1
|
You X, Shen L, Zhao Y, Zhao DL, Teng J, Lin H, Li R, Xu Y, Zhang M. Quantifying interfacial interactions for improved membrane antifouling: A novel approach using triangulation and surface element integration method. J Colloid Interface Sci 2023; 650:775-783. [PMID: 37441970 DOI: 10.1016/j.jcis.2023.06.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/28/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023]
Abstract
To gain a thorough understanding of interfacial behaviors such as adhesion and flocculation controlling membrane fouling, it is necessary to simulate the actual membrane surface morphology and quantify interfacial interactions. In this work, a new method integrating the rough membrane morphology reconstruction technology (atomic force microscopy (AFM) combining with triangulation technique), the surface element integration (SEI) method, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, the compound Simpson's approach, and the computer programming was proposed. This new method can exactly mimic the real membrane surface in terms of roughness and shape, breaking the limitation of previous fractal theory and Gaussian method where the simulated membrane surface is only statistically similar to the real rough surface, thus achieving a precise description of the interfacial interactions between sludge foulants and the real membrane surface. This method was then applied to assess the antifouling propensity of a polyvinylidene fluoride (PVDF) membrane modified with Ni-ZnO particles (NZPs). The simulated results showed that the interfacial interactions between sludge foulants in a membrane bioreactor (MBR) and the modified PVDF-NZPs membrane transformed from an attractive force to a repulsive force. The phenomenon confirmed the significant antifouling propensity of the PVDF-NZPs membrane, which is highly consistent with the experimental findings and the interfacial interactions described in previous literature, suggesting the high feasibility and reliability of the proposed method. Meanwhile, the original programming code of the quantification was also developed, which further facilitates the widespread use of this method and enhances the value of this work.
Collapse
Affiliation(s)
- Xiujia You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ying Zhao
- Teachers' Colleges, Beijing Union University, 5 Waiguanxiejie Street, Chaoyang District, Beijing 100011, China.
| | - Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Yin Z, Li M, Li Z, Deng Y, Xue M, Chen Y, Ou J, Lei S, Luo Y, Xie C. A harsh environment resistant robust Co(OH) 2@stearic acid nanocellulose-based membrane for oil-water separation and wastewater purification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118127. [PMID: 37178465 DOI: 10.1016/j.jenvman.2023.118127] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Traditional membranes are inefficient in treating highly toxic organic pollutants and oily wastewater in harsh environments, which is difficult to meet the growing demand for green development. Herein, the Co(OH)2@stearic acid nanocellulose-based membrane was prepared by depositing Co(OH)2 on the nanocellulose-based membrane (NBM) through chemical soaking method, which enables efficient oil/water mixtures separation and degradation of pollutants by photocatalysis in harsh environments. The Co(OH)2@stearic acid nanocellulose-based membrane (Co(OH)2@stearic acid NBM) shows good photocatalytic degradation performance for methylene blue pollutants in harsh environment, and has significant degradation rate (93.66%). At the same time, the Co(OH)2@stearic acid NBM with superhydrophobicity and superoleophilicity also exhibits respectable oil/water mixtures separation performance (n-Hexane, dimethyl carbonate, chloroform and toluene) under harsh environment (strong acid/strong alkali), which has an excellent oil-water mixtures separation flux of 87 L·m-2·h-1 (n-Hexane/water) and oil-water mixture separation efficiency of over 93% (n-Hexane/water). In addition, this robust Co(OH)2@stearic acid NBM shows good self-cleaning and recycling performance. Even though seven oil-water separation tests have been carried out under harsh environment, it can still maintain respectable oil-water mixture separation rate and flux. The multifunctional membrane has excellent resistance to harsh environments, oil-water separation and pollutant degradation can be performed even in harsh environments, which provides a convenient way to treat sewage under harsh conditions efficiently and has great potential in practical application.
Collapse
Affiliation(s)
- Zuozhu Yin
- School of Aerospace Manufacturing Engineering, Nanchang Hangkong University, 696 Fenghe South Road, Nanchang, 330063, China
| | - Min Li
- School of Aerospace Manufacturing Engineering, Nanchang Hangkong University, 696 Fenghe South Road, Nanchang, 330063, China
| | - Zihao Li
- School of Aerospace Manufacturing Engineering, Nanchang Hangkong University, 696 Fenghe South Road, Nanchang, 330063, China
| | - Yuanting Deng
- School of Aerospace Manufacturing Engineering, Nanchang Hangkong University, 696 Fenghe South Road, Nanchang, 330063, China
| | - Mingshan Xue
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China.
| | - Yuhua Chen
- School of Aerospace Manufacturing Engineering, Nanchang Hangkong University, 696 Fenghe South Road, Nanchang, 330063, China
| | - Junfei Ou
- School of Materials Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Sheng Lei
- School of Materials Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Yidan Luo
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Chan Xie
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| |
Collapse
|
3
|
Bai X, Yuan Z, Lu C, Zhan H, Ge W, Li W, Liu Y. Recent advances in superwetting materials for separation of oil/water mixtures. NANOSCALE 2023; 15:5139-5157. [PMID: 36853237 DOI: 10.1039/d2nr07088j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Engineering surfaces or membranes that allow an efficient oil/water separation is highly desired in a wide spectrum of applications ranging from oily wastewater discharge to offshore oil spill accidents. Recent advances in biomimetics, manufacturing, and characterization techniques have led to remarkable progress in the design of various superwetting materials with special wettability. In spite of exciting progress, formulating a strategy robust enough to guide the design and fabrication of separating surfaces remains a daunting challenge. In this review, we first present an overview of the wettability theory to elucidate how to control the surface morphology and chemistry to regulate oil/water separation. Then, parallel approaches are considered for discussing the separation mechanisms according to different oil/water mixtures, and three separation types were identified including filtration, adsorption and other separation types. Finally, perspectives on the challenges and future research directions in this research area are briefly discussed.
Collapse
Affiliation(s)
- Xiangge Bai
- Key Laboratory for Precision & Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Zichao Yuan
- Key Laboratory for Precision & Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Chenguang Lu
- Key Laboratory for Precision & Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Haiyang Zhan
- Key Laboratory for Precision & Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Wenna Ge
- Key Laboratory for Precision & Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Wenzong Li
- Key Laboratory for Precision & Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Yahua Liu
- Key Laboratory for Precision & Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
4
|
Liu J, Aday X, Wang X, Li Z, Liu J. On demand oil/water separation enabled by microporous ultra-thin aluminum foil with asymmetric wettability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Xiong Q, Tian Q, Yue X, Xu J, He X, Qiu F, Zhang T. Superhydrophobic PET@ZnO Nanofibrous Membrane Extract from Waste Plastic for Efficient Water-In-Oil Emulsion Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qi Xiong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Qiong Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Xuejie Yue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Jicheng Xu
- Zhenjiang Key Laboratory of Functional Chemistry, Institute of Chemistry and Materials Science, Zhenjiang College, Zhenjiang 212028, China
| | - Xu He
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| |
Collapse
|
6
|
Wang J, Xu J, Lian Z, Wang J, Chen G, Li Y, Yu H. Facile and green fabrication of robust microstructured stainless steel mesh for efficient oil/water separation via waterjet-assisted laser ablation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Zinc oxide rod-coated cotton fabric: a super-hydrophobic material for self-cleaning and oil/water separation. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Rao L, You X, Chen B, Shen L, Xu Y, Zhang M, Hong H, Li R, Lin H. A novel composite membrane for simultaneous separation and catalytic degradation of oil/water emulsion with high performance. CHEMOSPHERE 2022; 288:132490. [PMID: 34624347 DOI: 10.1016/j.chemosphere.2021.132490] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
It is of great significance to develop novel membranes with dual-function of simultaneously separating oil/water emulsion and degrading the contained water-miscible toxic organic components. To meet this requirement, a dual-functional Ni nanoparticles (NPs)@Ag/C-carbon nanotubes (CNTs) composite membrane was fabricated via electroless nickel plating strategy in this study. The as-prepared composite membrane possessed superhydrophilicity with water contact angle of 0° and splendid underwater oleophobic property with oil contact angle of 142°. When the membrane was applied for separation of surfactant stabilized oil-in-water emulsion, high permeate flux (about 97 L m-2·h-1 under gravity), oil rejection (about 98.8%) and antifouling property were achieved. Benefitting from the NiNPs@Ag/C-CNTs layer on membrane surface, the composite membrane exhibited high catalytic degradation activity for water-miscible toxic organic pollutant (4-nitrophenol) with addition of NaBH4 in a flow-through mode. Meanwhile, the NiNPs@Ag/C-CNTs composite membrane possessed excellent durability, which was verified by the good structural integrity even under ultrasonic treatment. The cost-efficiency, high separation and degradation performance of the prepared membrane suggested its great potential for treatment of oily wastewater.
Collapse
Affiliation(s)
- Linhua Rao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Xiujia You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Binghong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
9
|
Mir S, Rahidi A, Naderifar A, Alaei M. A novel and facile preparation of Superhydrophilic/Superoleophobic nanofilter using carbon nitride nanosheet for W/O emulsion separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Electroless Ni–Sn–P plating to fabricate nickel alloy coated polypropylene membrane with enhanced performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119820] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Li R, Rao L, Zhang J, Shen L, Xu Y, You X, Liao BQ, Lin H. Novel in-situ electroflotation driven by hydrogen evolution reaction (HER) with polypyrrole (PPy)-Ni-modified fabric membrane for efficient oil/water separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119502] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Zhang J, Zhu L, Zhao S, Sun Y, Guo Z. A robust copper oxide-based superhydrophobic microfiltration membrane for moisture-proof treatment of trace water in transformer oil. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Liu Y, Xu P, Ge W, Lu C, Li Y, Niu S, Zhang J, Feng S. Synchronous oil/water separation and wastewater treatment on a copper-oxide-coated mesh. RSC Adv 2021; 11:17740-17745. [PMID: 35480222 PMCID: PMC9033239 DOI: 10.1039/d1ra02334a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/01/2021] [Indexed: 12/22/2022] Open
Abstract
Despite remarkable progress in oil/water separation and wastewater treatment, the ability to carry out the two processes in a synchronous manner has remained difficult. Here, synchronous oil/water separation and wastewater treatment were proposed on mesh surfaces coated with copper-oxide particles, which possess superwetting and catalytic properties. The superwetting performance generates additional pressure to achieve the permselectivity of the designed mesh, on which the oil phase is selectively repelled while the water phase passes though easily. Moreover, the catalytic performance of the copper oxide forms reactive oxygen species to purify the water during oil/water separation process. We show that the oil/water separation and catalytic degradation efficiencies for organic pollutants can reach more than 99% by adjusting the content of copper oxide on the mesh surfaces. Such a unique design for integrating multifunctionality on single mesh surfaces strongly underpins the synchronization of oil/water separation and wastewater treatment, which will provide a new insight for separating pure water from industrial oil/water mixtures. An integrated multifunctional copper-oxide-coated mesh was designed via facile immersing and burning methods, which manifests synchronous oil/water separation and wastewater treatment.![]()
Collapse
Affiliation(s)
- Yahua Liu
- Key Laboratory for Precision & Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Peng Xu
- Key Laboratory for Precision & Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Wenna Ge
- Key Laboratory for Precision & Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Chenguang Lu
- Key Laboratory for Precision & Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Yunlai Li
- Key Laboratory for Precision & Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University Changchun 130022 China
| | - Junqiu Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University Changchun 130022 China
| | - Shile Feng
- Key Laboratory for Precision & Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
14
|
Tunable Wettability Pattern Transfer Photothermally Achieved on Zinc with Microholes Fabricated by Femtosecond Laser. MICROMACHINES 2021; 12:mi12050547. [PMID: 34064870 PMCID: PMC8150720 DOI: 10.3390/mi12050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/18/2022]
Abstract
A quickly tunable wettability pattern plays an important role in regulating the surface behavior of liquids. Light irradiation can effectively control the pattern to achieve a specific wettability pattern on the photoresponsive material. However, metal oxide materials based on light adjustable wettability have a low regulation efficiency. In this paper, zinc (Zn) superhydrophobic surfaces can be obtained by femtosecond-laser-ablated microholes. Owing to ultraviolet (UV) irradiation increasing the surface energy of Zn and heating water temperature decreasing the surface energy of water, the wettability of Zn can be quickly tuned photothermally. Then, the Zn superhydrophobic surfaces can be restored by heating in the dark. Moreover, by tuning the pattern of UV irradiation, a specific wettability pattern can be transferred by the Zn microholes, which has a potential application value in the field of new location-controlled micro-/nanofluidic devices, such as microreactors and lab-on-chip devices.
Collapse
|
15
|
Robust and switchable superwetting sponge-like membrane: Towards on-demand emulsion separation and aqueous pollutant degradation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Dual-functional mesh with Zn-Ni-Co LDHs@NiMoO4 heterojunction nanoarrays for highly efficient oil/water separation and photocatalytic degradation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Maggay IV, Chang Y, Venault A, Dizon GV, Wu CJ. Functionalized porous filtration media for gravity-driven filtration: Reviewing a new emerging approach for oil and water emulsions separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117983] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Ding F, Gao M. Pore wettability for enhanced oil recovery, contaminant adsorption and oil/water separation: A review. Adv Colloid Interface Sci 2021; 289:102377. [PMID: 33601298 DOI: 10.1016/j.cis.2021.102377] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/18/2023]
Abstract
Wettability, a fundamental property of porous surface, occupies a pivotal position in the fields of enhanced oil recovery, organic contaminant adsorption and oil/water separation. In this review, wettability and the related applications are systematically expounded from the perspectives of hydrophilicity, hydrophobicity and super-wettability. Four common measurement methods are generalized and categorized into contact angle method and ratio method, and influencing factors (temperature, the type and layer charge of matrix, the species and structure of modifier) as well as their corresponding altering methods (inorganic, organic and thermal modification etc.) of wettability are overviewed. Different roles of wettability alteration in enhanced oil recovery, organic contaminant adsorption as well as oil/water separation are summarized. Among these applications, firstly, the hydrophilic alteration plays a key role in recovery of the oil production process; secondly, hydrophobic circumstance of surface drives the organic pollutant adsorption more effectually; finally, super-wetting property of matrix ensures the high-efficient separation of oil from water. This review also identifies importance, challenges and future prospects of wettability alteration, and as a result, furnishes the essential guidance for selection and design inspiration of the wettability modification, and supports the further development of pore wettability application.
Collapse
|
19
|
Wang J, Xu J, Chen G, Lian Z, Yu H. Reversible Wettability between Underwater Superoleophobicity and Superhydrophobicity of Stainless Steel Mesh for Efficient Oil-Water Separation. ACS OMEGA 2021; 6:77-84. [PMID: 33458461 PMCID: PMC7807473 DOI: 10.1021/acsomega.0c03369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/02/2020] [Indexed: 05/06/2023]
Abstract
Design and fabrication of smart materials with reversible wettability for oil-water separation have attracted worldwide attention due to the increasingly serious water pollution problem. In this study, a rough oxide coating with micro/nanoscale structures is developed on the 304 stainless steel mesh (SSM) by laser ablation. The smart surface with ethanol immersion and natural drying treatments shows the wetting conversion between underwater superoleophobicity and superhydrophobicity. Based on the wettability transition behavior, both light and heavy oil-water mixtures can be separated with the high separation efficiency. Moreover, after being exposed to various corrosive solutions and high temperatures, the smart surface still shows prominent environmental stability. Switchable surface with excellent properties should be an optimal choice to solve the environmental conditions that need to be addressed urgently.
Collapse
|
20
|
Electrospun SiNPs/ZnNPs-SiO2/TiO2 nanofiber membrane with asymmetric wetting: Ultra-efficient separation of oil-in-water and water-in-oil emulsions in multiple extreme environments. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117687] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
A superwettable functionalized-fabric with pH-sensitivity for controlled oil/water, organic solvents separation, and selective oil collection from water-rich system. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117665] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
A novel strategy based on magnetic field assisted preparation of magnetic and photocatalytic membranes with improved performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118378] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Yao H, Lu X, Chen S, Yu C, He QS, Xin Z. A Robust Polybenzoxazine/SiO2 Fabric with Superhydrophobicity for High-Flux Oil/Water Separation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hongjie Yao
- Shanghai Key Laboratory of Multiphase Structural Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xin Lu
- Shanghai Key Laboratory of Multiphase Structural Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Siwei Chen
- Shanghai Key Laboratory of Multiphase Structural Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Changyong Yu
- Shanghai Key Laboratory of Multiphase Structural Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro B2N 5E3, Nova Scotia, Canada
| | - Zhong Xin
- Shanghai Key Laboratory of Multiphase Structural Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
24
|
Wu J, Xie A, Yang J, Dai J, Li C, Yan Y, Cui J. A facile surface modification of a PVDF membrane via CaCO 3 mineralization for efficient oil/water emulsion separation. NEW J CHEM 2020. [DOI: 10.1039/d0nj03329d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A facile modification of a PVDF membrane using CaCO3 inorganic particles via a layer-by-layer self-assembly process for efficient oil/water separation.
Collapse
Affiliation(s)
- Junda Wu
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Atian Xie
- School of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan
- China
| | - Jin Yang
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Chunxiang Li
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jiuyun Cui
- School of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan
- China
| |
Collapse
|
25
|
Tong W, Karthik N, Li J, Wang N, Xiong D. Superhydrophobic Surface with Stepwise Multilayered Micro- and Nanostructure and an Investigation of Its Corrosion Resistance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15078-15085. [PMID: 31682454 DOI: 10.1021/acs.langmuir.9b02910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We develop a fluorine-free preparation of the superhydrophobic surface on an aluminum alloy with anticorrosion performance and mechanical robustness. The surface morphology, chemical composition, and water repellency were determined with SEM, CLSM, EDS, FT-IR, TG, and contact-angle measurements, respectively. The aluminum matrix superhydrophobic surface (STA-PDMS-ZnO sample) was able to display excellent repellency to water with a WCA of 152° and a WSA of 2°. The outstanding superhydrophobicity on the as-prepared surface was greatly related to the construction of stepwise multilayered micro- and nanostructure within the superhydrophobic surface. Because of the special surface structure, the mechanical robustness and corrosion resistance of the STA-PDMS-ZnO sample were improved. Notably, the anticorrosion mechanism by air pockets was explained by the comparison of two superhydrophobic surfaces prepared with the same low-surface-energy chemicals. The superhydrophobic surface with a multilayered micro- and nanostructure (STA-PDMS-ZnO sample) showed greater corrosion resistance than the surface coated by superhydrophobic modification (control sample). This is because of the entrapments of numerous air pockets within the aluminum matrix superhydrophobic surface, thus strengthening the corrosion resistance. On the basis of the results, the multidimensional superhydrophobic surface is promising for having a good application future in the field of metal corrosion protection.
Collapse
Affiliation(s)
- Wei Tong
- School of Materials Science & Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Namachivayam Karthik
- School of Materials Science & Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Jianliang Li
- School of Materials Science & Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Nan Wang
- Automotive Engineering Research Institute , Jiangsu University , Zhenjiang 212013 , China
| | - Dangsheng Xiong
- School of Materials Science & Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| |
Collapse
|
26
|
|