy metal-bearing aquatic environments.
Collapse
Affiliation(s)
- Zijun Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
9
|
Zheng X, Khan MT, Cao X, Croue JP. Importance of origin and characteristics of biopolymers in reversible and irreversible fouling of ultrafiltration membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147157. [PMID: 34088054 DOI: 10.1016/j.scitotenv.2021.147157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
The present work compares the chemical properties of isolated biopolymers of different origins and their fouling potential during ultrafiltration (UF). The biopolymers were extracted from secondary wastewater effluent as effluent organic matter (EfOM) and from surface water as natural organic matter (NOM). Multiple analytical techniques were used to characterize the isolates. The characterization results revealed that EfOM biopolymers were more enriched in protein-type structures compared to the NOM organics, and they presented significant differences in the reversibility of membrane fouling. Dissolved in pure water, EfOM biopolymers led to more irreversible fouling than that caused by NOM isolates. Dosing divalent cations (e.g., Ca2+) into the solutions increased the irreversibility of both types of fouling, while aggravating NOM fouling more significantly. Further investigation was conducted to understand the interaction between EfOM and NOM biopolymers during formation of the fouling layer. The results showed that the interaction between these two types of organics was negligible in the absence of salts. These findings highlight the importance of a comprehensive understanding of biopolymers from different origins, considering their chemical properties and water chemistry, which have valuable implications for selecting suitable membrane fouling control strategies for treating water from different origins.
Collapse
Affiliation(s)
- Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi Province, China.
| | | | - Xin Cao
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi Province, China
| | - Jean-Philippe Croue
- Institut de Chimie des Milieux et des Matériaux, UMR 7285, CNRS, Université de Poitiers, France.
| |
Collapse
|
10
|
|
11
|
Yang Z, Hou J, Miao L, Wu J. Comparison of adsorption behavior studies of methylene blue by microalga residue and its biochars produced at different pyrolytic temperatures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14028-14040. [PMID: 33205271 DOI: 10.1007/s11356-020-11470-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
The adsorption behaviors of methylene blue (MB) on microalga residue powder (MRP) and biochars derived from microalga residue (MRB) produced at different pyrolytic temperatures were compared. Six biochars were prepared from residual Chlorella sp. and Spirulina sp. at different pyrolytic temperatures in the range of 200-550 °C. The adsorption kinetics, isotherms, thermodynamics, and the effect of pH were studied, and chemical analyses of MB-loaded MRP and MRB were conducted using SEM, FTIR, and XPS techniques. The results found that the pseudo-second-order, Elovich, and Freundlich models could effectively describe the MB adsorption process on MRP and MRB. The thermodynamic results confirmed that the adsorption processes were spontaneous and endothermic. Further, MRP showed an excellent adsorption ability on MB through electrostatic interaction, complexation with oxygen/nitrogen-containing functional groups and π-π interaction. However, massive oxygen-containing functional groups after pyrolysis were lost, leading to a significant decrease in the adsorption capacity of MRB on MB. This phenomenon was further observed with increasing pyrolytic temperature. Overall, this study demonstrated that microalga residue performed better for MB removal compared with their pyrolyzed analogs. Graphical abstract.
Collapse
Affiliation(s)
- Zijun Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
12
|
Machado G, Dos Santos CAB, Gomes J, Faria D, Santos F, Lourega R. Chemical modification of tannins from Acacia mearnsii to produce formaldehyde free flocculant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140875. [PMID: 32758742 DOI: 10.1016/j.scitotenv.2020.140875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/14/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Flocculants and coagulants market is expected to grow in a Compound Annual Growth Rate (CAGR) of 5.9% between 2017 and 2022. The development of non-pollutant coagulants/flocculants aiming to replace conventional ones, usually toxic, has been extensively studied and one alternative is the possibility of obtaining tannin-based flocculants, compounds present in many plants and easily extracted. However, in order to use tannins as flocculants, their cationization is necessary, which is normally accomplished by Mannich reaction that requires formaldehyde addition, a toxic compound. In order to fill a gap in the literature, regarding coagulants/flocculants synthesis through green procedures, this paper aims to synthesize a flocculant from tannins with no use of formaldehyde, and optimize this synthesis through a Central Composite Rotatable Design (CCRD). The optimization variables were ammonium hydroxide (NH4OH) to tannin ratio, in the range of 1:1 to 5:1, and reaction time, in the range of 1 to 4 h The evaluation of the synthesized flocculant samples was accomplished by jar tests using a simulated effluent containing humic acid and the effect of reactant ratio and reaction time used in the synthesis was assessed. The flocculant synthesis methodology proposed on this study showed excellent results regarding turbidity and color removal, since 100% of turbidity removal and 89.9% of color removal were achieved. This novel tannin-based flocculant synthesis methodology is a promising technology to replace conventional coagulants/flocculants, once it is environmentally friendly.
Collapse
Affiliation(s)
- Grazielle Machado
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, 6681 Ipiranga Avenue, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Cláudia A B Dos Santos
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, 6681 Ipiranga Avenue, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Júlia Gomes
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, 6681 Ipiranga Avenue, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Douglas Faria
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, 6681 Ipiranga Avenue, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Fernando Santos
- State University of Rio Grande do Sul, 1156 Sete de Setembro Street, 90010-191 Porto Alegre, Brazil
| | - Rogerio Lourega
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, 6681 Ipiranga Avenue, Building 96J, 90619-900 Porto Alegre, Brazil.
| |
Collapse
|
13
|
Muniz GL, Silva TCFD, Borges AC. Assessment and optimization of the use of a novel natural coagulant (Guazuma ulmifolia) for dairy wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140864. [PMID: 32707414 DOI: 10.1016/j.scitotenv.2020.140864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
A feasible, novel, and natural coagulant extracted from G. ulmifolia stem bark was characterized and used in experiments of coagulation/dissolved air flotation (C/DAF) to treat synthetic dairy wastewater (SDW). The performance of G. ulmifolia to remove turbidity, chemical oxygen demand (COD), and UV254 was evaluated by using response surface methodology (Doehlert matrix). G. ulmifolia dosage and pH were evaluated and optimized in the C/DAF process and its characterization was performed by Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), and also zeta potential. Results showed that G. ulmifolia stem bark is composed of large quantities of condensed tannins represented by the groups C=C-C and CO of pyran (flavonoid C-rings), which serve as bridges during coagulation. Moreover, the presence of porous cavities in surface of G. ulmifolia, shown by SEM, indicated capacity for adsorption. G. ulmifolia dosage and pH were significant (p ≤ 0.05) for pollutant removal from the SDW. Jar test results revealed that 95.8% of turbidity, 76.0% of COD, 81.2% of BOD, and 85.6% of UV254 were removed from SDW by using G. ulmifolia stem bark at a dose of 775.8 mg L-1 and pH 5.00. Finally, our results showed promising use of G. ulmifolia as a coagulating agent due to its novelty, efficiency, low-cost, and eco-friendly properties as an alternative for the treatment of dairy wastewaters.
Collapse
Affiliation(s)
- Gustavo Lopes Muniz
- College of Agricultural Engineering, Campinas State University, Ave. Cândido Rondon, 501, Cidade Universitária, Campinas 13.083-875, São Paulo, Brazil; Department of Agricultural Engineering, Federal University of Viçosa, Ave. P. H. Rolfs s/n, Viçosa 36.570-900, Minas Gerais, Brazil
| | | | - Alisson Carraro Borges
- Department of Agricultural Engineering, Federal University of Viçosa, Ave. P. H. Rolfs s/n, Viçosa 36.570-900, Minas Gerais, Brazil.
| |
Collapse
|
14
|
de Moraes APJ, Teixeira CMLL, Faria-Machado AF, Lage CLS. Effects of bioflocculants on lipid extraction, fatty acid composition and reuse of the culture media for biodiesel production using Chlorella vulgaris. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1839097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | | | - Celso Luiz Salgueiro Lage
- Divisão de Pós-graduação e Pesquisa, Academia de Propriedade Intelectual e Inovação, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Musa M, Wolf J, Stephens E, Hankamer B, Brown R, Rainey TJ. Cationic polyacrylamide induced flocculation and turbulent dewatering of microalgae on a Britt Dynamic Drainage Jar. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|