1
|
Azzouz A, Roy R. Innovative Strategy for Truly Reversible Capture of Polluting Gases-Application to Carbon Dioxide. Int J Mol Sci 2023; 24:16463. [PMID: 38003653 PMCID: PMC10671383 DOI: 10.3390/ijms242216463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
This paper consists of a deep analysis and data comparison of the main strategies undertaken for achieving truly reversible capture of carbon dioxide involving optimized gas uptakes while affording weakest retention strength. So far, most strategies failed because the estimated amount of CO2 produced by equivalent energy was higher than that captured. A more viable and sustainable approach in the present context of a persistent fossil fuel-dependent economy should be based on a judicious compromise between effective CO2 capture with lowest energy for adsorbent regeneration. The most relevant example is that of so-called promising technologies based on amino adsorbents which unavoidably require thermal regeneration. In contrast, OH-functionalized adsorbents barely reach satisfactory CO2 uptakes but act as breathing surfaces affording easy gas release even under ambient conditions or in CO2-free atmospheres. Between these two opposite approaches, there should exist smart approaches to tailor CO2 retention strength even at the expense of the gas uptake. Among these, incorporation of zero-valent metal and/or OH-enriched amines or amine-enriched polyol species are probably the most promising. The main findings provided by the literature are herein deeply and systematically analysed for highlighting the main criteria that allow for designing ideal CO2 adsorbent properties.
Collapse
Affiliation(s)
- Abdelkrim Azzouz
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada;
- École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
| | - René Roy
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada;
- Glycosciences and Nanomaterials Laboratory, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
- Weihai CY Dendrimer Technology Co., Ltd., No. 369-13, Caomiaozi Town, Lingang District, Weihai 264211, China
| |
Collapse
|
2
|
Iruretagoyena D, Fennell P, Pini R. Adsorption of CO2 and N2 on bimetallic Mg-Al hydrotalcites and Z-13X zeolites under high pressure and moderate temperatures. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
3
|
Review of the Application of Hydrotalcite as CO2 Sinks for Climate Change Mitigation. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent decades, the environmental impact caused by greenhouse gases, especially CO2, has driven many countries to reduce the concentration of these gases. The study and development of new designs that maximise the efficiency of CO2 capture continue to be topical. This paper presents a review of the application of hydrotalcites as CO2 sinks. There are several parameters that can make hydrotalcites suitable for use as CO2 sinks. The first question is the use of calcined or uncalcined hydrotalcite as well as the temperature at which it is calcined, since the calcination conditions (temperature, rate and duration) are important parameters determining structure recovery. Other aspects were also analysed: (i) the influence of the pH of the synthesis; (ii) the molar ratio of its main elements; (iii) ways to increase the specific area of hydrotalcites; (iv) pressure, temperature, humidity and time in CO2 absorption; and (v) combined use of hydrotalcites and cement-based materials. A summary of the results obtained so far in terms of CO2 capture with the parameters described above is presented. This work can be used as a guide to address CO2 capture with hydrotalcites by showing where the information gaps are and where researchers should apply their efforts.
Collapse
|
4
|
Catalytic Steam Reforming of Biomass-Derived Oxygenates for H2 Production: A Review on Ni-Based Catalysts. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The steam reforming of ethanol, methanol, and other oxygenates (e.g., bio-oil and olive mill wastewater) using Ni-based catalysts have been studied by the scientific community in the last few years. This process is already well studied over the last years, being the critical point, at this moment, the choice of a suitable catalyst. The utilization of these oxygenates for the production of “green” H2 is an interesting alternative to fuel fossils. For this application, Ni-based catalysts have been extensively studied since they are highly active and cheaper than noble metal-based materials. In this review, a comparison of several Ni-based catalysts reported in the literature for the different above-mentioned reactions is carried out. This study aims to understand if such catalysts demonstrate enough catalytic activity/stability for application in steam reforming of the oxygenated compounds and which preparation methods are most adequate to obtain these materials. In summary, it aims to provide insights into the performances reached and point out the best way to get better and improved catalysts for such applications (which depends on the feedstock used).
Collapse
|
5
|
Ding Y, Zhao X, Chen L, Ma L, Liao Q, Zhu X, Wang H. Hydration Activation of MgO Pellets for CO 2 Adsorption. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yudong Ding
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Xingxing Zhao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Lin Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Lijiao Ma
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Hong Wang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
6
|
Rocha C, Soria M, Madeira LM. Doping of hydrotalcite-based sorbents with different interlayer anions for CO2 capture. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Zhu X, Chen C, Shi Y, O’Hare D, Cai N. Aqueous miscible organic-layered double hydroxides with improved CO2 adsorption capacity. ADSORPTION 2020. [DOI: 10.1007/s10450-020-00209-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|